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Abstract

Numerical recurrence formulae are given to investigate the chaotic motion of the famous Duffing system.
The new Adomian polynomial is adopted to treat the cubic nonlinear term. With the numerical simulation
of the phase portraits and the Poincare sections, the chaotic behaviors are discussed for varied frequencies,
damping coefficients and forces. The results show that the numerical method is reliable to investigate chaotic
systems. c©2016 All rights reserved.
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1. Introduction

The damping oscillator procedure is described by the following famous nonlinear differential equation of
second order [10, 11, 14]

d2x

dt2
+ µ

dx

dt
− x+ x3 = F cos(wt),

subjected to the initial condition x(t0) = 0 and
dx(t0)

dt
= 0. For the solution, the main difficulty is to

treat the cubic term x3. Many methods have been developed to depict chaos and chaos synchronization
[8, 12, 17, 18]. The numerical method, such as the predictor–corrector method, the Runge–Kutta method
(RKM) are the most often used ones.
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The famous Adomian decomposition method (ADM) was developed by Adomian in the last century [1].
Then, many modified versions have been proposed [1, 2, 9, 13, 15, 16, 19]. Very recently, Duan proposed a
new way to calculate Adomian polynomial and greatly improved the efficiencies for solutions [3, 4, 5, 6, 7].
The idea has been extended to solve the initial value problem of the fractional differential equations, two
point value problem of the differential ones. The efficiency and the accuracy are compared in [6]. The ADM
shows a perspective over the RKM. In view of this point, we adopt the new ADM so that we can better
describe the nonlinear dynamics of the oscillator.

In this paper, we use the idea of the ADM to depict the chaotic motion of the Duffing system and also
illustrate a general way to solve the initial value problem of differential equations of high order.

2. Basics

According to the theories of the ODEs, for a general differential equations of n-th order

dnx

dtn
+ F (t, x,

dx

dt
, ... ,

dn−1x

dtn−1
) = 0,

we can have a differential system of first order so that the Duffing system [10] reads
dx

dt
= y, x(t0) = 0.2,

dy

dt
+ µy − x+ x3 = F cos(wt), y(t0) = 0,

(2.1)

where µ is the damping coefficient, w is the frequency, x is the displacement and y is the velocity.
Much more generally, consider the differential equation of second order

d2x

dt2
+ F (t, x,

dx

dt
) = 0, x(t0) = a,

dx(t0)

dt
= b.

We give the algorithm as the following.

Step 1. Assume the transform
dx

dt
= y. One can obtain the following system
dx

dt
= y, x(t0) = a,

dy

dt
+ F (t, x, y) = 0, y(t0) = b.

(2.2)

Step 2. Expand x(t) and y(t) in the form of the Taylor series
x =

∞∑
i=0

ci,1(t− t0)
i,

y =

∞∑
i=0

ci,2(t− t0)
i.

Accordingly, the xn and the yn read 
xn =

n∑
i=0

ci,1(t− t0)
i,

yn =

n∑
i=0

ci,2(t− t0)
i.

Step 3. Following the idea in [6], one can derive a recurrence formula
cj+1,1 =

1

j + 1
cj,2, c0,1 = a,

cj+1,2 =
−1

j + 1
F (t, cj,1, cj,2, Aj), c0,2 = b, 0 ≤ j,



L. L. Huang, G. C. Wu, M. M. Rashidi, W. H. Luo, J. Nonlinear Sci. Appl. 9 (2016), 1877–1881 1879

which gives the solution Eq. (2.2). Here Aj is calculated by Duan [3, 4, 5, 6, 7]

Aj =
1

j

j−1∑
i=0

(i+ 1)ci+1,1
dAj−1−i
dc0,1

.

Step 4. Assume xn = ϕ1(t, t0, c0,1, c0,2) and yn = ϕ2(t, t0, c0,1, c0,2) which are the n-th order approxima-
tion. For t = t0, we can have xn(t0) = c0,1, yn(t0) = c0,2. Once more, we choose t1 near t0 and xn(t1), yn(t1)
as the initial values. As a result, we can successively obtain all the numerical solutions xn(ti) and yn(ti).
With the given length size and the node number to h and N , tn = t0 + nh, one can obtain the values

x∗n = ϕ1(tn, tn−1, x
∗
n−1), y

∗
n = ϕ1(tn, tn−1, y

∗
n−1),

where the initial iteration reads
x∗0 = x(t0), y

∗
0 = y(t0).

3. Chaos Analysis

For Eq. (2.1), we can give the following numerical recurrence formula as
cj+1,1 =

1

j + 1
cj,2, c0,1 = 0.2,

cj+1,2 =
−1

j + 1
(µcj,2 − cj,1 +Aj − fj), c0,2 = 0, 0 ≤ j,

where fi is the coefficient and F cos(wt) =
n∑

j=0
fj(t− t0)

j .

Now we can discuss the chaotic motion with respect to t in Fig. 1a and Fig. 1b. Let j = 10, n =

2000, h =
2π

100w
. The Poincare section and the phase trajectory are plotted in Fig. 2a and Fig. 2b from

which one can determine the system’s chaotic state. Due to the sensitivity of the chaos, we can see minor
changes in the x(t0) and the y(t0) lead to great variations in the motion.

(a) Chaotic motion versus time t (b) Chaotic velocity versus time t

Figure 1

Based on the numerical formulae, we also can consider the maximal x and y versus the variations of the
exciting force after t = 50 seconds. We can observe that in Figs. 3a and 3b, for F between 0.4 and 0.5, the
maximal x and y vary sharply.
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(a) Poincare section (b) Phase trajectory

Figure 2

(a) Maximal displacement versus force (b) Maximal velocity versus force

Figure 3

Here we only discuss the chaos behaviors of the Duffing system. For the error analysis, readers are
referred to [6].

4. Concluding remarks

This paper applies the new Adomian polynomial for the famous Duffing equation. The second order
equation is equivalently given as differential equations. Numerical recurrence formulae are given. Fur-
thermore, the chaos including the phase trajectory and the Poincare sections are shown. The relationship
between the maximal displacement, the maximal velocity and variations of the force are discussed. We can
conclude that the new Adomian polynomial can be more easily used in the chaotic system and depict the
nonlinear dynamics more accurately than the classical one [1].
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