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Department of mathematics, Sakarya University, Sakarya, Turkey.

Communicated by E. Savas

Abstract

We consider an inverse problem for quasilinear parabolic equations with type power nonlinearity.
Sufficient conditions on initial data for blow up result are obtained with positive initial energy. Over-
determination condition is given as an integral form. To get the blow up result for considered nonlinear
inverse parabolic equation, we use the concavity of a special positive function. The life span of the solution
is also computed. c©2016 All rights reserved.
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1. Introduction

Inverse problems are the problems that consist of finding an unknown property of an object, or a medium,
from the observation of a response of this object, or medium, to a probing signal. Thus, the theory of inverse
problems yields a theoretical basis for remote sensing and nondestructive evaluation. For example, if an
acoustic plane wave is scattered by an obstacle, and one observes the scattered field far from the obstacle,
or in some exterior region, then the inverse problem is to find the shape and material properties of the
obstacle. Such problems are important in identification of flying objects (airplanes, missiles, etc.), objects
immersed in water (submarines, paces of fish, etc.), and in many other situations.
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In geophysics one sends an acoustic wave from the surface of the earth and collects the scattered field on
the surface for various positions of the source of the field for a fixed frequency, or for several frequencies. The
inverse problem is to find the subsurface inhomogeneities. In technology one measures the eigenfrequencies
of a piece of a material, and the inverse problem is to find a defect in the material, for example, a hole in
a metal. In geophysics the inhomogeneity can be an oil deposit, a cave, a mine. In medicine it may be a
tumor, or some abnormality in a human body.

We now consider the following inverse problem for a quasilinear parabolic equation

ut −∇.
[(
k1 + k2|∇u|m−2)∇u

)]
+ h (u,∇u)− |u|p−2u = F (t)w(x), (1.1)

u (x, t) = 0, x ∈ ∂Ω, t > 0, (1.2)

u (x, 0) = u0, x ∈ Ω, (1.3)∫
Ω

u (x, t)w (x) dx = 1, t > 0, (1.4)

where Ω ⊂ Rn, n ≥ 1 is a bounded domain with a sufficiently smooth boundary ∂Ω. ρ, k1 and k2 are positive
constants and p > m ≥ 2. Also assume that w(x) is a given function satisfying∫

Ω

w2 (x) dx = 1, w ∈ Hm (Ω) ∩H1
0 (Ω) ∩ Lp (Ω) ,m ≥ 2. (1.5)

The inverse problem consists of finding a pair of functions {u (x, t) , F (t)} satisfying (1.1)–(1.4) when∫
Ω

u0wdx = 1, u0 ∈ H1
0 (Ω) ∩ Lp (Ω) (1.6)

and h (u, ∇u) is a continuous function which satisfies the relation

|h (u,∇u)| ≤ K
(
|u|

p
2 + |∇u|

m
2

)
,K > 0. (1.7)

Additional information about the solution to the inverse problem is given in the form of the integral over-
determination condition (1.4). Temperature u(x, t) is averaged by function w over the domain Ω [10].

Existence and uniqueness of solutions to inverse problems for parabolic equations are studied by several
authors [4, 5, 7, 8, 9]. Asymptotic stability of solutions to such problems are investigated in [2, 9, 10, 11].

Global nonexistence and blow up results for nonlinear parabolic equations are discussed in [1, 3]. But
less is known about inverse problem for nonlinear parabolic equations. Eden and Kalantarov [2] studied the
following problem

ut −∆u− |u|pu+ b (x, t, u,∇u) = F (t)w (x) , p > 0.

In this work, we consider blow up results in finite time for solutions to inverse problems for nonlinear
parabolic equation (1.1)–(1.4) with weight function w(x). The technique of our proofs is similar to the one
in [1]. In this paper, we use the following notations: ‖u‖ = ‖u‖L2(Ω), ‖u‖p = ‖u‖Lp(Ω) where L2(Ω) and

Lp(Ω) are usual Lebesgue spaces, (u, v) =
∫

Ω uvdx is the inner product,

ab ≤ εa2 +
1

4ε
b2, ε > 0

is a form of the weighted arithmetic–geometric inequality for a, b > 0 and

ab ≤ βaq + C(q, β)bq
′

is the Young‘s inequality with 1
q + 1

q′ = 1, C (q, β) = 1

q′(qβ)q
′/q . The following lemma is a useful tool for

obtaining blow up results for dynamical problems.
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Lemma 1.1 ([6], Lemma 1). Suppose that a positive, twice differentiable function Ψ (t) satisfies, for t > 0,
the following inequality

ψ (t)ψ′′ (t)− (1 + γ)
(
ψ′ (t)

)2 ≥ −2M1ψ (t)ψ′ (t)−M2ψ
2 (t) ,

where γ > 0,M1,M2 ≥ 0. If ψ (0) > 0, ψ′ (0) > −γ2γ
−1ψ (0) and M1 +M2 > 0, then ψ (t) tends to infinity

as

t→ t1 ≤ t2 ≤
1

2
√
M2

1 + γM2

ln

(
γ1ψ (0) + γψ′ (0)

γ2ψ (0) + γψ′ (0)

)
,

where γ1 = −M1 +
√
M2

1 + γM2, γ2 = −M1 −
√
M2

1 + γM2.

2. Blow-up Result

Theorem 2.1. Suppose that conditions (1.3) and (1.4) are satisfied. Let u(x, t), F (t) be a solution to inverse
problem (1.1)–(1.4). Assume that the following conditions are satisfied

γ =
√

1 + β − 1, β ∈ (0, α) , α =
p+m− 4

8
, λ =

K2(m+ pk2)(1 + α)

k2(p−m)(α− β)
(2.1)

E (0) = −λ
2
‖u0‖2 −

k1

2
‖∇u0‖2 −

k2

m
‖∇u0‖mm +

1

p
‖u0‖pp > 0 (2.2)

4 (1 + 2α)E (0)− 2λ(1 + γ)2

γ
‖u0‖2 > D3 (2.3)

where

D3 =
8K2 (m+ pk2)

k2 (p−m)
‖w‖2 +

4k2

m

(
8 (m− 1)

(p−m)

)m−1

‖∇w‖mm

+
4

p

(
8 (p− 1)

(p−m)

)p−1

‖w‖pp +
4k1

p+m− 4
‖∇w‖2.

(2.4)

Then there exists a finite time t1 such that

‖u‖2 → +∞ as t→ t−1 .

Proof For λ > 0, we apply the transformation (x, t) = eλtv(x, t) in (1.1) and obtain the equation

vt −∇.
[
(k1 + k2e

λ(m−2)t|∇v|m−2)∇v
]

+ λv + e−λth
(
eλtv, eλt∇v

)
− eλ(p−2)t|v|p−2v = e−λtF (t)w(x) (2.5)

with the boundary condition
v (x, t) = 0, x ∈ ∂Ω, t > 0, (2.6)

the initial condition
v (x, 0) = u0, x ∈ Ω, (2.7)

and the integral over-determination condition∫
Ω

v (x, t)w(x)dx = e−λt, t > 0. (2.8)

Multiplying equation (2.5) by vt in L2 (Ω), we get the relation

d

dt

[
λ

2
‖v‖2 +

k1

2
‖∇v‖2 +

k2

m
eλ(m−2)t ‖∇v‖mm −

1

p
eλ(p−2)t ‖v‖pp

]
− k2λ (m− 2)

m
eλ(m−2)t ‖∇v‖mm + ‖vt‖2 +

λ (p− 2)

p
eλ(p−2)t ‖v‖pp

+ e−λt
(
h
(
eλtv, eλt∇v

)
, vt

)
= −λe−2λtF (t).

(2.9)
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Now, multiplying equation (2.5) by w in L2 (Ω) and using over-determination condition (2.8), then we obtain

F (t) =k1e
λt (∇v,∇w) + k2e

λ(m−1)t
(
|∇v|m−2∇v,∇w

)
+
(
h
(
eλtv, eλt∇v

)
, w
)
− eλ(p−1)t

(
|v|p−2v, w

)
.

(2.10)

Substituting equation (2.10) into equation (2.9) we get the relation

− d

dt
E (t)− λk2 (m− 2)

m
eλ(m−2)t ‖∇v‖mm + ‖vt‖2 +

λ (p− 2)

p
eλ(p−2)t ‖v‖pp

=e−λt
(
h
(
eλtv, eλt∇v

)
, vt

)
− λe−2λt

(
h
(
eλtv, eλt∇v

)
, w
)

− λk2e
λ(m−3)t

(
|∇v|m−2∇v,∇w

)
+ λeλ(p−3)t

(
|v|p−2v, w

)
− λk1e

−λt (∇v,∇w) ,

(2.11)

where

E (t) =
1

p
eλ(p−2)t ‖v‖pp −

k2

m
eλ(m−2)t ‖∇v‖mm −

λ

2
‖v‖2 − k1

2
‖∇v‖2.

Use the property of the function h(eλtv, eλt∇v) given by (1.7) and then apply the weighted arithmetic–

geometric inequality to the first term on the right-hand side of (2.11) with a = eλ(p−2)t/2 ‖v‖p/2p , b = K ‖vt‖,
ε = λ(p−m)

4p and a = eλ(m−2)t/2 ‖∇v‖m/2m , b = K ‖vt‖, ε = λk2(p−m)
4m to get the estimate

e−λt
∣∣∣(h(eλtv, eλt∇v) , vt)∣∣∣ ≤λ (p−m)

4p
eλ(p−2)t ‖v‖pp +

λk2 (p−m)

4m
eλ(m−2)t ‖∇v‖mm

+
K2 (m+ pk2)

λk2 (p−m)
‖vt‖2.

(2.12)

We can obtain a similar result for the second term on the right-hand side of (2.11) with a = eλ(p−2)t/2 ‖v‖p/2p ,

b = λK ‖w‖, ε = λ(p−m)
8p and a = eλ(m−2)t/2 ‖∇v‖m/2m , b = λK ‖w‖, ε = λk2(p−m)

4m

λe−2λt
∣∣∣(h(eλtv, eλt∇v) , w)

∣∣∣ ≤λ (p−m)

8p
eλ(p−2)t ‖v‖pp +

λk2 (p−m)

8m
eλ(m−2)t ‖∇v‖mm

+
2λK2 (m+ pk2)

k2 (p−m)
e−2λt‖w‖2.

(2.13)

Apply Young’s inequality to the third and fourth terms on the right-hand side of (2.11) with

e
λ(m−2)(m−1)

m
t ‖∇v‖m−1

m , b = λk2e
−2λt
m ‖∇wm‖ , ε =

λk2 (p−m)

8m

and

a = e
λ(p−2)(p−1)t

p ‖v‖p−1
p , λe

−2λt
p ‖w‖p, ε =

λ (p−m)

8p

to get the estimates, respectively

λk2e
λ(m−3)t

∣∣∣(|∇v|m−2∇v,∇w)
∣∣∣ ≤λk2 (p−m)

8m
eλ(m−2)t ‖∇v‖mm

+
λk2

m

(
8 (m− 1)

p−m

)m−1

e−2λt ‖∇w‖mm ,
(2.14)

λeλ(p−3)t
∣∣∣(|v|p−2v, w

)∣∣∣ ≤λ (p−m)

8p
eλ(p−2)t ‖v‖pp

+
λ

p

(
8 (p− 1)

p−m

)p−1

e−2λt ‖w‖pp .
(2.15)
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The last term on the right-hand side of (2.11) can be estimated by weighted arithmetic–geometric inequality

with a = ‖∇v‖, b = λk1e
−λt ‖∇w‖, ε = λk1(p+m−4)

4

λk1e
−λt |(∇v,∇w)| ≤ λk1 (p+m− 4)

4
‖∇v‖2 +

λk1

p+m− 4
e−2λt‖∇w‖2. (2.16)

Substituting (2.12)–(2.16) into equation (2.11), we get

d

dt
E (t) ≥λ

2
(p+m− 4)E (t) +

λ2

2
(p+m− 4) ‖v‖2

+
k1

4
(p+m− 4) ‖∇v‖2 +

{
1− K2 (m+ pk2)

λk2 (p−m)

}
‖vt‖2 −D0e

−2λt,

(2.17)

where

D0 =
2λK2 (m+ pk2)

k2 (p−m)
‖w‖2 +

λk2

m

(
8 (m− 1)

p−m

)m−1

‖∇w‖mm

+
λ

p

(
8 (p− 1)

p−m

)p−1

‖w‖pp +
λk1

p+m− 4
‖∇w‖2.

Using (2.1), we rewrite the inequality (2.17) as follows

d

dt
E (t) ≥λ

2
(p+m− 4)E (t) +

λ2

2
(p+m− 4) ‖v‖2

+
λk1

4
(p+m− 4) ‖∇v‖2 +

(
1 + β

1 + α

)
‖vt‖2 −D0e

−2λt.

(2.18)

Since p+m− 4 > 0, the second and third terms on the right-hand side of (2.18) can be omitted to get the
inequality

d

dt
E (t) ≥ λ

2
(p+m− 4)E (t) +

(
1 + β

1 + α

)
‖vt‖2 −D0e

−2λt. (2.19)

Solving the differential inequality (2.19) with the estimation 1− e−
λ
2

(p+m)t by 1, we get

E (t) ≥ (E (0)−D1)e
λ
2

(p+m−4)t +

(
1 + β

1 + α

) t∫
0

‖vτ‖2dτ, (2.20)

where D1 = 2D0
λ(p+m) . It is easy to see that

E (t) ≥ e
λ
2

(p+m−4)t(E (0)−D1) ≥ E (0)−D1

by assumption (2.4). Thus we obtain a lower bound for E(t):

E (t) ≥
(

1 + β

1 + α

) t∫
0

‖vτ‖2dτ + E (0)−D1. (2.21)

Multiplying the equation (2.5) by v in L2 (Ω) and using (2.10), we get

1

2

d

dt
‖v‖2 + λ‖v‖2 + k1‖∇v‖2 + k2e

λ(m−2)t ‖∇v‖mm − e
λ(p−2)t ‖v‖pp

=− e−λt
(
h
(
eλtv, eλt∇v

)
, v
)

+ k2e
λ(m−3)t(|∇v|m−2∇v,∇w) + e−2λt

(
h
(
eλtv, eλt∇v

)
, w
)

− e(p−3)λt
(
|v|p−2v, w

)
+ k1e

−λt (∇v,∇w) .

(2.22)
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Recall condition (1.7) and apply the weighted arithmetic–geometric inequality to the first term on

the right-hand side of the equation (2.22) with a = e
λ(p−2)

2
t ‖v‖p/2p , b = K ‖v‖, ε = p−m

4p and a =

e
λ(m−2)

2
t ‖∇v‖m/2m , b = K ‖v‖, ε = k2(p−m)

4m to get the estimate

e−λt
∣∣∣(h(eλtv, eλt∇v) , v)

∣∣∣ ≤p−m
4p

eλ(p−2)t ‖v‖pp +
k2 (p−m)

4m
eλ(m−2)t ‖∇v‖mm

+
K2 (m+ pk2)

k2 (p−m)
‖v‖2.

(2.23)

We can find a similar result for the third term on the right-hand side of (2.22) with a = e
λ(p−2)

2
t ‖v‖p/2p ,

b = K ‖w‖, ε = p−m
8p and a = e

λ(m−2)
2

t ‖∇v‖m/2m , b = K ‖w‖, ε = k2(p−m)
8m

e−2λt
∣∣∣(h(eλtv, eλt∇v) , w)

∣∣∣ ≤p−m
8p

eλ(p−2)t ‖v‖pp +
k2 (p−m)

8m
eλ(m−2)t ‖∇v‖mm

+
2K2 (m+ pk2)

k2 (p−m)
e−2λt‖w‖2.

(2.24)

Apply Young’s inequality to the second and fourth terms on the right-hand side of equation (2.22) with

a = e
λ(m−2)(m−1)

m
t ‖∇v‖m−1

m , b = k2e
−2λ
m

t‖∇w‖m, ε = k2(p−m)
8m and a = e

λ(p−2)(p−1)
p

t ‖v‖p−1
p , b = e

−2λ
p
t‖w‖p,

ε = (p−m)
8p to get the estimates, respectively,

k2e
λ(m−3)t

∣∣∣(|∇v|m−2∇v,∇w)
∣∣∣ ≤k2 (p−m)

8m
eλ(m−2)t ‖∇v‖mm

+
k2

m

(
8 (m− 1)

(p−m)

)m−1

e−2λt ‖∇w‖mm ,
(2.25)

eλ(p−3)t
∣∣∣(|v|p−2v, w

)∣∣∣ ≤p−m
8p

eλ(p−2)t ‖v‖pp

+
1

p

(
8 (p− 1)

(p−m)

)p−1

e−2λt ‖w‖pp .
(2.26)

The last term on the right-hand side of equation (2.22) can be estimated by using the weighted arithmetic–

geometric inequality with a = ‖∇v‖, b = k1e
−λt ‖∇w‖, ε = k1(p+m−4)

4

k1e
−λt |(∇v,∇w)| ≤ k1 (p+m− 4)

4
‖∇v‖2 +

k1

p+m− 4
e−2λt‖∇w‖2. (2.27)

Substitute estimates (2.23)–(2.27) into (2.22), we obtain the following differential inequality

1

2

d

dt
v2 ≥p+m

2p
eλ(p−2)t ‖v‖pp −

k2(p+m)

2m
eλ(m−2)t ‖∇v‖mm

−
{
λ+

K2 (m+ pk2)

k2 (p−m)

}
‖v‖2 − k1 (p+m)

4
‖∇v‖2 −D2e

−2λt,

(2.28)

where

D2 =
2K2 (m+ pk2)

k2 (p−m)
‖w‖2 +

k2

m

(
8 (m− 1)

p−m

)m−1

‖∇w‖mm

+
1

p

(
8 (p− 1)

p−m

)p−1

‖w‖pp +
k1

p+m− 4
‖∇w‖2.
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Rewrite inequality (2.28) as follows

1

2

d

dt
‖v‖2 ≥ p+m

2
E (t) +

[
λ (p+m− 4)

4
− K2 (m+ pk2)

k2 (p−m)

]
‖v‖2 −D2e

−2λt. (2.29)

Since −D2e
−2λt ≥ −D2 and p+m− 4 > 0, we can write (2.29) as

1

2

d

dt
‖v‖2 ≥ p+m

2
E (t)− K2 (m+ pk2)

k2 (p−m)
‖v‖2 −D2. (2.30)

Substituting the estimate (2.21) and p+m = 4(1 + 2α) into (2.30), we obtain

1

2

d

dt
‖v‖2 ≥2 (1 + 2α)

(
1 + β

1 + α

) t∫
0

‖vτ‖2dτ

+ 2 (1 + 2α) (E (0)−D1)−D2 −
K2 (m+ pk2)

k2 (p−m)
‖v‖2.

(2.31)

Since λ > K2(m+pk2)
k2(p−m) , by assumption (2.1), then it follows from (2.31)

d

dt
‖v‖2 ≥ 4 (1 + 2α)

(
1 + β

1 + α

) t∫
0

‖vτ‖2dτ − 2λ‖v‖2 + 4 (1 + 2α)E (0)−D3, (2.32)

where D3 = 4 (1 + 2α)D1 + 2D2.
Now let us introduce the positive function

ψ (t) =

t∫
0

‖v‖2dτ + C0, (2.33)

where C0 is a positive constant that will be chosen later. The first and second derivatives of (2.33) are given
by

ψ
′
(t) = ‖v‖2 = 2

t∫
0

(v, vτ ) dτ + ‖u0‖2, (2.34)

ψ
′′

(t) =
d

dt
‖v‖2. (2.35)

Apply the Cauchy–Schwarz inequality and the weighted arithmetic–geometric inequality to get an upper
bound for ψ

′
(t):

[
ψ′(t)

]2
= 4

 t∫
0

(v, vτ ) dτ +
1

2
‖u0‖2

2

≤ 4


√√√√√ t∫

0

‖v‖2dτ

√√√√√ t∫
0

‖vτ‖2dτ +
1

2
‖u0‖2


2

≤ 4

(1 + 4ε)

 t∫
0

‖v‖2dτ

 t∫
0

‖vτ‖2dτ

+
1

4

(
1 +

1

4ε

)
‖u0‖4

 .
(2.36)
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Recalling the relations (2.33)–(2.36), we can estimate the term ψψ′′ − (1 + γ) (ψ′)2:

ψψ′′ − (1 + γ)
(
ψ′
)2 ≥4 (1 + β)

 t∫
0

‖vτ‖2dτ

ψ + [(p+m)E (0)−D3]ψ − 2λ‖v‖2ψ

− 4 (1 + γ)

(1 + 4ε)

 t∫
0

‖v‖2dτ

 t∫
0

‖vτ‖2dτ


− (1 + γ)

(
1 +

1

4ε

)
‖u0‖4.

(2.37)

It also should be noted that, since β (and so γ) can be neglected, ε > 0 can be taken in this way followed
by assumption max

{
1 + 4ε, 1 + 1

4ε

}
= 1+β

1+γ .
By assumption (2.1) and inequality (2.37), we get the estimation

ψψ′′ − (1 + γ)
(
ψ′
)2 ≥ −2λψψ′ + ((p+m)E (0)−D3)C0 − (1 + γ)2‖u0‖4.

Now Lemma 1.1 can be applied if

C0 =
(1 + γ)2

(p+m)E (0)−D3
‖u0‖4. (2.38)

3. Conclusion

We get the relation ψψ′′ − (1 + γ) (ψ′)2 ≥ −2λψψ′, with M1 = λ, M2 = 0, γ1 = 0, γ2 = −2λ. The
conditions of Lemma 1, positivity of ψ(0) and the condition ψ′ (0) > −γ2γ

−1ψ (0) are satisfied by the
constant (2.38) and the assumption (2.3) respectively. Thus solutions to the inverse problem for nonlinear
parabolic equation (1.1)–(1.4) blow up as

t→ t1 ≤
1

2λ
ln

γ((p+m)E (0)−D3)

γ((p+m)E (0)−D3)− 2λ(1 + γ)2‖u0‖2
.

As a result, we find conditions on data, guaranteeing global nonexistence of solution to an inverse source
problem for a class of nonlinear parabolic equations.
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[11] M. Yaman, Ö. F. Gözükızıl, Asymptotic behaviour of the solutions of inverse problems for pseudo-parabolic
equations, Appl. Math Comput., 154 (2004), 69–74.1


	1 Introduction
	2 Blow-up Result
	3 Conclusion

