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Abstract

The authors consider stochastic equations of the prototype
du + (yD*u — yD?f'(u) + D*u — f'(u))dt — dw = 0,

where v > 0 is a constant and w is a -Wiener process in a probability space (€2, F,P). We establish the
global existence and uniqueness of the solution for this prototype in one dimension space. The random
attractor is also discussed. (©2016 All rights reserved.
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1. Introduction

In this paper, we shall consider the existence and uniqueness of the solution to the fourth-order equation
with a random term
du + (yD*u — vD? f'(u) — D*u + f'(u))dt — dw = 0, (1.1)

where v > 0 is a constant, f/(u) = u® —u and w is a Q-Wiener process in a probability space (2, F,P). We

will be mainly interested in the case that the wiener process w takes value in a Hilbert space. The noise
term dw represents the thermal fluctuation.
The equation (1.1)) is supplemented by the boundary value conditions

Duly—01 = D*uly—01 =0, t >0, (1.2)
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and the initial value condition

u(z,0) = ug(z). (1.3)
The usual equation without random term,
du 4 2 o 2 1N
a—i—vDu—ny(u)—Du—i—f(u)—O (1.4)

is introduced as a simplification of multiple microscopic mechanisms model [10] in cluster interface evolution.
Karali and Katsoulakis [I0] discuss microscopic models describing pattern formation mechanisms for a
prototypical model of surface processes that involves multiple microscopic mechanisms. G. Karali and Y.
Nagase [I1] proved the existence of the solution of this problem. By using the semigroups and the classical
existence theorem of global attractors, Tang, Liu and Zhao [I3] gave the existence of the global attractor in
H* (0 < k < 5) space of the equation (T.4)), and it attracts any bounded subset of H*((2) in the H*-norm.

During the past years, many authors have paid much attention to the stochastic partial differential
equations. However, only a few works have been devoted to stochastic higher order parabolic equations.
Elezovi¢ and Mikeli¢ [§] studied the stochastic Cahn-Hilliard equation. Authors prove the existence of weak
statistical solutions and it is shown that under additional conditions, the Cahn-Hilliard equation has a
unique strong solution with some additional regularity properties. Da Prato and Debussche [4] proved the
existence of an invariant measure for stochastic Cahn-Hilliard equation. Antonopoulou, Blomker and Karali
[1] proved stochastic stability of the approximate slow manifold of solutions over a very long time scale
and evaluated the noise effect (see also [2], O] [12]). Duan and Ervin [7] studied the stochastic Kuramoto-
Sivashinsky equation under the influence of white noise (see also [15]).

We study the problem f. We first show the existence and uniqueness of local solution to the
equations for 0 < t < T via an application of a transformation which can change the stochastic equation to
a deterministic equation, and then we use the general methods to deal with the deterministic one. Secondly,
we show the local solution remains bounded for any 1" > 0, that is, the existence of global solution of the
equation.

The plan of the paper is as follows. In section 2, we give some lemmas, notions. The proof of the
existence and uniqueness of local solution is finished in section 3. In section 4, we give the existence of
global solution, the random attractor is also discussed in section 5.

2. Some Lemmas
In order to study the problem ([1.1)—(1.3), we shall need the following Lemmas.

Lemma 2.1 ([5]). Let .F be a transformation from a Banach space & into &, a is an element of & and
a > 0 is a positive number. If F(0) =0, |alls < 2o and

|7 (21) = F(22)

1
& < §HZ1 —2le for |zalle < a, [zlle <a, (2.1)

then the equation
z=a+F(z), z€& (2.2)

has a unique solution z € & satisfying ||z||s < o
Lemma 2.2 ([I7]). Assume that A is a negative self-adjoint operator on H and
V =D(-A)z)c HcC V.

Then A and S(t) = et have a continuous extension from V to V'. If

t
y(t) = y(t: 9) = S(t)wo + /0 =g (s)ds, t e [0,T]
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foryo € H, and g € L?(0,T; V"), then
y € L°°(0,T; H) N L*(0,T;V)
and for some constant L > 0, independent of T > 0,
1Yl oo 0,758y + 1Yl 20,0y < L (llyollz + ||9||L2(0,T;V’)) : (2.3)
In this article, we let
H:=Hy(I), V:=HiI), I=(0,1), E:=L°(0,T;W"5(I)).
Then, we have the following lemma
Lemma 2.3. For each T > 0, we obtain
L®(0,T; H)NL*(0,T;V) C E
and there exists a constant K, independent of T > 0, such that
lulle < K (lullzo oz + lull20mv)) s v € E. (2.4)

Proof. From the Nirenberg inequality, we know that there exists a constant C; such that

2 1
lullwss oy < Callu®)l| gy 1 (®) 2 -

Integrating the above equation over [0, T, by Young’s inequality and the definitions of the norms, we deduce
the result with K = C;/2. O

Lemma 2.4.

o=

1
I)wole < 2KT% (180l on + 15Ol 01:0) (25)
Moreover, the right-hand of (2.5 is finite.

Proof. From the Lemma we have

r 6 6 r 4 2
/0 6 edt < C8 /0 lalld ol e

C'l6 T 6 r 6
=35\, [ull7rdt + ; [[ully-dt

2
cST
< = (Il + Nl 130 -

Let u = S(t)yo, we deduce the result. O

3. Local existence
In this section, we are going to prove the local existence.

Theorem 3.1. Forug € H, there exists a random variable T taking values P-a.s.in (0, T such that equations

(1.1) —(1.3)) have a unique solution w on the interval [0, 7].

In order to prove the Theorem we need to introduce a transformation to simplify (1.1)) to a deter-
ministic equation.
We consider the self-adjoint operator A corresponding to the form
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Au = —YUgpze + Ugy, (3.1)

which is a strictly negative operator on Hj(I). (—A)® with the domain D((—A)®) = H§® is an operator
defined via Fourier analysis (see [I4]). Thus, the equation (I.1)) can be written in the form

du = (Au + yD? f'(u) — u® 4+ u) + dw, (3.2)
where w which takes value in the separable space H := H& (I) is a Wiener process with the covariance
operator Q. We define

T
wa(t) == / S(t — s)dw(s), (3.3)
0

where S(t) := e, t > 0. With the substitution
y(t,z) = u(t,x) —wa(t,x), te€[0,T]P a.s. (3.4)
Then the equation is changed to a deterministic equation
yr = Ay +yD*f'(y + wa) = (y +wa)* + (y + wa), (3.5)

together with
y(0,2) =wup(xz) and Dy(t,z)|z=01 = D3y\x:0,1 = 0. (3.6)

Definition 3.2. The function u € E is called the (mild) solution to the equation (1.1f), if
y(t,x) == u(t,x) —wa(t,z), t€]0,T] P a.s.,

and y satisfies

y(t) = S(t)up + T(y +wa)(t), tel0,T], (3.7)
where
T:E—FE
is given by .
T(u)(t) = /0 S(t — s)(yD?f'(u(s)) — u®(s) + u(s))ds. (3.8)

It is necessary for us to give the rationality of the definition.

Firstly, we should notice that, when (—A)? takes value in D((—A)%) for 0 < 3 < % and Holder exponent
smaller than § — f3, there exists a version of wa(t) is Hélder continuous (see [5]). By Lemma we know
that w4 has a continuous version in W16(I). Secondly, we define

Ty : CY([0,T);V) = E

by .
To(u)(t) = /0 S(t—s)(Kou)(s)ds, te€0,T7], (3.9)
where
Ko :CY[0,T;V) = E
is given by

Ko(u)(t) = vD2f (u(t)) —u(t) + u(t), ¢ € [0,7]. (3.10)
Thus, it is easy to know that the solution of (3.5)) can written as follows
y(t) = S(t)uo + To(y + wa)(t), t€[0,T]. (3.11)

We say that the Definition is a extension of (3.11)). In order to explain it, we need next lemma.
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Lemma 3.3. The operator Ko defined by (3.10) can be continuously extended to
K:=E — L*0,T; V)

and satisfies
1
1K (u) = K ()| 2007 < Mi(lullE + ol +T3)|u = vllp, w0 € E.

Proof. Let u,v,% € L?*(0,T;V), and {-,-) is a duality mapping between L?(0,T;V) and L?(0,T;V"), we
obtain

(Ko(u) — / / uwd —v?) — (u — U)]Ddewdt—l—/ / —ud + )+ (u — v)ep)dedt
= /0 /I((u —0)(u? + wv + v} D% — (u — v)D*p)dxdt

T
— U 'LL2 uv '1)2 u—v 9
+/O /I((” Y+ v + 02+ (u — v)p)dads

< </T/(g(\u12+ W) + 1)%(u — v)?) d:rdt) </ /\D%y dxdt)
(/ /< (jul? + [o]?) + 1) (u—U)Q) dazdt>2 « (/0 /I(|¢|)2dmdt>;
2 (/OT/I <2yu|2+;’|v|2+1>3dxdt>3 X </OT /I(u—v)6d:cdt>é 191l 22 0,7:v)

< My (Jfullf + ol +T%) x flu = vl 2o rv).
- (OaT7V)

IN

O
It is clearly that we can obtain next lemma by Lemma [3.3]
Lemma 3.4.
15 () = K@llve < M (il + 0o +1) o= vllzsy, w o € B. (3.12)
Lemma 3.5. The operator Ty can be continuously extended to
T:=FE— F.
Furthermore, there exists a constant My > 0, independent of T > 0, such that
1T () = T@)lls < Mo (lullf + olE +T3) Jlu—vlls, wveE. (3.13)

Proof. By Lemma, we have
T(u)(t) = y(t; K(u)) € L®(0,T; H)N L*(0,T;V).
Moreover from Lemma [2.3] we obtain

I7(w) = T(0) o < K(lly(s K (1) = y(5 K@)l o070
+ Iy K () = y(5 K@)l 20.7:3)
< KL|K () = K@) 200mv)
< My (JJull, + ol +T3) lu = vl 5,

for M2 = MlKL O
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Thus the T is ‘good’~non-trivial point— enough to be used on the Lemma [2.1
Next, we establish the solutions defined as Definition [3.2] are continuous with respect to the initial data.

Lemma 3.6. The solution defined as Definition depends continuously on the initial data ug € H, and
wp € F.

Proof. Let y; be the solutions generated by u} and w;(t), 1 =1,2, then

T
y1 = y2 = S(t)(ug — ug) + /0 [S(t = $)K (y1 +wi)(s) = S(t = 5) K (y2 + wi)(s)]ds.

Since y1,y2 € L%(0,T;V), then (y1 —y2)(t) € V C H, p a. e. for almost all t € (0,T). From Lemma
the continuity of S(¢) and Lemma [3.4] we have

T
ly1 = yellv < Lallug — uglla + L2/0 1K (y1 + wh)(s) — K(y2 + w%)(s)|lvds

T
< Lullud =l + Lo [ M2 (o + whlBio
0

iy + Wi s +1) 1 +wh) = (@2 + w3 llwromds.

Using the Sobolev embedding theorem, we have

T
ly1 — vellwrsy < Cs (lug — uglla + lwi — whlle) + 04/0 ly1 — vollwrsy,  wae.

From Gronwall’s inequality, we have

ly1 — v2llwrony < Cs (lup — udllm + |lwh — willg) e, pae.

O

Now, we give the proof of the Theorem From G. D. Prato and J. Zabczyk [6], we know that the
solution u has a measurable modification, and the solution u is about the measurable modification in the
proof.

Proof of Theorem[3.1]. Let z(t) = y(t) + wa(t) — S(t)uo, the equation (3.7) is changed to
z=a+ F(z), (3.14)

where
a=wa(t), F(z)=T(z+S(t)uo).

Next, we verify the conditions of Lemma [2.1
Firstly,

Secondly, let o = ,/ﬁ, and

m = (63014 16K (IS(0)(0) e .11 + 1) () e 0i20)%1) (3.15)

where K and M> are defined before.
Since wA(t) is continuous and w4(0) = 0, there exists 75 such that

Z(0) = T(S(t)uo) — T(S(t)ug) = 0.

¢ 3 o
</ ”'IUA(S)H%SCZS) < 1 for 0<t<m.
0
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Let
€= L0, s Who(I)),

and 7 := min{ry, 72}, with z; and 29 satisfying ||z;|l¢ < «,i = 1,2, from Lemma and Lemma we
have

|7 (1) = Z(z)lle = IT(1 + S(t)uo) = T(ea + S(E)uo) e
< My (|l + S(@uoll2 + |22 + SOuollz + 73 ) ll21 — zlle

1 1
< My (2 + 2l 22l + 4IS@uoll2 +73) 121 = z2lle < 5121 = zlle.

By applying Lemma we obtain the existence and uniqueness of the solution of z(¢) when t € [0, 7], and
then consequently y(t). The proof is completed. O
4. Global existence

To prove the global existence of solution, we will show that the E-norm of u obtained by Theorem
is finite for any 7', then w still lies in F.

Lemma 4.1. Let ug € H, wy is given by (3.3), and y is the solution of

y(t) = S(t)uo + T(y +wa)(t), tel0,T] (4.1)
Then, y satisfies
sup [ly(t)||% < C, (4.2)
te[0,7]
and
T
| i <c. (4.3)

Proof. As we know, D(A) and C(0,T; H?) are dense in H and E , and the solutions are continuous with
respect to the initial data from Lemma We fix our attention to deal with the (strong) solution of the
equation

B = Ay(t) + YD (1) + wa(®)) — (1) + wal)® +y(t) +wa(d), )
Yo = Uo-
Multiplying the equation (4.4)) by y(¢) and integrating over I, then

1d !
5@”1/”%2(1) + D yll72p) + 1DYl[ T2y = ’Y/O D? [(y +wa)® — (y + wa)] ydx
1 1 1
- / y(y +wa)3de —I—/ ywadx ~l—/ y2dz. (4.5)
0 0 0
Now we deal with the first term of righthand of (4.5)),
1 1 1
7/ D?(y +wa)yde = — 7/ D(y +wa)?Dydx = —37/ (y + wa)*(Dy + Dwa)Dydx
0 0 0
1 3y (!
< - 37/ (v +wa)*(Dy)’de + =~ / (y +wa)*(Dy)*dz
0 0

1
o /0 (7 + (wA)?) (Duwa)?da
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9 1 1 /1
<=7 [ wrunr@uias [ ytao
4 Jo 4 Jo
1 1
+ C'/ (wp)tdx + C/ (Dwa)*dz. (4.6)
0 0
Similarly, we have
1 1 1 1
- 'y/ D*(y + wa)ydz = ’y/ (Dy + Dwa)Dydx < C/ (Dy)%dx + C’/ (Dwa)*dz. (4.7)
0 0 0 0
On the other hand, we obtain
1 1
— / y(y +wa)dde = —/ (y4 + 3y3wa + 3y wa + ywi) de=1+ I+ Is+ 14. (4.8)
0 0
By Holder’s inequality and Young’s inequality,
1 1 /1 1
I, < / 3ytwadz| < 4/ ytdr + C/ whdz,
0 0 0
and
1 1 /1 1
I3 < / 3y2w,4dx < / y4dx + C/ widm. (4.9)
0 4 Jo 0
Similarly,
L2 1 6
In < 51Yllz2ery + 5 llwallwsy, (4.10)
and
! Lo 1 2
ywade < S92 + 5 lwalle (411)
0
From (4.6)—(4.11)), we obtain
d
%llyH%z + 27| D?y[l72 < CilIDyll72 + Collyllz + f(t), (4.12)
where
F(t) = Cllwallzz + CllwallSyrs gy + Cllwallyyragy-
Note that
1 1
C1||Dyl3, = C’l/ DyDydx = —01/ D*yydx
0 0
2
YiiH2,2 Ci 2
< §||D yllz2 + ZHZ/HL?-
Hence
T 2,112 ct 2
—lyllze +A1D7yllZ> < ( Co+ o ) lyllze + f(2). (4.13)
dt 27
By Gronwall’s inequality, we get (4.3]) and
sup_|[ly(t)||7. < C. (4.14)

t€[0,T]

Multiplying the equation (4.4)) by D?y(t) and integrating over I, then
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1d

1
5 7 1PllZ2 0y + YN D ulLa ) + 1Dyl 2y = = ’Y/O D*[(y +wa)® — (y + wa)] D?ydz

1 1
+ / D*y(y +wa)dx — / D*y(y +wa)dz.  (4.15)
0 0
Using the Holder inequality, we get
1 1
[ Dy wa Do = = 3y [ (g wa)(DPy+ DPus) Dy
0 0
1
- 67/ (y 4+ wa)(Dy + Dw,)*D*ydx
0
1 y 1
<=3y [ w02+ [ (D
1
+72y [+ wa)!) (D)o
0
3 1 1
+ [+ waP 02+ 20 [ (D) + (Duwa))(Duado
0 0
3y [* 2/ 12, \2 ! 4 4
+ 5 | (rwa) (D7) de +96y | ((Dy)” + (Dwa)")de
0 0

1

1 1
< / (D3y)%dx + 72y / yidx 4 72y / wSdx
0 0 0

12

1 1 1
+36'y/ (DwA)4dx+12’y/ (Dy)4dx+12'y/ (Dwa)tda
0 0 0
1
490y [ (Dy)! + (Dwa)')d.
0

Similarly, we have

1 1 1 1
7/ D?(y +wa)D?ydx < 27/ (Dy)?dx + 1/ (D*y)?dx + 27/ (Dwa)*d,
0 0 0 0
1 1 1 1
/ D?y(y +wa)dx < 2/ (D?y)?dx + 32/ (v + wb)de,
0 0 0
and
1 1 1 1
/ D2y(y +wa)dr < 2/ (D2y)2daj +/ (y2 + wj)dw.
0 0 0

Therefore, we have

d 1 1 1 1
@HDylliz + 9Dy, < 27/ (Dy)?dz + 1087/ (Dy)'dz + 72v/ ydx + 32/ yodz + g1(2),
0 0 0 0

where
91(t) = Collwallfyrz + Callwallpery + Callwallipray-

On the other hand, by the Nirenberg inequality and (4.14)), we know that
1
<C </ (D3y)2d:1:) ,
0

/01 ySde < C </01(D3y)2dx> v (/01 y2dx>
/01 ySdz < C </01(D3y)2d:p> v </01 defc> " <C (/01(D3y)2dm> 1/2,

8/3 1/3
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/0 1(Dy)4d;¢ <C < /0 1(D3y)2d:c> o ( /0 1 y2dm> <C < /0 1(D3y)2dm>

Hence, we obtain

7/6 5/6

d
1Dl +91ID%lT2 < 291 Dyll7 + 62(1), (4.16)
where
92(t) = Callwallfyiz + Csllwallpery + Callwallipragy + Cs.
By Gronwall’s inequality, we complete the proof. O

Theorem 4.2. Let ug € H(I), then the equations (L.I)—(1.3)) have a unique P a.s. solution u(-,r) concen-
trated on the space E.

Proof. From Theorem the equation (3.4]) and Lemma we deduce the result. O

5. The random attractor

In this section, we prove the equation (1.1]) possesses a random attractor. The existence result of random
attractors can be stated as follows

Lemma 5.1 ([3L[16]). If there exists a random compact set absorbing every bounded nonrandom set B C X,
the random dynamical system ¢ possesses a random attractor A(w):

Alp) = | Asw),

BCX

where Ap(w) = (Ns50 Usss ©(t, O1w) B is the omega-limit set of B.
Let R = yD* — D? — 1, the linear equation
dz + (yD*z — Dz — 2)dt = dw(t)

has a unique stationary solution given by

t
2(t) = / e RE=3) dup(s).
Consider the set of continuous function with value 0 at 0
Q={weC(R,R):w(0) =0}

Let F be the Borel sigma-algebra induced by the compact-open topology of 2, and P a Wiener measure on
(QF). Writing w(t,w) = w(t), we define

Ow(s) = w(t +s) —w(t),t € R,

which satisfies 6; 0 05 = 0;15. Then (2, F, P, (0¢)ier) is an ergodic metric dynamical system which models
white noise.

Lemma 5.2. Given any ball of H, B(0, p) centered at 0 of radius p, for any —1 <t < 1, there exist random
variables Ry(w) and t(p,w) < —1 such that for any s < t(p,w), us € B(0, p),

15(t, 55 w)us| o < Re(w),

holds P-a.s.
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Proof. Let v(t) = u(t) — z(t). We have

do(t)
dt

Multiplying the equation (5.1)) by v(t) and integrating over I, similar to (4.13)), we have

= —Ru(t) + vD*f' (v(t) + 2(t)) — (v(t) + 2(t))® + v(t). (5.1)

d C?
0l + 102012 < (ot 51 ) 1ol + 100 5:2)

where
f1(8) = Cllzle + Ol + Cllzlliagy.

On the other hand, using the Poincaré inequality, we know
lvllz2 < Doz < [[D?y] 2

Hence, we get
2

d C
ol + (9= o= 51) ol < Ao

fM,=v—-Cy— % > 0. The Gronwall lemma leads to

t
lo()IPa < llo(s)]Zae s Mrdm 1 / e I g (7).

S

On the other hand, multiplying the equation (5.1)) by D?v(t) and integrating over I, similar to (4.16]), we
obtain

d
ﬁllelliz +lID%0||72 < 29[| Dv]72 + g3(D),

where

93(t) = Callz 12 + Csllzlfyns ) + Callzllypnary + Cs.
By the Nirenberg inequality, we see that

/Dl(Dv)de <C (/Ol(D?’v)?dx) . (/01 v2dx> < Cs </01(D3v)2d:c>

d 2 Y 2
g 1Dvllz2 + S 1Dz < A(),

2/3 1/3

Thus,

where .
h(t) = g3(t) + 3v2C¢Z .
By the Gronwall inequality, we have

t
1Do()|22 < | Do(s)|Zae s 3 + / eI 3 (7 dr.
S

Hence
¢ t
@17 <llo(s)l72e Iy Mar IDv(s) (1726 IS 3dr

t t
+ / e~ dr Madn g, (7ydr + / e~z 3% (7)dr.

S

Thus, for any ball B(0,p) C H, we conclude that there exists a random variable ¢(p;w) < —1 such that for
all s < t(p;w), t € [-1,1], and all us € B(0, p),
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t ¢ ty
e - M (1) dr + / ¢ - 27 dr, (5.3)

—0o0

t
ot ws s, v) |22 < 1+ /

—0o0

holds P-a.s. Indeed, it is enough to choose t(p;w) < —1 such that for s < t(p;w), t € [-1,1],

t t t t
[o(s)|22eJs Mo 1| Du(s)|22e™ Lo 397 = |Ju(s) — 2(s)||22e™ s M09 || Du(s) — Dz(s)|[2pe s 397
t t
< 2(p? 4 ||2]|22)e” o M L 2(p? 1 || D220 )e S 39T < 1,

holds P-a.s. Denote by 72(w) the right side of the inequality (5.3)). Writing R? = 2(r?(w) + |2(t)|?), we
complete the proof of the lemma. O

Lemma shows that for any deterministic bounded set B C B(0, p) in H, there exists a random time
t(p;w) < —1 such that for any s < t(p;w),

S(—1,s:w)B € B(0, R_1(w)).
Noticing that
p(=s,0sw) = S(—5,0;0,w) = 5(0, s;w) = S(0, —1;w) (1, s;w),

we find that B(w) := S(0, —1;w)B(0, R_1(w)) is a random absorbing set in H. Moreover, B(w) satisfies the
following property.

Lemma 5.3. The random set B(w) described above is a compact absorbing set, that is, it is compact and
absorbs any nonrandom bounded set: for every bounded deterministic set B C B(0, p), we have

SO(_S’ esw)B - B(w)7
holds P-a.s., for any s < t(p,w).

Proof. We only verify that the random absorbing set B(w) is compact. Let {uf : n € N} be a sequence in
B(w) and vy, a solution of the equation ({5.1)) such that v"™(0) = uf — 2(0). Multiplying the equation ({5.1)
by v(t) and integrating over I, we have the inequality (5.2))

d
allvH%z +29[[D%0]|72 < Mlpvlg: + (D), (5-4)

where )

C
ﬁ, f1() = Clizll72 + Cliz sy + Cllzlliprac-
Applying the Gronwall inequality to (5.4)), we get that for t € [—1,0],

M =Cy+

t t t
l(®)1Z: Sllv(—l)llizef—lMd“r/ e - M (r)dr

0 1 0
<o [ s {nv(—l)niz -/ f1<7>df} .
-1

Denoting by M the right side of the above inequality and integrating (5.4) over [—1,¢],t € [—1,0], we have

t 0 0
)
o)1+ [ ID*0lRads < (=Dl + Me [ Mas [ i

Similarly, multiplying the equation (5.1)) by D?v(t) and integrating over I, we obtain

0

IDu(t)II72 + 2’7/ ID%v|[72ds < [[Du(=1)[|72 + 2vMs + / 193(77)dn-

t
—1 —
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Since [[v"(=1)||g1 < R_1(w) + [|z2(—1)| g1, we obtain that {v™ : n € N} is bounded in L*(—1,0; H) N
L?(—1,0;V), and so, it is compact in L?(—1,0; H). Hence, there exists a subsequence {v"* : n € N}
convergent to a function v in L?(—1,0; H). Moreover, v is a solution of the equation . Let ug =
v(0) + 2(0), it is easy to yield

up — uy® = v(0) — 0™ (0).

We now prove the subsequence {ug"} converges in H to the function uy. Writing X (¢) = v(t) — v™(¢), then
X (t) satisfies the following equation

%( = —RX — D2X + D[ X ((v + 2)% + (v + 2) (0™ + 2) + (V™ + 2)?)]

—X((v+2)%+ (v+2) (™ +2) + (V™ + 2)}) + X, (5.5)
X (0) =v(0) —v™(0).

Multiplying the equation (5.5) by X and integrating over I, we have

d 2 2y 112 (. 2 2

£||X||L2 +2v||D°X||72 = 7/0 DX ((v+2)"+ (v+ 2)(v™ 4+ z) + (V" + 2)7)| Xdx

1
— / X2 ((v+2)% + (v+2) (0™ 4 2) + (V™ + 2)?)d.
0
Now we deal with the first term of right-hand of above equation,
1
’y/ D2[X((v+ 2)? + (v + 2) (V™ + 2) + (V™ + 2)?)]| X dz
0

1
. ’y/ DIX((v+ 2) + (0 + 2) (™ + 2) + (™ + 2)2)| DX dx
0
n Y
<8([v[Loe + [0 | Lo + |2]L) [ DX 172 < §||D2XH%2 + C|IX |72

Similarly, we have
- /01 X2((v+2)2 4 (v +2) (0™ + 2) + (V™ + 2)%)dx < O|| X ||7..
Therefore, we get
CIX s + 21D X3 < CIX 3. (57)

From (5.7), we conclude
0
luo = ug* 72 = IX (O < IX(®)l[Fel .

Integrating the above inequality on [—1, 0], we obtain

2 2 0 cd

o = ug* e < X O3 2y0zyel O

Similarly, multiplying the equation (5.5) by D?X and integrating over I, we have

2 2 0 Cid

1Dug — Dugh |32 < IIDX ()13 g2y -+ %,

which implies that the sequence uy* converges to ug, and thus, B(w) is compact. O

Applying Lemma [5.1 we conclude

Theorem 5.4. The random dynamical system associated with the stochastic fourth-order equation (|1.1))
possesses a random attractor A(w).
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