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Abstract

This paper investigates the existence and uniqueness of solutions of mild solutions for a fractional stochastic
neutral functional integro-differential equation with state-dependent delay in Fréchet spaces. The main
techniques rely on the fractional calculus, properties of characteristic solution operators and fixed point
theorems. Since we do not assume the characteristic solution operators are compact, our theorems guarantee
the effectiveness of controllability results in the infinite dimensional spaces. c©2016 All rights reserved.
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1. Introduction

In this paper we study the existence result of mild solutions for a class of fractional neutral stochastic
integro-differential equations with state-dependent delay

dD(t, xt) =

∫ t

0

(t− s)α−2

Γ(α− 1)
AD(s, xs)dsdt+ f

(
t, xρ(t,xt)

)
dw(t), t ∈ J = [0,∞), (1.1)

x0 = ϕ ∈ B, (1.2)
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where the state x(·) takes values in a separable real Hilbert space H with inner product (·, ·) and norm ‖ · ‖,
1 < α < 2, D(t, ϕ) = ϕ(0) − g(t, ϕ), A : D(A) ⊂ H → H is a linear densely defined operator of sectorial
type on H. Suppose {w(t) : t ≥ 0} is a given K-valued Brownian motion or Wiener process with a finite
trace nuclear covariance operator Q > 0 defined on a complete probability space (Ω,F , P ) equipped with
a normal filtration {Ft}t≥0, which is generated by the Wiener process w. We are also employing the same
notation ‖ · ‖ for the norm L(K;H), where L(K;H) denotes the space of all bounded linear operators from
K into H. the time history xt : (−∞, 0] → X, x(t + θ), θ ≤ 0, belongs to some abstract phase space B
defined axiomatically; The initial data {ϕ(t) : −∞ < t ≤ 0} is an F0-adapted, B-valued random variable
independent of the Wiener process w with finite second moment, and f , g, ρ are functions subject to some
additional conditions.

Fractional differential equations have received considerable attention in the recent years due to their wide
applications in engineering, economy and other fields. Many papers on fractional calculus, fractional differ-
ential equations have appeared. It has seen considerable development in the last decade; see the monographs
[31], [40], [42], [44], the papers [6], [7], [15], [16], [20], [31], [33], [34], [39], [47] and the references therein.
We notice that the convolution integral in (1.1) is known as the Riemann-Liouville fractional integral (see
[10], [11]). Recently, Cuevas and Souza [12] studied S-asymptotically ω-periodic solutions for the Cauchy
problem involving Riemann-Liouville fractional integral. In [13], the authors established the existence of
S-asymptotically ω-periodic solutions for fractional order functional integro-differential equations with infi-
nite delay. However, on the one hand, there has been an increasing interest in extending certain classical
deterministic results to stochastic differential equations. This is due to the fact that most problems in a real
life situation to which mathematical models are applicable are basically stochastic rather than deterministic.
Stochastic differential equations arise naturally in characterizing many problems in physics, biology, mechan-
ics and so on; see [14], [22], [38] and the references therein. The existence, uniqueness, stability, invariant
measures, and other quantitative and qualitative properties of solutions to stochastic partial differential
equations have been extensively investigated by many authors; see, for example, Ichikawa [29], Kotelenez
[32], Govindan [21], El-Borai et al. [17] and Taniguchi et al. [46], Mahmudov [36] and the references therein.
Very recently, Chang et al. [9] investigated the global existence of mild solutions defined on the stochastic
integro-differential equation in Fréechet spaces. Some interesting in the global existence of uniqueness results
for functional differential equations evolution systems with finite delay have been presented by Ouahab [41],
Henderson and Ouahab [25]. Baghli and Benchohra [3], [4] considered the global existence of uniqueness
results for functional differential evolution systems with infinite delay. Benchohra and Ouahab [8] studied
controllability results for functional semilinear differential evolution systems in Fréchet spaces. Agarwal et
al. [1] established the controllability of mild solutions defined on the semi-infinite positive real interval for
first order semilinear functional and neutral functional differential evolution equations with infinite delay in
Fréchet spaces. Motivated by the works, Our purpose in this paper is to establish the global existence of
mild solutions for a class of fractional neutral stochastic integro-differential equations with state-dependent
delay in Fréchet spaces. Functional differential equations with state-dependent delay appear frequently in
applications as model equations and for this reason the study of such equations has received great attention
in the last few years. The existence results for partial functional differential equations with state-dependent
delay; see among another works [2], [26], [27] and the references therein.

The rest of this paper is organized as follows. In Section 2, we introduce some notations and necessary
preliminaries. In Section 3, we give our main results. In Section 4, an example is given to illustrate our
results. Finally in Section 5, we apply the preceding technique to a control problem.

2. Problem formulation and preliminaries

In this section, we introduce some basic definitions, notations and lemmas which are used throughout
this paper.

Let (Ω,F , P ;F)(F = {Ft}t≥0) be a complete filtered probability space satisfying that F0 contains all
P -null sets of F . An H-valued random variable is an F-measurable function x(t) : Ω→ H and the collection
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of random variables S = {x(t, w) : Ω → H|t ∈ J} is called a stochastic process. Generally, we just
write x(t) instead of x(t, w) and x(t) : J → H in the space of S. Let {ei}∞i=1 be a complete orthonormal
basis of K. Suppose that {w(t) : t ≥ 0} is a cylindrical K-valued Wiener process with a finite trace

nuclear covariance operator Q ≥ 0, denote Tr(Q) =
∞∑
i=1

λi = λ < ∞, which satisfies that Qei = λiei.

So, actually, w(t) =
∞∑
i=1

√
λiwi(t)ei, where {wi(t)}∞i=1 are mutually independent one-dimensional standard

Wiener processes. We assume that Ft = σ{w(s) : 0 ≤ s ≤ t} is the σ-algebra generated by w.
Let L(K;H) denote the space of all bounded linear operators from K into H. For h1, h2 ∈ L(K;H),

we define (h1, h2) =Tr(h1Qh
∗
2) where h∗2 is the adjoint of the operator h2 and Q is the nuclear operator

associated with the Wiener process, where Q ∈ L+
n (K), the space of positive nuclear operator in K. For

ψ ∈ L(K;H) we define

‖ ψ ‖2Q= Tr(ψQψ∗) =
∞∑
i=1

‖
√
λiψei ‖2 .

If ‖ ψ ‖Q< ∞, then ψ is called a Q-Hilbert-Schmidt operator. Let LQ(K;H) denote the space of all
Q-Hilbert-Schmidt operators ψ. The completion LQ(K;H) of L(K;H) with respect to the topology induced
by the norm ‖ · ‖Q where ‖ ψ ‖2Q= (ψ,ψ) is a Hilbert space with the above norm topology. For more details,
we refer the reader to Da Prato and Zabczyk [14].

In this paper, we assume that the phase space (B, ‖ · ‖B) is a seminormed linear space of functions
mapping (−∞, 0] into H, and satisfying the following fundamental axioms due to Hale and Kato (see e.g.,
in [24]).

(A) If x : (−∞, σ + b] → H, b > 0, is such that x|[σ,σ+b] ∈ C([σ, σ + b], H) and xσ ∈ B, then for every
t ∈ [σ, σ + b] the following conditions hold:

(i) xt is in B;
(ii) ‖ x(t) ‖≤ H̃ ‖ xt ‖B;

(iii) ‖ xt ‖B≤ K(t − σ) sup{‖ x(s) ‖: σ ≤ s ≤ t} + M(t − σ) ‖ xσ ‖B, where H̃ ≥ 0 is a constant;
K,M : [0,∞)→ [1,∞), K is continuous and M is locally bounded; H̃, K, M are independent of
x(·).

(B) For the function x(·) in (A), the function t→ xt is continuous from [σ, σ + b] into B.
(C) The space B is complete.

Remark 2.1. In the rest of this section, Mn and Kn are the constants Kn = sup{K(t) : 0 ≤ t ≤ n},
Mn = sup{M(t) : 0 ≤ t ≤ n} for each n ∈ N.

A closed and linear operator A is said to be sectorial of type ω if there exist 0 < θ < π/2,M > 0
and ω ∈ R such that its resolvent exists outside the sector ω + Sθ := {ω + λ : λ ∈ C| arg(−λ) < θ} and
‖ (λ−A)−1 ‖≤ M

|λ−ω| , λ /∈ ω+Sθ. Sectorial operator are well studied in the literature. For a recent reference

including several examples and properties we refer the reader to Haase [23]. In order to give an operator
theoretical approach we recall the following definition (cf. [12], [13]).

Definition 2.2. Let A be a closed and linear operator with domain D(A) defined on a Hilbert space X.
We call A the generator of a solution operator if there exist ω ∈ R and a strongly continuous function
Sα : R+ → L(H) such that {λα : Re(λ) > ω} ⊂ ρ(A) and λα−1(λα − A)−1x =

∫∞
0 e−λtSα(t)dt,Re(λ) >

ω, x ∈ H. In this case, Sα(·) is called the solution operator generated by A.

We note that, if A is sectorial of type ω with 0 < θ < π(1 − α
2 ) then A is the generator of a solution

operator given by

Sα(t) =
1

2π

∫
∑ e−λtλα−1(λα −A)−1dλ, (2.1)

where
∑

is a suitable path lying outside the sector ω + Sα.
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Cuesta [10] has proved that, if A is a sectorial operator of type ω < 0, for some M0 > 0 and 0 < θ <
π(1− α

2 ), there is C > 0 such that

‖ Sα(t) ‖≤ CM0

1 + |ω|tα
, t ≥ 0. (2.2)

Let C([0,+∞), H) be the space of continuous functions from [0,+∞) into H and B(H) be the space of all
bounded linear operators from H into H, with the norm ‖ N ‖= sup{‖ N(y) ‖:‖ x ‖= 1}.

A measurable function x : [0,+∞) → H is Bochner integrable if ‖ x ‖ is Lebesgue integrable. (For
details on the Bochner integral properties, see Yosida [48]). L1([0,+∞), H) denotes the space of measurable
functions x : [0,+∞)→ H which are Bochner integrable, equipped with the norm ‖ x ‖L1=

∫ +∞
0 ‖ x(t) ‖ dt

for all x ∈ L1(J,H).
Consider the space

B+∞ = {x : (−∞,+∞)→ H : x|J ∈ CFt(J,H) : x0 ∈ L2
0(Ω, H)}. (2.3)

Let X be a Fréchet space with a family of semi-norms {‖ · ‖n}n∈N. Let Y ⊂ X, we say that F is bounded if
for every n ∈ N, there exists Mn > 0 such that

‖ y ‖n≤Mn for all y ∈ Y.

To X we associate a sequence of Banach spaces {(Xn, ‖ · ‖n)} as follows : For every n ∈ N, we consider
the equivalence relation ∼n defined by x ∼n y if and only if ‖ x − y ‖n= 0 for all x, y ∈ X. We denote
Xn = (X|∼n , ‖ · ‖n) the quotient space, the completion of Xn with respect to ‖ · ‖n. To every Y ⊂ X,
we associate a sequence the {Y n} of subsets Y n ⊂ Xn as follows: For every x ∈ X, we denote [x]n the
equivalence class of x of subset Xn and we defined Y n = {[x]n : x ∈ Y }. We denote Y n, intn(Y n) and ∂nY

n,
respectively, the closure, the interior and the boundary of Y n with respect to ‖ · ‖n in Xn. We assume that
the family of semi-norms {‖ · ‖n} verifies:

‖ x ‖1≤‖ x ‖2≤‖ x ‖3≤ · · · for every x ∈ X.

Definition 2.3. A function f : J ×H → LQ(K,H) is said to be an L2-Carathéodory function if it satisfies:

(i) for each t ∈ J the function f(t, ·) : H → LQ(K,H) is continuous;

(ii) for each x ∈ H the function f(·, x) : J → LQ(K,H) is Ft-measurable;

(iii) for every positive integer k there exists hk ∈ L1
loc(J,R+) such that

E ‖ f(t, x) ‖2≤ hk(t) for all E ‖ x ‖2≤ k

and for almost all t ∈ J.

The next result is a consequence of the phase space axioms.

Lemma 2.4. Let x : (−∞, n] → H be an Ft-adapted measurable process such that the F0-adapted process
x0 = ϕ(t) ∈ L0

2(Ω,B) and x|J ∈ B+∞, then

‖ xs ‖B≤MnE ‖ ϕ ‖B +Kn sup
0≤s≤n

E ‖ x(s) ‖ .

Lemma 2.5 (Nonlinear Alternative of Granas-Frigon, [18]). Let X be a Fréchet space and Y ⊂ X a closed
subset and N : Y → X be a contraction such that N(Y ) is bounded. Then one of the following statements
hold:

(a) N has a fixed point;

(b) there exists λ ∈ [0, 1), n ∈ N, and x ∈ ∂nY n such that ‖ x− λN(x) ‖n= 0.
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3. Existence results

Definition 3.1. An Ft-adapted stochastic process x : (−∞,+∞) → H is called a mild solution of the
system (1.1)–(1.2) if x0 = ϕ(t), xρ(s,xs) ∈ B satisfying x0 ∈ L0

2(Ω, H), and the restriction of x(·) to the
interval J is continuous and satisfies the following integral equation

x(t) = Sα(t)[ϕ(0)− g(0, ϕ)] + g(t, xt) +

∫ t

0
Sα(t− s)f

(
s, xρ(s,xs)

)
dw(s), t ∈ J.

Assume that ρ : [0, n]× B → (−∞, n] is continuous. In addition, we assume the following hypotheses:

(H1) There exists M > 0 such that
‖ Sα(t) ‖2≤M for each t ≥ 0.

(H2) The function t → ϕt is continuous from R(ρ−) = {ρ(s, ψ) ≤ 0, (s, ψ) ∈ [0, n] × B} into B and there
exists a continuous and bounded function Jϕ : R(ρ−) → (0,∞) such that ‖ ϕt ‖≤ Jϕ(t) ‖ ϕ ‖B for
each t ∈ R(ρ−).

(H3) The multifunction F : J × B → P(LQ(K,H)) is L2
loc-Carathéodory with compact and convex values

for each x ∈ B and there exist a function p ∈ L1
loc(J,R+) and a continuous nondecreasing function

ψ : J → (0,∞) such that
E ‖ f(t, x) ‖2≤ p(t)ψ(‖ x ‖2B)

for a.e. t ∈ J and each x ∈ B.
(H4) For all R > 0, there exists lR ∈ L1

loc(J,R+) such that

E ‖ f(t, x)− f(t, y) ‖2≤ lR(t)E ‖ x− y ‖2B

for each t ∈ J and for all x, y ∈ B with E ‖ x ‖2B≤ R and E ‖ y ‖2B≤ R.
(H5) For all R > 0, there exists ΓR ∈ L1

loc(J,R+) such that

E ‖ g(t, x)− g(t, y) ‖2≤ ΓR(t)E ‖ x− y ‖2B

for each t ∈ J and for all x, y ∈ B with E ‖ x ‖2B≤ R and E ‖ y ‖2B≤ R.
(H6) There exist constants c1 ≥ 0, and c2 > 0 such that

‖ g(t, x) ‖≤ c1 ‖ x ‖B +c2

for t ∈ J, x ∈ B.
(H7) For each n ∈ N, there exists a constant βn > 0 such that

(1− 6K2
nc1)βn

µ1 + 6Tr(Q)MK2
nψ(βn) ‖ p ‖L1

[0,n]

> 1,

where µ1 = 12MK2
n[H̃2 ‖ ϕ ‖2B +(c1 ‖ ϕ ‖2B +c2)] + 2((Mn + Jϕ0 ) ‖ ϕ ‖B)2 + 6K2

nc2.

Lemma 3.2 ([26], [27]). Let x : (−∞, n] → H be continuous on [0, n] and let x0 = ϕ If (H2) is satisfied,
then

‖ xs ‖B≤ (Mn + Jϕ0 ) ‖ ϕ ‖B +Kn sup{‖ x(θ) ‖; θ ∈ [0,max{0, s}]}, s ∈ R(ρ−) ∪ [0, n],

where Jϕ0 = supt∈R(ρ−) J
ϕ(t).

Remark 3.3 ([26]). Let ϕ ∈ B and t ≤ 0. The notation ϕt represents the function defined by ϕt = ϕ(t+ θ).
Consequently, if the function x(·) in axiom A is such that x0 = ϕ, then xt = ϕt. We observe that ϕt is
well-defined for t < 0 since the domain of ϕ is (−∞, 0].

The main result of the paper is the following theorem.
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Theorem 3.4. Let ϕ ∈ L0
2(Ω, H). If the assumptions (H1)-(H7) are satisfied and

2K2
n sup
t∈[0,n]

Γn(t) < 1 (3.1)

for each n ∈ N, then the problem (1.1)–(1.2) has a unique mild solution on J.

Proof. Let us fix τ > 1. For every n ∈ N, we define in B+∞ the semi-norms

‖ x ‖n:= sup{eτL∗n(t)E ‖ x(t) ‖2: t ∈ [0, n]}, (3.2)

where L∗n(t) =
∫ t

0 l̄n(s)ds, and l̄n(t) = 2Tr(Q)MK2
b ln(s) and ln is the function from (H4). Then B+∞ is a

Fréchet space with the family of semi-norms ‖ · ‖n∈N .
Consider the space Y = {x ∈ B+∞ : x(0) = ϕ(0)} endowed with the uniform convergence topology

(‖ · ‖∞) and define the map Φ : Y→ Y by

(Φx)(t) =

{
0, t ∈ (−∞, 0],

Sα(t)[ϕ(0)− g(0, ϕ)] + g(t, x̄t) +
∫ t

0 Sα(t− s)f(s, x̄ρ(s,x̄s))dw(s), t ∈ J,

where x̄ : (−∞, 0]→ H is such that x̄0 = ϕ and x̄ = x on [0, n].
Let ϕ̄ : (−∞, 0) → H be the extension of (−∞, 0] such that ϕ̄(θ) = ϕ(0) = 0 on [0, n] and

Jϕ0 = sup{Jϕ(s) : s ∈ R(ρ−)}. We show that Φ has a fixed point, which in turn is a mild solution of
the problem (1.1)–(1.2).

Let x be a possible solution of problem (1.1)–(1.2). Given n ∈ N and t ∈ [0, n], then

x(t) = Sα(t)[ϕ(0)− g(0, ϕ)] + g(t, x̄t) +

∫ t

0
Sα(t− s)f(s, x̄ρ(s,x̄s))dw(s).

This implies by the hypotheses (H3) and (H6) that, for each t ∈ [0, n], we have

E ‖ x(t) ‖2 ≤ 3E ‖ Sα(t)[ϕ(0)− g(0, ϕ)] ‖2 +3E ‖ g(t, x̄t) ‖2

+ 3E

wwww∫ t

0
Sα(t− s)f(s, x̄ρ(s,x̄s))dw(s)

wwww2

≤ 6M [H̃2 ‖ ϕ ‖2B +(c1 ‖ ϕ ‖2B +c2)] + 3(c1 ‖ x̄t ‖2B +c2)

+ 3Tr(Q)M

∫ t

0
p(s)ψ(‖ x̄ρ(s,x̄s) ‖

2
B)ds.

By Lemma 2.4 and Lemma 3.2, it follows that ρ(s, x̄s) ≤ s, s ∈ [0, n] and

‖ x̄ρ(s,x̄s) ‖
2
B ≤ 2[(Mn + Jϕ0 ) ‖ ϕ ‖B]2 + 2K2

n sup
s∈[0,n]

E ‖ x(s) ‖2 . (3.3)

For each t ∈ [0, n], we have

E ‖ x(t) ‖2 ≤ 6M [H̃2 ‖ ϕ ‖2B +(c1 ‖ ϕ ‖2B +c2)]

+ 3

[
c1

(
2((Mn + Jϕ0 ) ‖ ϕ ‖B)2 + 2K2

n sup
s∈[0,n]

E ‖ x(s) ‖2
)

+ c2

]
+ 3Tr(Q)M

∫ t

0
p(s)ψ

(
2((Mn + Jϕ0 ) ‖ ϕ ‖B)2 + 2K2

n sup
s∈[0,n]

E ‖ x(s) ‖2
)
ds.

Consider the norm of the function γ defined by

γ(t) := 2[(Mn + Jϕ0 ) ‖ ϕ ‖B]2 + 2K2
n sup

0≤s≤t
E ‖ x(s) ‖2,
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with ‖ γ ‖∞= sup
0≤t≤b

γ(t). By the previous inequality, we have for t ∈ [0, n]

‖ γ ‖∞ ≤ 12MK2
n[H̃2 ‖ ϕ ‖2B +(c1 ‖ ϕ ‖2B +c2)] + 2((Mn + Jϕ0 ) ‖ ϕ ‖B)2

+ 6K2
n(c1 ‖ γ ‖∞ +c2) + 6Tr(Q)MK2

n

∫ t

0
p(s)ψ(‖ γ ‖∞)ds,

which implies that

‖ γ ‖∞ ≤ 12MK2
n[H̃2 ‖ ϕ ‖2B +(c1 ‖ ϕ ‖2B +c2)] + 2((Mn + Jϕ0 ) ‖ ϕ ‖B)2 + 6K2

nc2

+ 6K2
nc1 ‖ γ ‖∞ +6Tr(Q)MK2

nψ(‖ γ ‖∞)

∫ n

0
p(s)ds.

Consequently,
(1− 6K2

nc1) ‖ γ ‖∞
µ1 + 6Tr(Q)MK2

nψ(‖ γ ‖∞)
∫ n

0 p(s)ds
≤ 1.

Then by the condition (H7), there exists βn such that ‖ γ ‖∞≤ βn. Since ‖ x ‖B+∞≤‖ γ ‖∞ we have
‖ x ‖n≤ βn. Set

X = {x ∈ B+∞ : sup{E ‖ x(t) ‖2: 0 ≤ t ≤ n} ≤ βn + 1 for all n ∈ N}.

Clearly, X is a closed subset of B+∞. We shall show that Φ : X→ B+∞, is a contraction operator. Indeed,
consider x1, x2 ∈ B+∞. Then, by using Lemma 2.4, Lemma 3.2 and (H4), (H5) for each t ∈ [0, n] and n ∈ N
we have

E ‖ Φ1x1(t)− Φ1x2(t) ‖2

≤ 2E ‖ g(t, x1
t)− g(t, x2

t) ‖2

+ 2E

wwww∫ t

0
Sα(t− s)

[
f

(
s, x1

ρ(s,x1s)

)
− f

(
s, x2

ρ(s,x2s)

)]
dw(s)

wwww2

≤ 2Γn(t) ‖ x1
t − x2

t ‖2B +2Tr(Q)M

∫ t

0
ln(s)

[wwwwx1
ρ(s,x1s)

− x2
ρ(s,x2s)

wwww2

B

]
ds

≤ 2Γn(t)K2
n sup
t∈[0,n]

E ‖ x1(t)− x2(t) ‖2

+ 2Tr(Q)MK2
b

∫ t

0
ln(s)E ‖ x1(s)− x2(s) ‖2 ds

≤ 2K2
n[eτLn(t)][e−τLn(t) sup

t∈[0,n]
E ‖ x1(t)− x2(t) ‖2]

+

∫ t

0
[l̄n(s)eτLn(s)][e−τLn(s)E ‖ x1(s)− x2(s) ‖2]ds

≤ 2K2
n[eτLn(t)] sup

t∈[0,n]
Γn(t) ‖ x1 − x2 ‖n +

∫ t

0

1

τ

[
eτLn(s)

]′
ds ‖ x1 − x2 ‖n

≤ eτLn(t)

[
2K2

n sup
t∈[0,n]

Γn(t) +
1

τ

]
‖ x1 − x2 ‖n,

by using x̄ = x on [0, n]. Taking supremum over t,

‖ Φx1 − Φx2 ‖n≤
[
2K2

n sup
t∈[0,n]

Γn(t) +
1

τ

]
‖ x1 − x2 ‖n,

showing that the operator Φ is a contraction for all n ∈ N. From the choice of X there is no x ∈ ∂Xn such
that x = Φ(x) for some λ ∈ (0, 1). As a consequence of the nonlinear alternative of Frigon and Granas shows
that the operator Φ has a unique fixed point x, which is the unique mild solution of the problem (1.1)–(1.2).
The proof is completed.
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4. Example

Consider the following fractional stochastic neutral functional integrodifferential equation of the form

d

[
z(t, x)−

∫ t

−∞
a1(t)a2(t− s)z(t, x)

]
= Jα−1

t

(
∂2

∂x2
− y
)[
z(t, x)−

∫ t

−∞
a1(t)a2(t− s)z(t, x)

]
+

∫ t

−∞
a3(t)a4(s− t)z(s− ρ1(t)ρ2(‖ z(t) ‖), x))ds, t ≥ 0, 0 ≤ x ≤ π,

(4.1)

z(t, 0) = z(t, π) = 0, t ≥ 0, (4.2)

z(t, x) = ϕ(t, x), −∞ ≤ t ≤ 0, 0 ≤ x ≤ π, (4.3)

where ϕ is continuous, w(t) denotes a standard cylindrical Wiener process in H defined on a stochastic
space (Ω,F , P ) and let H = L2([0, π]) with the norm ‖ · ‖ and define the operators A : D(A) ⊂ H → H is
the operator given by Aω = ω′′ − yω with the domain D(A) := {ω ∈ H : ω′′ ∈ H,ω(0) = ω(π) = 0}. Then

Aω =

∞∑
n=1

n2〈ω, ωn〉ωn, ω ∈ D(A),

where ωn(x) =
√

2
π sin(nx), n = 1, 2, . . . is the orthogonal set of eigenvectors of A. It is well known that A is

the infinitesimal generator of an analytic semigroup T (t), t ≥ 0 in H and A is sectorial of type µ = −y < 0.
Let r ≥ 0, 1 ≤ p <∞ and let h : (−∞,−r]→ R be a nonnegative measurable function which satisfies the

conditions (h-5), (h-6) in the terminology of Hino et al. [28]. Briefly, this means that h is locally integrable
and there is a non-negative, locally bounded function γ on (−∞, 0] such that h(ξ + θ) ≤ γ(ξ)h(θ) for all
ξ ≤ 0 and θ ∈ (−∞,−r) \ Nξ, where Nξ ⊆ (−∞,−r) is a set whose Lebesgue measure zero. We denote
by Cr × Lp(h,H) the set consists of all classes of functions ϕ : (−∞, 0] → H such that ϕ is continuous on
[−r, 0], Lebesgue-measurable, and h ‖ ϕ ‖p is Lebesgue integrable on (−∞,−r). The seminorm is given by
‖ ϕ ‖B= sup

−r≤θ≤0
‖ ϕ(θ) ‖ +(

∫ −r
−∞ h(θ) ‖ ϕ ‖p dθ)1/p. The space B = Cr × Lp(h,H) satisfies axioms (A)-(C).

Moreover, when r = 0 and p = 2, we can take H̃ = 1, M(t) = γ(−t)1/2 and K(t) = 1 + (
∫ 0
−t h(τ)dτ)1/2 for

t ≥ 0 (see [28], Theorem 1.3.8 for details).
For the phase space B = C0×L2(h,H), we have identified ϕ(θ)(x) = ϕ(θ, x), (θ, x) ∈ (−∞, 0]× [0, π], let

z(t)(x) = z(t, x). Additionally, we will assume that

(i) The functions ρi : R→ [0,∞), i = 1, 2, are continuous.

(ii) The functions ai : R+ → R, i = 1, 2, 3, are continuous functions with

Lg =‖ a1 ‖∞
(∫ 0

−∞

(a2(−s))2

h(s)

) 1
2

<∞, Lf =‖ a3 ‖∞
(∫ 0

−∞

(a4(s))2

h(s)

) 1
2

<∞.

By defining the maps g, f : R× B → H by

ρ(t, ϕ) = ρ1(t)ρ2(‖ ϕ(0) ‖),

g(t, ϕ)(x) =

∫ 0

−∞
a1(t)a2(−s)ϕ(s)(x)ds, D(t, ϕ)(x) = ϕ(0)x− g(t, ϕ)(x),

f(t, ψ)(x) =

∫ 0

−∞
a3(t)a4(−s)ϕ(s)(x)ds, Jα−1

t g(t) =

∫ t

0

(t− s)α−2

Γ(α− 1)
g(s)ds.

From these definitions, it follows that E ‖ g ‖2L(B,H)≤ L2
g and E ‖ f ‖2L(B,H)≤ L2

f . Then the problem (4.1)–

(4.3) can be written as system (1.1)–(1.2). Hence by we can conclude that the system (4.1)–(4.3) admits a
unique mild solution on [0,+∞).
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5. Applications to control theory

This section is devoted to an application of the argument used in previous sections to the controllability of
a class of fractional neutral stochastic integro-differential equations with state-dependent delay in a Hilbert
H. More precisely we consider the following problem:

dD(t, xt) =

∫ t

0

(t− s)α−2

Γ(α− 1)
AD(s, xs)dsdt+ (Bu)(t)dt+ f(t, xρ(t,xt))dw(t), t ∈ J = [0,∞), (5.1)

x0 = ϕ ∈ B, (5.2)

where A, f and D are as in Section 3. Also, the control function u belongs to the spaces L2(J, U), a Banach
space of admissible control functions with U , a Banach space. Further, B is a bounded linear operator from
U to H. Several authors have established the controllability results for stochastic semilinear differential and
integrodifferential systems in Hilbert spaces, such as [19], [35], [37] and the references therein. In case the
fractional integrodifferential system has been recently studied by Balachandran and Park [5], Tai and Wang
[45].

Definition 5.1. An Ft-adapted stochastic process x : (−∞,+∞) → H is called a mild solution of the
system (5.1)–(5.2) if x0 = ϕ(t), xρ(s,xs) ∈ B satisfying x0 ∈ L0

2(Ω, H), and the restriction of x(·) to the
interval J is continuous and satisfies the following integral equation

x(t) = Sα(t)[ϕ(0)− g(0, ϕ)] + g(t, xt) +

∫ t

0
Sα(t− s)(Bu)(s)ds

+

∫ t

0
Sα(t− s)F (s, xρ(s,xs))dw(s), t ∈ J.

Definition 5.2. The system (5.1)–(5.2) is said to be controllable on the interval J if for every initial random
variable x0, x1 ∈ L0

2(Ω, H), there exists a stochastic control u ∈ L2(J, U), which is adapted to the filtration
{Ft}t≥0 such that the mild solution x(t) of system (5.1)–(5.2) satisfies x(n) = x1.

We give the following assumptions:

(B1) The linear operator W : L2([0, n], U)→ X defined by

Wu =

∫ n

0
Sα(n− s)Bu(s)ds

has an induced inverse operator W−1 which takes values in L2([0, n], U)\KerW and there exist positive
constants M1 such that ‖ BW−1 ‖≤M1.

(B2) For each nN, there exists a constant β∗n > 0 such that

(1− 4c1K
2
n(1 + 4MM1n

2))β∗n
µ2 + 8Tr(Q)MK2

n(1 + 2MM1n2)ψ(β∗n) ‖ p ‖L1
[0,n]

> 1,

where

µ2 = 8MK2
n[H̃2 ‖ ϕ ‖2B +(c1 ‖ ϕ ‖2B +c2)]

+ 8K2
nc2 + 32MM1n

2K2
n[E ‖ x1 ‖2 +2M [H̃2 ‖ ϕ ‖2B +(c1 ‖ ϕ ‖2B +c2)] + 4c2]

+ 2((Mn + Jϕ0 ) ‖ ϕ ‖B)2.

Remark 5.3. The construction of the operator W and its inverse is studied by Quinn and Carmichael in
Ref. [43].
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Theorem 5.4. Let ϕ ∈ L0
2(Ω, H). If the assumptions (H1)-(H7), (B1) and (B2) are satisfied and

3K2
n

(
1 + 2M2M1n

2
)

sup
t∈[0,n]

Γn(t) < 1 (5.3)

for each n ∈ N, then the problem (5.1)–(5.2) has a unique mild solution on J .

Proof. Let us fix τ > 1. For every n ∈ N, we define in B+∞ the semi-norms

‖ x ‖n:= sup{eτL∗n(t)E ‖ x(t) ‖2: t ∈ [0, n]}, (5.4)

where L∗n(t) =
∫ t

0 l̄n(s)ds, and l̄n(t) = 3Tr(Q)MK2
b (1 + 2MM1n

2) and ln is the function from (H4). Then
B+∞ is a Fréchet space with the family of semi-norms ‖ · ‖n∈N. Using the condition (B1) for each x(·) and
each n ∈ N define the control

unx(t) = W−1

[
x1 − Sα(n)[ϕ(0)− g(0, ϕ)]− g(t, x̄n)−

∫ n

0
Sα(n− s)f(t, xρ(s,xt)))ds

]
(t).

Consider the space Y = {x ∈ B+∞ : x(0) = ϕ(0)} endowed with the uniform convergence topology
(‖ · ‖∞) and define the map Φ : Y→ Y by

(Φx)(t) =


0, t ∈ (−∞, 0],

Sα(t)[ϕ(0)− g(0, ϕ)] + g(t, x̄t) +
∫ t

0 Sα(t− s)(Bunx)(s)ds

+
∫ t

0 Sα(t− s)f(s, x̄ρ(s,x̄s))dw(s), t ∈ J,

where x̄ : (−∞, 0]→ H is such that x̄0 = ϕ and x̄ = x on [0, n].
Let ϕ̄ : (−∞, 0) → H be the extension of (−∞, 0] such that ϕ̄(θ) = ϕ(0) = 0 on [0, n] and

Jϕ0 = sup{Jϕ(s) : s ∈ R(ρ−)}. We show that Φ has a fixed point, which in turn is a mild solution of
the problem (5.1)–(5.2).

Let x be a possible solution of problem (5.1)–(5.2). Given n ∈ N and t ∈ [0, n], then

x(t) = Sα(t)[ϕ(0)− g(0, ϕ)] + g(t, x̄t) +

∫ t

0
Sα(t− s)(Bunx)(s)ds

+

∫ t

0
Sα(t− s)f(s, x̄ρ(s,x̄s))dw(s).

This implies by the hypotheses (H3) and (H6) that, for each t ∈ [0, n], we have

E ‖ x(t) ‖2 ≤ 4E ‖ Sα(t)[ϕ(0)− g(0, ϕ)] ‖2 +4E ‖ g(t, x̄t) ‖2

+ 4E

wwww∫ t

0
Sα(t− s)(Bunx)(s)ds

wwww2

+ 4E

wwww∫ t

0
Sα(t− s)f(s, x̄ρ(s,x̄s))dw(s)

wwww2

≤ 4M [H̃2 ‖ ϕ ‖2B +(c1 ‖ ϕ ‖2B +c2)] + 4(c1 ‖ x̄t ‖2B +c2)

+ 16MM1n

∫ t

0

[
E ‖ x1 ‖2 +2M [H̃2 ‖ ϕ ‖2B +(c1 ‖ ϕ ‖2B +c2)]

+ 4(c1 ‖ x̄n ‖2B +c2) + Tr(Q)M

∫ n

0
p(η)ψ(‖ x̄ρ(η,x̄η) ‖2B)dη

]
ds

+ 4Tr(Q)M

∫ t

0
p(s)ψ(‖ x̄ρ(s,x̄s) ‖

2
B)ds

≤ 4M [H̃2 ‖ ϕ ‖2B +(c1 ‖ ϕ ‖2B +c2)] + 4c2 + 16MM1n
2

[
E ‖ x1 ‖2 +2M [H̃2 ‖ ϕ ‖2B
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+ (c1 ‖ ϕ ‖2B +c2)] + 4c2

]
+ 4c1 ‖ x̄t ‖2B +16MM1n

2c1 ‖ x̄n ‖2B

+ 16MM1n
2Tr(Q)M

∫ n

0
p(s)ψ(‖ x̄ρ(s,x̄s) ‖

2
B)ds

+ 4Tr(Q)M

∫ t

0
p(s)ψ(‖ x̄ρ(s,x̄s) ‖

2
B)ds.

It follows that we have for each t ∈ [0, n],

E ‖ x(t) ‖2

≤ 4M [H̃2 ‖ ϕ ‖2B +(c1 ‖ ϕ ‖2B +c2)] + 4c2 + 16MM1n
2

[
E ‖ x1 ‖2 +2M [H̃2 ‖ ϕ ‖2B

+ (c1 ‖ ϕ ‖2B +c2)] + 4c2

]
+ 4c1

(
2((Mn + Jϕ0 ) ‖ ϕ ‖B)2 + 2K2

n sup
s∈[0,n]

E ‖ x(s) ‖2
)

+ 16MM1n
2c1

(
2((Mn + Jϕ0 ) ‖ ϕ ‖B)2 + 2K2

n sup
s∈[0,n]

E ‖ x(s) ‖2
)

+ 16MM1n
2Tr(Q)M

∫ n

0
p(s)ψ

(
2((Mb + Jϕ0 ) ‖ ϕ ‖B)2 + 2K2

n sup
s∈[0,n]

E ‖ x(s) ‖2
)
ds

+ 4Tr(Q)M

∫ t

0
p(s)ψ

(
2((Mn + Jϕ0 ) ‖ ϕ ‖B)2 + 2K2

n sup
s∈[0,n]

E ‖ x(s) ‖2
)
ds.

Defined γ be as in Theorem 3.4 with ‖ γ ‖∞= sup0≤t≤n γ(t). By the previous inequality, we have for t ∈ [0, n]

‖ γ ‖∞ ≤ 8MK2
b [H̃2 ‖ ϕ ‖2B +(c1 ‖ ϕ ‖2B +c2)] + 8K2

nc2 + 32MM1n
2K2

n

[
E ‖ x1 ‖2

+ 2M [H̃2 ‖ ϕ ‖2B +(c1 ‖ ϕ ‖2B +c2)] + c2

]
+ 2((Mn + Jϕ0 ) ‖ ϕ ‖B)2

+ 4c1K
2
n ‖ γ ‖∞ +16MM1n

2c1K
2
n ‖ γ ‖∞

+ 16MM1n
2Tr(Q)MK2

n

∫ n

0
p(s)ψ(‖ γ ‖∞)ds

+ 8Tr(Q)MK2
n

∫ t

0
p(s)ψ(‖ γ ‖∞)ds,

which implies that

‖ γ ‖∞ ≤ µ2 + 4c1K
2
n(1 + 4MM1n

2) ‖ γ ‖∞ +6K2
nc1 ‖ γ ‖∞

+ 8Tr(Q)MK2
n(1 + 2MM1n

2)ψ(‖ γ ‖∞)

∫ n

0
p(s)ds.

Consequently,
(1− 4c1K

2
b (1 + 4MM1n

2)) ‖ γ ‖∞
µ2 + 8Tr(Q)MK2

n(1 + 2MM1n2)ψ(‖ γ ‖∞)
∫ n

0 p(s)ds
≤ 1.

Then by the condition (B2), there exists β∗n such that ‖ γ ‖∞≤ βn. Since ‖ x ‖B+∞≤‖ γ ‖∞ we have
‖ x ‖n≤ β∗n. Set

X = {x ∈ B+∞ : sup{E ‖ x(t) ‖2: 0 ≤ t ≤ n} ≤ βn + 1 for all n ∈ N}.

Clearly, X is a closed subset of B+∞. We shall show that Φ : X→ B+∞, is a contraction operator. Indeed,
consider x1, x2 ∈ B+∞. Then, by using Lemma 2.4 and Lemma 3.2 and (H4), (H5) for each t ∈ [0, n] and
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n ∈ N we have

E ‖ Φ1x1(t)− Φ1x2(t) ‖2

≤ 3E ‖ g(t, x1
t)− g(t, x2

t) ‖2 +3E

wwww∫ t

0
Sα(t− s)BW−1

[
x1 − Sα(n)[ϕ(0)− g(0, ϕ)]

− g(n, x1
n)−

∫ n

0
Sα(n− η)f(η, x1

ρ(η,x1η)
))dw(η)

]
−
[
x1 − Sα(n)[φ(0)− g(0, ϕ)]− g(n, x2

n)−
∫ n

0
Sα(n− η)f(τ, x2

ρ(η,x2η)
))dw(η)

]
(η)

wwww2

+ 3E

wwww∫ t

0
Sα(t− s)

[
f

(
s, x1

ρ(s,x1s)

)
− f

(
s, x2

ρ(s,x2s)

)]
dw(s)

wwww2

≤ 3Γn(t) ‖ x1
t − x2

t ‖2B +6MM1n

∫ t

0

[
E ‖ g(n, x1

n)− g(n, x2
n) ‖2

+ Tr(Q)M

∫ n

0
E ‖ f(τ, x1

ρ(τ,x1τ )
))− f(τ, x2

ρ(τ,x2τ )
)) ‖2 dτ

]
ds

+ 3Tr(Q)M

∫ t

0
ln(s)

[wwwwx1
ρ(s,x1s)

− x2
ρ(s,x2s)

wwww2

B

]
ds

≤ 3Γn(t)K2
b sup
t∈[0,n]

E ‖ x1(t)− x2(t) ‖2 +6MM1n
2Γn(t)K2

b sup
t∈[0,n]

E ‖ x1(t)− x2(t) ‖2

+ 6M2M1n
2Tr(Q)K2

n

∫ t

0
ln(s)E ‖ x1(s)− x2(s) ‖2 ds

+ 3Tr(Q)MK2
n

∫ t

0
ln(s)E ‖ x1(s)− x2(s) ‖2 ds

≤ 3Γn(t)K2
n(1 + 2MM1n

2)[eτLn(t)][e−τLn(t) sup
t∈[0,n]

E ‖ x1(t)− x2 ‖2 (t)]

+

∫ t

0
[l̄n(s)eτLn(s)][e−τLn(s)E ‖ x1(s)− x2(s) ‖2]ds

≤ 3Γn(t)K2
n(1 + 2MM1n

2)[eτLn(s)] ‖ x1 − x2 ‖n +

∫ t

0

1

τ

[
eτLn(s)

]′
ds ‖ x1 − x2 ‖n

≤ eτLn(t)

[
3 sup
t∈[0,n]

Γn(t)K2
n(1 + 2M2M1n

2) +
1

τ

]
‖ x1 − x2 ‖n,

by using x̄ = x on [0, n]. Taking supremum over t,

‖ Φx1 − Φx2 ‖n≤
[
3 sup
t∈[0,n]

Γn(t)K2
n(1 + 2M2M1n

2) +
1

τ

]
‖ x1 − x2 ‖n,

showing that the operator Φ is a contraction for all n ∈ N. From the choice of X there is no x ∈ ∂Xn such
that x = Φ(x) for some λ ∈ (0, 1). As a consequence of the nonlinear alternative of Frigon and Granas shows
that the operator Φ has a unique fixed point x, which is the unique mild solution of the problem (5.1)–(5.2).
The proof is completed.
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