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Abstract

The purpose of this paper is to study and discuss the existence of common fixed points for weakly
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1. Introduction

In 1922, Banach [5] proved the theorem which is well known as “Banach’s Fixed Point Theorem” to
establish the existence of solutions for nonlinear operator equations and integral equations. It is widely
considered as a source of metric fixed point theory and also its significance lies in its vast applications. The
study on the existence of fixed points of some mappings satisfying certain contractions has many applications
and has been the center various research activities. In the past years, many authors generalized Banach’s
Fixed Point Theorem in various spaces such as quasi-metric spaces, fuzzy metric spaces, 2-metric spaces,
cone metric spaces, partial metric spaces, probabilistic metric spaces and generalized metric spaces (see, for
instance, [2, 3, 4, 7, 9, 15, 16, 17, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30]).

On the other hand, in 2008, Bashirov et al. [6] defined a new distance so called a multiplicative distance
by using the concepts of multiplicative absolute value. After then, in 2012, by using the same idea of
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multiplicative distance, Özavşar and Çevikel [18] investigate multiplicative metric spaces by remarking its
topological properties and introduced the concept of a multiplicative contraction mapping and proved some
fixed point theorems for multiplicative contraction mappings on multiplicative spaces. In 2012, He et al. [8]
proved a common fixed point theorem for four self-mappings in multiplicative metric space.

Recently, motivated by the concepts of compatible mappings and compatible mappings of types (A),
(B) in metric spaces given by Jungck [10], [14], Jungck et al. [12] and Pathak and Khan [19], in 2015, Kang
et al. [11] introduced the concepts of compatible mappings and its variants in multiplicative metric spaces,
that is compatible mappings of types (A), (B) and others, and prove some common fixed point theorems
for these mappings.

Especially, in 2002, Aamri and Moutawakil [1] introduced the concept of the (E.A)-property. Afterward,
in 2011, Sintunaravat and Kumam [27] obtained that the notion of the (E.A)-property always requires a
completeness of underlying subspaces for the existence of common fixed points for single-valued mappings
and hence they coined the idea of common limit in the range (shortly, the (CLR) property), which relaxes
the completeness of the underlying of the subspaces.

Motivated by the above results, in this paper, we prove some common fixed point theorems for weakly
compatible mappings satisfying some generalized contractions and the common limit range with respect to
the value of given mappings in multiplicative metric spaces. Also, we give some examples to illustrate for
our main results.

2. Preliminaries

Now, we present some necessary definitions and results in multiplicative metric spaces, which will be
needed in the sequel.

Definition 2.1 ([6]). Let X be a nonempty set. A multiplicative metric is a mapping d : X × X → R+

satisfying the following conditions:
(M1) d(x, y) ≥ 1 for all x, y ∈ X and d(x, y) = 1⇐⇒ x = y;
(M2) d(x, y) = d(y, x) for all x, y ∈ X;
(M3) d(x, y) ≤ d(x, z) · d(z, y) for all x, y, z ∈ X (: multiplicative triangle inequality).

The pair (X, d) is called a multiplicative metric space.

Proposition 2.2 ([18]). Let (X, d) be a multiplicative metric space, {xn} be a sequence in X and let x ∈ X.
Then

xn → x (n→∞) if and only if d(xn, x)→ 1 (n→∞).

Definition 2.3 ([18]). Let (X, d) be a multiplicative metric space and {xn} be a sequence in X. The
sequence {xn} is called a multiplicative Cauchy sequence if for each ε > 0 there exists a positive integer
N ∈ N such that d(xn, xm) < ε for all n,m ≥ N .

Proposition 2.4 ([18]). Let (X, d) be a multiplicative metric space and {xn} be a sequence in X. Then
{xn} is a multiplicative Cauchy sequence if and only if d(xn, xm)→ 1 as n,m→∞.

Definition 2.5 ([18]). A multiplicative metric space (X, d) is said to be multiplicative complete if every
multiplicative Cauchy sequence in (X, d) is multiplicative convergent in X.

Note that R+ is not complete under the ordinary metric, of course, under the multiplicative metric, R+

is a complete multiplicative and the convergence of a sequence in R+ in both multiplicative and ordinary
metric space are equivalent. But they may be different in more general cases.

Proposition 2.6 ([18]). Let (X, dX) and (Y, dY ) be two multiplicative metric spaces, f : X → Y be a
mapping and {xn} be a sequence in X. Then f is multiplicative continuous at x ∈ X if and only if
f(xn)→ f(x) for every sequence {xn} with xn → x as n→∞.
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Proposition 2.7 ([18]). Let (X, dX) be a multiplicative metric spaces, {xn} and {yn} be two sequences in
X such that xn → x ∈ X and yn → y ∈ X as n→∞. Then

d(xn, yn)→ d(x, y) (n→∞).

Definition 2.8. The self-mappings f and g of a set X are said to be:

(1) commutative or commuting on X [10] if fgx = gfx for all x ∈ X;

(2) weakly commutative or weakly commuting on X [21] if d(fgx, gfx) ≤ d(fx, gx) for all x ∈ X;

(3) compatible on X [11] if limn→∞ d(fgxn, gfxn) = 1 whenever {xn} is a sequence in X such that
limn→∞ fxn = limn→∞ gxn = t for some t ∈ X;

(4) weakly compatible on X [13] if fx = gx for all x ∈ X implies fgx = gfx, that is, d(fx, gx) = 1 =⇒
d(fgx, gfx) = 1.

Remark 2.9. Weakly commutative mappings are compatible and compatible mappings are be weakly com-
patible, but the converses are not true (see [11, 13]).

Example 2.10. Let X = [0,+∞) and define a mapping as follows: for all x, y ∈ X,

d(x, y) = e|x−y|.

Then d satisfies all the conditions of a multiplicative metric and so (X, d) is a multiplicative metric space.
Let f and g be two self-mappings of X defined by fx = x3 and gx = 2− x for all x ∈ X. Then we have

d(fxn, gxn) = e|xn−1|·|x
2
n+xn+2| → 1 if and only if xn → 1

and
lim
n→∞

d(fgxn, gfxn) = lim
n→∞

e6|xn−1|
2

= 1 if xn → 1

as n→∞. Thus f and g are compatible. Note that

d(fg(0), gf(0)) = d(8, 2) = e6 > e2 = d(0, 2) = d(f(0), g(0))

and so the pair (f, g) is not weakly commuting.

Example 2.11. Let X = [0,+∞), (X, d) be a multiplicative metric space defined by d(x, y) = e|x−y| for all
x, y in X. Let f and g be two self-mappings of X defined by

fx =


x, if 0 ≤ x < 2,
2, if x = 2,
4, if 2 < x < +∞,

gx =


4− x, if 0 ≤ x < 2,
2, if x = 2,
7, if 2 < x < +∞.

By the definition of the mappings f and g, only for x = 2, fx = gx = 2 and so fgx = gfx = 2. Thus the
pair (f, g) is weakly compatible.

For xn = 2− 1
n ∈ (0, 2), from the definition of the mappings f and g, we have

lim
n→∞

fxn = lim
n→∞

gxn = 2,

but
lim
n→∞

d(fgxn, gfxn) = lim
n→∞

exn = e2 6= 1

and so the pair (f, g) is not compatible.
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Definition 2.12. Two pairs S,A and T,B of self-mappings of a multiplicative metric spaces (X, d) are
said to have the common limit range with respect to the value of the mapping A (or B) (shortly, the
(CLR)-property) if there exists two sequences {xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = Az

for some z ∈ X.

Example 2.13. Let X = [0,∞) be the usual metric space and define a mapping d : X × X −→ R by
d(x, d) = e|x−y| for all x, y ∈ X. Then (X, d) is a complete multiplicative metric space. Define mappings
S, T,A,B : X −→ X by

Sx =
1

64
x, Tx =

1

32
x, Ax = x, Bx = 2x

for all x ∈ X. Then, for the sequences {xn} and {yn} in X defined by xn = 1
n and yn = − 1

n for each n ≥ 1,
clearly, we can see that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = A(0) = 0

or B(0) = 0. This show that the pairs (S,A) and (T,B) have the common limit range with respect to the
value of the mapping A or the mapping B.

Definition 2.14 ([18]). Let (X, d) be a multiplicative metric space. A mapping f : X → X is called a
multiplicative contraction if there exists a real constant λ ∈ (0, 1] such that d(fx, fy) ≤ [d(x, y)]λ for all
x, y ∈ X.

The following is Banach’s Fixed Point Theorem in multiplicative metric spaces, which was proved by
Özavşar and Çevikel.

Theorem 2.15 ([18]). Let (X, d) be a multiplicative metric space and f : X → X be a multiplicative
contraction. If (X, d) is complete, then f has a unique fixed point in X.

Recently, He et al. [8] proved the following.

Theorem 2.16 ([8]). Let S, T,A and B be four self-mappings of a multiplicative metric space X satisfying
the following conditions:

(a) S(X) ⊂ B(X) and T (X) ⊂ A(X);
(b) the pairs (A,S) and (B, T ) are weak commuting on X;
(c) one of S, T,A and B is continuous;
(d) there exists a number λ ∈ (0, 12) such that, for all x, y ∈ X,

d(Sx, Ty) ≤ [max{d(Ax,By), d(Ax, Sx), d(By, Ty), d(Sx,By), d(Ax, Ty)}]λ.

Then S, T,A and B have a unique common fixed point in X.

3. Common fixed points for weakly compatible mappings

In this section we prove some common fixed point theorems for weakly compatible mappings in multi-
plicative metric spaces.

Theorem 3.1. Let (X, d) be a complete multiplicative metric space. Let S, T,A,B : X → X be single-valued
mappings such that S(X) ⊂ B(X), T (X) ⊂ A(X) and there exists λ ∈ (0, 12) such that

dp(Sx, Ty) ≤
[
ϕ
(

max
{
dp(Ax,By),

dp(Ax, Sx)dp(By, Ty)

1 + dp(Ax,By)
,
dp(Ax, Ty)dp(By,Ax)

1 + dp(Ax,By)

})]λ
(3.1)
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for all x, y ∈ X and p ≥ 1, where ϕ : [0,∞)→ [0,∞) is a monotone increasing function such that ϕ(0) = 0
and ϕ(t) < t for all t > 0.

Suppose that one of the following conditions is satisfied:
(a) either A or S is continuous, the pair (S,A) is compatible and the pair (T,B) is weakly compatible;
(b) either B or T is continuous, the pair (T,B) is compatible and the pair (S,A) is weakly compatible.

Then S, T,A and B have a unique common fixed point in X.

Proof. Let x0 ∈ X. Since S(X) ⊂ B(X) and T (X) ⊂ A(X), there exist x1, x2 ∈ X such that y0 = Sx0 =
Bx1 and y1 = Tx1 = Ax2. By induction, we can define the sequences {xn} and {yn} in X such that

y2n = Sx2n = Bx2n+1, y2n+1 = Tx2n+1 = Ax2n+2 (3.2)

for all n ≥ 0.
Now, we prove that {yn} is a multiplicative Cauchy sequence in X. From (3.1) and (3.2), it follows that,

for all n ≥ 1,

dp(y2n, y2n+1) = dp(Sx2n, Tx2n+1)

≤
[
ϕ
(

max
{
dp(Ax2n, Bx2n+1)),

dp(Ax2n, Sx2n)dp(Bx2n+1, Tx2n+1)

1 + dp(Ax2n, Bx2n+1)
,

dp(Ax2n, Tx2n+1)d
p(Bx2n+1, Ax2n)

1 + dp(Ax2n, Bx2n+1)

})]λ
≤
[
ϕ
(

max
{
dp(y2n−1, y2n)), dp(y2n, y2n+1), d

p(y2n−1, y2n+1)
})]λ

≤
[
ϕ
(
dp(y2n−1, y2n) · dp(y2n, y2n+1)

)]λ
≤ [d(y2n−1, y2n)]pλ · [d(y2n, y2n+1)]

pλ,

which implies that

d(y2n, y2n+1) ≤ [d(y2n−1, y2n)]
pλ
p−pλ = [d(y2n−1, y2n)]

λ
1−λ = [d(y2n−1, y2n)]h, (3.3)

where h = λ
1−λ ∈ (0, 1). Similarly, we have

dp(y2n+2, y2n+1) = dp(Sx2n+2, Tx2n+1)

≤
[
ϕ
(

max
{
dp(Ax2n+2, Bx2n+1)),

dp(Ax2n+2, Sx2n+2)d
p(Bx2n+1, Tx2n+1)

1 + dp(Ax2n+2, Bx2n+1)
,

dp(Ax2n+2, Tx2n+1)d
p(Bx2n+1, Ax2n+2)

1 + dp(A2n+2, Bx2n+1)

})]λ
≤
[
ϕ
(

max
{
dp(y2n, y2n+1), d

p(y2n+2, y2n+1), d
p(y2n, y2n+1)

})]λ
≤
[
ϕ
(

max
{
dp(y2n, y2n+1) · dp(y2n+2, y2n+1)

})]λ
≤ [d(y2n, y2n+1)]

pλ · [d(y2n+2, y2n+1)]
pλ,

which implies that

d(y2n+1, y2n+2) ≤ [d(y2n, y2n+1)]
λ

1−λ = [d(y2n, y2n+1)]
h. (3.4)

It follows from (3.3) and (3.4) that, for all n ∈ N,

d(yn, yn+1) ≤ [d(yn−1, yn)]h ≤ [d(yn−2, yn−1)]
h2 ≤ · · · ≤ [d(y0, y1)]

hn .
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Therefore, for all n,m ∈ N with n < m, by the multiplicative triangle inequality, we obtain

d(yn, ym) ≤ d(yn, yn+1) · d(yn+1, yn+2) · · · d(ym−1, ym)

≤ [d(y0, y1)]
hn · [d(y0, y1)]

hn+1 · · · [d(y0, y1)]
hm−1

≤ [d(y0, y1)]
hn

1−h .

This means that d(yn, ym) → 1 as n,m → ∞. Hence {yn} is a multiplicative Cauchy sequence in X. By
the completeness of X, there exists z ∈ X such that yn → z as n→∞. Moreover, since {y2n} = {Sx2n} =
{Bx2n+1} and {y2n+1} = {Tx2n+1} = {Ax2n+2} are subsequences of {yn}, we obtain

lim
n→∞

Sx2n = lim
n→∞

Bx2n+1 = lim
n→∞

Tx2n+1 = lim
n→∞

Ax2n+2 = z. (3.5)

Next, we show that z is a common fixed point of S, T , A and B under the condition (a).

Case 1. Suppose that A is continuous. Then it follows that limn→∞ASx2n = limn→∞A
2x2n = Az.

Since the pair (S,A) is compatible, it follows from (3.5) that

lim
n→∞

d(SAx2n, ASx2n) = lim
n→∞

d(SAx2n, Az) = 1,

this is, limn→∞ SAx2n = Az. Using (3.1), we have

dp(SAx2n, Tx2n+1) ≤
[
ϕ
(

max
{
dp(A2x2n, Bx2n+1),

dp(A2x2n, SAx2n)dp(Bx2n+1, Tx2n+1)

1 + dp(A2x2n, Bx2n+1)
,

dp(Ax2x2n, Tx2n+1)d
p(Bx2n+1, A

2x2n)

1 + dp(A2
2n, Bx2n+1)

})]λ
.

Taking n→∞ on the two sides of the above inequality and using (3.5), we can obtain

dp(Az, z) ≤
[
ϕ
(

max
{
dp(Az, z),

dp(Az,Az)dp(z, z)

1 + dp(Az, z)
,
dp(Az, z)dp(z,Az)

1 + dp(Az, z)

})]λ
≤
[
ϕ
(

max
{
dp(Az, z),

1

dp(Az, z)
, dp(Az, z)

})]λ
=
[
ϕ
(
dp(Az, z)

)]λ
≤ [d(Az, z)]pλ.

This means that d(Az, z) = 1, this is, Az = z. Again, applying (3.1), we obtain

dp(Sz, Tx2n+1) ≤
[
ϕ
(

max
{
dp(Az,Bx2n+1)),

dp(Az, Sz)dp(Bx2n+1, Tx2n+1)

1 + dp(Az,Bx2n+1)
,

dp(Az, Tx2n+1)d
p(Bx2n+1, Az)

1 + dp(Az,Bx2n+1)

})]λ
.

Letting n→∞ on both sides in the above inequality and using Az = z and (3.4), we can obtain

dp(Sz, z) ≤
[
ϕ
(

max
{
dp(Az, z),

dp(z, Sz)dp(z, z)

1 + dp(Az, z)
,
dp(Az, z)dp(z,Az)

1 + dp(z, z)

})]λ
≤
[
ϕ
(
dp(Sz, z)

)]λ
≤ [d(Sz, z)]pλ.
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This implies that d(Sz, z) = 1, that is, Sz = z. On the other hand, since z = Sz ∈ S(X) ⊂ B(X), there
exist z∗ ∈ X such that z = Sz = Bz∗. By using (3.1) and z = Sz = Az = Bz∗, we can obtain

dp(z, Tz∗) = dp(Sz, Tz∗)

≤
[
ϕ
(

max
{
dp(Az,Bz∗),

dp(Az, Sz)dp(Bz∗, T z∗)

1 + dp(Az,Bz∗)
,
dp(Az, Tz∗)dp(Bz∗, Az)

1 + dp(Az,Bz∗)

})]λ
≤
[
ϕ
(
dp(z, Tz∗)

)]λ
≤ [d(z, Tz∗)]pλ.

This implies that d(z, Tz∗) = 1 and so Tz∗ = z = Bz∗. Since the pair T,B is weakly compatible, we have

Tz = TBz∗ = BTz∗ = Bz.

Now, we prove that Tz = z. From (3.1), we have

dp(z, Tz) = dp(Sz, Tz)

≤
[
ϕ
(

max
{
dp(Az,Bz),

dp(Az, Sz)dp(Bz, Tz)

1 + dp(Az,Bz)
,
dp(Az, Tz)dp(Bz,Az)

1 + dp(Az,Bz)

})]λ
≤
[
ϕ
(

max
{
dp(z, Tz),

1

dp(z, Tz)
, dp(z, Tz)

})]λ
=
[
ϕ
(
dp(z, Tz)

)]λ
≤ [d(z, Tz)]pλ.

This implies that d(z, Tz) = 1 and so z = Tz. Therefore, we obtain z = Sz = Az = Tz = Bz and so z is a
common fixed point of S, T,A and B.

Case 2. Suppose that S is continuous. Then limn→∞ SAx2n = limn→∞ S
2x2n = Sz. Since the pair

(S,A) is compatible, it follows from (3.5) that

lim
n→∞

dp(SAx2n, ASx2n) = lim
n→∞

dp(Sz,ASx2n) = 1,

this is, limn→∞ASx2n = Sz. From (3.1), we obtain

dp(S2x2n, Tx2n+1) ≤
[
ϕ
(

max
{
dp(ASx2n, Bx2n+1)),

dp(ASx2n, S
2x2n)dp(Bx2n+1, Tx2n+1)

1 + dp(ASx2n, Bx2n+1)
,

dp(ASx2n, Tx2n+1)d
p(Bx2n+1, ASx2n)

1 + dp(ASx2n, Bx2n+1)

})]λ
.

Taking n→∞ on the both sides of the above inequality and using (3.4), we can obtain

dp(Sz, z) ≤
[
ϕ
(

max
{
dp(Sz, z),

dp(Sz, Sz)dp(z, z)

1 + dp(Sz, z)
,
dp(Sz, z)dp(z, Sz)

1 + dp(Sz, z)

})]λ
≤
[
ϕ
(

max
{
dp(Sz, z),

1

dp(Sz, z)
, dp(z, Sz)

})]λ
=
[
ϕ
(
dp(z, Tz)

)]λ
≤ [d(Sz, z)]pλ.

This means that d(Sz, z) = 1, this is, Sz = z. Since z = Sz ∈ S(X) ⊂ B(X), there exist z∗ ∈ X such that
z = Sz = Bz∗. From (3.1), we have

dp(S2x2n, T z
∗) ≤

[
ϕ
(

max
{
dp(ASx2n, Bz

∗),
dp(ASx2n, S

2x2n)dp(Bz∗, T z∗)

1 + dp(ASx2n, Bz∗)
,

dp(ASx2n, T z
∗)dp(Bz∗, ASx)

1 + dp(ASx2n, Bz∗)

})]λ
.
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Letting n→∞ on both sides in the above inequality and using Az = z and (3.5), we can obtain

dp(Sz, Tz∗) ≤
[
ϕ
(

max
{
dp(Sz, z),

dp(Sz, Sz)dp(z, Tz∗)

1 + dp(Sz, z)
,
dp(Sz, Tz∗)dp(z, Sz)

1 + dp(Sz, z)

})]λ
=
[
ϕ
(
dp(z, Tz∗)

)]λ
≤ [d(z, Tz∗)]pλ,

which implies that d(z, Tz∗) = 1 and so Tz∗ = z = Bz∗. Since the pair (T,B) is weakly compatible, we
obtain

Tz = TBz∗ = BTz∗ = Bz

and so Tz = Bz. By (3.1), we have

dp(Sx2n, T z) ≤
[
ϕ
(

max
{
dp(Ax2n, Bz)),

dp(Ax2n, Sx2n)dp(Bz, Tz)

1 + dp(Ax2n, Bz)
,

dp(Ax2n, T z)d
p(Bz,Ax2n)

1 + dp(Ax2n, Bz)

})]λ
.

Taking n→∞ on the both sides of the above inequality and using Bz = Tz, we can obtain

dp(z, Tz) ≤
[
ϕ
(

max
{
dp(z, Tz),

dp(z, z)dp(Tz, Tz)

1 + dp(z, Tz)
,
dp(z, Tz)dp(Tz, z)

1 + dp(z, Tz)

})]λ
≤
[
ϕ
(

max
{
dp(z, Tz),

1

dp(z, Tz)
, dp(Tz, z)

})]λ
=
[
ϕ
(
dp(z, Tz)

)]λ
≤ [d(z, Tz)]pλ.

This implies that d(z, Tz) = 1 and so z = Tz = Bz. On the other hand, since z = Tz ∈ T (X) ⊂ A(X),
there exist z∗∗ ∈ X such that z = Tz = Az∗∗. By (3.1), using Tz = Bz = z, we can obtain

dp(Sz∗∗, z) = dp(Sz∗∗, T z)

≤
[
ϕ
(

max
{
dp(Az∗∗, Bz),

dp(Az∗∗, Sz∗∗)dp(Bz, Tz)

1 + dp(Az∗∗, Bz)
,
d(Az∗∗, T z)dp(Bz,Az∗∗)

1 + dp(Az∗∗, Bz)

})]λ
=
[
ϕ
(
dp(Sz∗∗, z)

)]λ
≤ [d(Sz∗∗, z)]pλ.

This implies that d(Sz∗∗, z) = 1 and so Sz∗∗ = z = Az∗∗. Since the pair S,A is compatible, we have

d(Az, Sz) = d(SAz∗∗, ASz∗∗) = d(z, z) = 1

and so Az = Sz. Hence z = Sz = Az = Tz = Bz.
Next, we prove that S, T,A and B have a unique common fixed point. Suppose that w ∈ X is another

common fixed point of S, T,A and B. Then we have

dp(z, w) = dp(Sz, Tw)

≤
[
ϕ
(

max
{
dp(Az,Bw),

dp(Az, Sz)dp(Bw, Tw)

1 + dp(Az,Bw)
,
dp(Az, Tw)dp(Bz,Az)

1 + dp(Az,Bw)

})]λ
=
[
ϕ
(
dp(z, w)

)]λ
≤ [d(z, w)]pλ,

which implies that d(z, w) = 1 and so w = z. Therefore, z is a unique common fixed point of S, T,A and B.
Finally, if the condition (b) holds, then we obtain the same result. This completes the proof.
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Example 3.2. Let X = [0, 2] and (X, d) be a complete multiplicative metric space, where d is defined by
d(x, y) = e|x−y| for all x, y in X. Let S, T , A and B be four self-mappings of X defined by

Sx =
5

4
, if x ∈ [0, 2]; Tx =

{
7
4 , if x ∈ [0, 1],
5
4 , if x ∈ (1, 2],

Ax =


1, if x ∈ [0, 1],
5
4 , if x ∈ (1, 2),
7
4 , if x = 2,

Bx =


1
4 , if x ∈ [0, 1],
5
4 , if x ∈ (1, 2),
1, if x = 2.

Note that S is multiplicative continuous in X, but T , A and B are not multiplicative continuous mappings
in X. Also, we have the following:

(1) Clearly, S(X) ⊂ B(X) and T (X) ⊂ A(X).
(2) If {xn} ⊂ (1, 2), then we have

lim
n→∞

Sxn = lim
n→∞

Axn = t =
5

4

and so

lim
n→∞

d(SAxn, ASnx) = d

(
5

4
,
5

4

)
= 1,

which means that the pair (S,A) is compatible. By the definition of the mappings T , B, for any x ∈ (1, 2),
we have Tx = Bx = 5

4 and so

TBx = T (
5

4
) =

5

4
= B(

5

4
) = BTx.

Thus TBx = BTx, which implies that the pair T,B is weakly compatible.
(3) Now, we prove that the mappings S, T , A and B satisfy the condition (3.1) of Theorem 3.1 with

λ = 2
3 and p = 1. For this, we consider the following cases:

Case 1. If x, y ∈ [0, 1], then we have

d(Sx, Ty) = d

(
5

4
,
7

4

)
= e

1
2

and, since ϕ(t) < t for all t > 0, we have[
ϕ
(

max
{
dp(Ax,By),

dp(Ax, Sx)dp(By, Ty)

1 + dp(Ax,By)
,
dp(Ax, Ty)dp(By,Ax)

1 + dp(Ax,By)

})]λ
≤ max

{
d

2
3

(
1,

1

4

)
, d

2
3

(
1,

5

4

)
d

2
3

(1

4
,
7

4

)
, d

2
3

(
1,

7

4

)
d

2
3

(1

4
, 1
)}

= max{e
1
2 , e

1
6 e, e

3
4 e

3
4 } ≤ e.

Thus we have

d(Sx, Ty) = e
1
2

< max
{
d

2
3 (Ax,By),

d
2
3 (Ax, Sx)d

2
3 (By, Ty)

1 + d
2
3 (Ax,By)

,
d

2
3 (Ax, Ty)d

2
3 (By,Ax)

1 + d
2
3 (Ax,By)

}
.

Case 2. If x ∈ [0, 1] and y ∈ (1, 2], then we obtain

d(Sx, Ty) = d

(
5

4
,
5

4

)
= 1 ≤ max

{
d

2
3 (Ax,By),

d
2
3 (Ax, Sx)d

2
3 (By, Ty)

1 + d
2
3 (Ax,By)

,
d

2
3 (Ax, Ty)d

2
3 (By,Ax)

1 + d
2
3 (Ax,By)

}
.
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Case 3. If x ∈ (1, 2) and y ∈ [0, 1], then we obtain

d(Sx, Ty) = d

(
5

4
,
7

4

)
= e

1
2

and [
ϕ
(

max
{
dp(Ax,By),

dp(Ax, Sx)dp(By, Ty)

1 + dp(Ax,By)
,
dp(Ax, Ty)dp(By,Ax)

1 + dp(Ax,By)

})]λ
≤ max

{
d

2
3 (

5

4
,
1

4
),
d

2
3 (54 ,

5
4)d

2
3 (14 ,

7
4)

1 + d
2
3 (54 ,

1
4)

,
d

2
3 (54 ,

7
4)d

2
3 (14 ,

5
4)

1 + d
2
3 (54 ,

1
4)

}
= max

(
e

2
3 , e, e

)
< e.

Hence we have

d(Sx, Ty) = e
1
2 <

[
ϕ
(

max
{
dp(Ax,By),

dp(Ax, Sx)dp(By, Ty)

1 + dp(Ax,By)
,
dp(Ax, Ty)dp(By,Ax)

1 + dp(Ax,By)

})]λ
.

Case 4. If x = 2 and y ∈ [0, 1], then we have

d(Sx, Ty) = d

(
5

4
,
7

4

)
= e

1
2 .

Hence we have

d(Sx, Ty) = e
1
2 <

[
ϕ
(

max
{
dp(Ax,By),

dp(Ax, Sx)dp(By, Ty)

1 + dp(Ax,By)
,
dp(Ax, Ty)dp(By,Ax)

1 + dp(Ax,By)

})]λ
.

Case 5. If x, y ∈ (1, 2], then we have

d(Sx, Ty) = d

(
5

4
,
5

4

)
= 1 ≤

[
ϕ
(

max
{
dp(Ax,By),

dp(Ax, Sx)dp(By, Ty)

1 + dp(Ax,By)
,
dp(Ax, Ty)dp(By,Ax)

1 + dp(Ax,By)

})]λ
.

Then, as in all the above cases, the mappings S, T , A and B satisfy the condition (3.1) of Theorem 3.1. So,
all the conditions of Theorem 3.1 are satisfied. Moreover, 5

4 is the unique common fixed point for all of the
mappings S, T , A and B.

Theorem 3.3. Let (X, d) be a complete multiplicative metric space. Let S, T,A,B : X → X be single-valued
mappings such that S(X) ⊂ B(X), TX ⊂ AX and there exists λ ∈ (0, 12) such that

dp(Smx, T qy) ≤
[
ϕ
(

max
{
dp(Ax,By),

dp(Ax, Smx)dp(By, T qy)

1 + dp(Ax,By)
,
dp(Ax, T qy)dp(By,Ax)

1 + dp(Ax,By)

})]λ
(3.6)

for all x, y ∈ X, p ≥ 1 and m, q ∈ Z+, where ϕ : [0,∞) → [0,∞) is a monotone increasing function such
that ϕ(0) = 0 and ϕ(t) < t for all t > 0.

Assume the following conditions are satisfied:
(a) the pairs (S,A) and (T,B) are commutative mappings;
(b) one of S, T , A and B is continuous.

Then S, T,A and B have a unique common fixed point in X.

Proof. From S(X) ⊂ B(X) and T (X) ⊂ A(X) we have

Sm(X) ⊂ Sm−1(X) ⊂ · · · ⊂ S2(X) ⊂ S(X) ⊂ B(X)
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and
T q(X) ⊂ T q−1(X) ⊂ · · · ⊂ T 2(X) ⊂ T (X) ⊂ A(X).

Since the pairs (S,A) and (T,B) are commutative mappings, we have

SmA = Sp−1SA = Sm−1AS = Sm−2(SA)S = Sm−2AS2 = · · · = ASm

and
T qB = T q−1TB = T q−1BT = T q−2(TB)T = T q−2BT 2 = · · · = BT q,

that is, SmA = ASm and T qB = BT q. It follows from Remark 2.9 that the pairs (Sp, A) and (T q, B) are
compatible and also weakly compatible. Therefore, by Theorem 3.1, we can obtain that Sm, T q, A and B
have a unique common fixed point z ∈ X.

In addition, we prove that S, T , A and B have a unique common fixed point. From (3.6), we have

dp(Sz, z) = d(Sm(Sz), T qz)

≤
[
ϕ
(

max

{
dp(ASz,Bz),

dp(ASz, SmSz)dp(Bz, T qz)

1 + dp(ASz,Bz)
,
dp(ASz, T qz)dp(Bz,ASz)

1 + dp(ASz,Bz)

})]λ
=
[
ϕ
(

max

{
dp(Sz, z),

dp(Sz, Sz)dp(z, z)

1 + dp(Sz, z)
,
dp(Sz, z)dp(z, Sz)

1 + dp(Sz, z)

})]λ
≤
[
ϕ (dp(Sz, z))

]λ
≤ [d(Sz, z)]pλ.

This implies that d(Sz, z) = 1 and so Sz = z. On the other hand, we have

d(z, Tz) = d(Sm(z), T q(Tz))

≤
[
ϕ
(

max

{
dp(Az,BTz),

dp(Az, Smz)dp(BTz, T qz)

1 + dp(Az,BTz)
,
dp(Az, T q(Tz))dp(BTz,Az)

1 + dp(Az,BTz)

})]λ
=
[
ϕ
(

max

{
dp(z, z),

dp(z, z)dp(Tz, z)

1 + dp(z, Tz)
,
dp(z, Tz)dp(z, Tz)

1 + dp(z, Tz)

})]λ
≤
[
ϕ (dp(z, Tz))

]λ
≤ [d(z, Tz)]pλ.

This implies that d(z, Tz) = 1, i.e., Tz = z. Therefore, we obtain Sz = Tz = Az = Bz = z and so z is a
common fixed point of S, T , A and B.

Finally, we prove that S, T,A and B have a unique common fixed point z. Suppose that w ∈ X is also
a common fixed point of S, T,A and B. Then we have

d(z, w) = d(Sm(z), T q(w))

≤
[
ϕ
(

max

(
dp(Az,Bz),

dp(Az, Smz)dp(Bw, T qw)

1 + dp(Az,Bz)
,
dp(Az, T q(w))dp(Bw,Az)

1 + dp(Az,Bz)

))]λ
= ϕ

(
max

(
dp(z, Tz),

dp(z, z)dp(Tz, Tz)

1 + dp(z, Tz)
,
dp(z, Tz)dp(Tz, z)

1 + dp(z, Tz)

)]λ
≤
[
ϕ (dp(z, Tz))

]λ
≤ [d(z, Tz)]pλ.

This implies that d(z, w) = 1 and so w = z. Therefore, z is a unique common fixed point of S, T,A and B.
This completes the proof.
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Now, if we take ϕ(t) = t and p = 1 in Theorem 3.1, then we have the following result.

Corollary 3.4. Let (X, d) be a complete multiplicative metric space. Let S, T,A,B : X → X be single-valued
mappings such that S(X) ⊂ B(X), T (X) ⊂ A(X) and there exists λ ∈ (0, 12) such that, for all x, y ∈ X,

d(Sx, Ty) ≤ max
{
dλ(Ax,By),

dλ(Ax, Sx)dλ(By, Ty)

1 + dλ(Ax,By)
,
dλ(Ax, Ty)dλ(By,Ax)

1 + dλ(Ax,By)

}
. (3.7)

Suppose that one of the following conditions is satisfied:
(a) either A or S is continuous, the pair (S,A) is compatible and the pair (T,B) is weakly compatible;
(b) either B or T is continuous, the pair (T,B) is compatible and the pair (S,A) is weakly compatible.

Then S, T,A and B have a unique common fixed point in X.

Now, if we take ϕ(t) = t and p = 1 in Theorem 3.3, then we have the following result.

Corollary 3.5. Let (X, d) be a complete multiplicative metric space. Let S, T,A,B : X → X be single-valued
mappings such that S(X) ⊂ B(X), T (X) ⊂ A(X) and there exists λ ∈ (0, 12) such that

d(Smx, T qy) ≤ max
{
dλ(Ax,By),

dλ(Ax, Smx)dλ(By, T qy)

1 + dλ(Ax,By)
,
dλ(Ax, T qy)dλ(By,Ax)

1 + dλ(Ax,By)

}
(3.8)

for all x, y ∈ X and m, q ∈ Z+. Assume that the following conditions are satisfied:
(a) the pairs (S,A) and (T,B) are commutative mappings;
(b) one of S, T , A and B is continuous.

Then S, T,A and B have a unique common fixed point in X.

Now, we give an example to illustrate Corollary 3.4.

Example 3.6. Let X = [0, 2] and (X, d) be a multiplicative metric space defined by d(x, y) = e|x−y| for all
x, y in X. Let S, T , A and B be four self mappings defined by

Sx =
7

6
, if x ∈ [0, 2], Tx =

{
3
2 , if x ∈ [0, 1],
7
6 , if x ∈ (1, 2],

Ax =


1, if x ∈ [0, 1],
7
6 , if x ∈ (1, 2),
3
2 , if x = 2,

Bx =


1
6 , if x ∈ [0, 1],
7
6 , if x ∈ (1, 2),
1, if x = 2.

Clearly, we can get S(X) ⊂ B(X) and T (X) ⊂ A(X). Note that T , A and B are not multiplicative
continuous mappings and S is multiplicative continuous in X. By the definition of the mappings S and A,
we have

d(SAx,ASx) = d

(
7

6
,
7

6

)
= 1 ≤ d(Sx,Ax),

which implies that the pair S,A is weak commuting. Therefore, the pair (S,A) must be compatible.
Clearly, only for x ∈ (1, 2), Tx = Bx = 7

6 and TBx = T (76) = 7
6 = B(76) = BTx and so TBx = BTx.

Thus the pair (T,B) is also weakly compatible.
Now, we prove that the mappings S, T , A and B satisfy the Condition (3.7) of Corollary 3.4 with λ = 2

3 .
Let

M(x, y) =
(

max
{
d(Ax,By),

d(Ax, Sx)d(By, Ty)

1 + d(Ax,By)
,
d(Ax, Ty)d(By,Ax)

1 + d(Ax,By)

})λ
.

Now, we have the following 4 cases:

Case 1. If x, y ∈ [0, 1], then we have

d(Sx, Ty) = d

(
7

6
,
3

2

)
= e

1
3 < e

5
6
· 2
3 = d

2
3

(
1,

1

6

)
= d

2
3 (Ax,By) ≤M(x, y).
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Case 2. If x ∈ [0, 1] and y ∈ (1, 2], then we have

d(Sx, Ty) = d

(
7

6
,
7

6

)
= 1 ≤M(x, y).

Case 3. If x ∈ (1, 2] and y ∈ [0, 1], then we have

d(Sx, Ty) = d

(
7

6
,
3

2

)
= e

1
3 < 1 ≤M(x, y).

Case 4. If x, y ∈ (1, 2], then we have

d(Sx, Ty) = d

(
7

6
,
7

6

)
= 1 ≤M(x, y).

Then, in all the above cases, the mappings S, T , A and B satisfy the Condition (3.7) of Corollary 3.4 with
λ = 2

3 . So, all the conditions of Corollary 3.4 are satisfied. Moreover, 7
6 is the unique common fixed point

for the mappings S, T , A and B.

4. Common fixed points for mappings with the (CLR)-property

In this section, we prove some common fixed point theorems for weakly compatible mappings satisfying
the (CLR) property without completeness of multiplicative metric space.

Theorem 4.1. Let (X, d) be a multiplicative metric space. Let S, T,A,B : X → X be single-valued mappings
such that S(X) ⊂ B(X), T (X) ⊂ A(X) and there exists λ ∈ (0, 12) such that

dp(Sx, Ty) ≤
[
ϕ
(

max
{
dp(Ax,By),

dp(Ax, Sx)dp(By, Ty)

1 + dp(Ax,By)
,
dp(Ax, Ty)dp(By,Ax)

1 + dp(Ax,By)

})]λ
(4.1)

for all x, y ∈ X and p ≥ 1, where ϕ : [0,∞)→ [0,∞) is a monotone increasing function such that ϕ(0) = 0
and ϕ(t) < t for all t > 0. Assume the following conditions are satisfied:

(a) the pairs (S,A) and (T,B) are weakly compatible;
(b) the pairs (B, T ) and (T,B) have the common limit with respect to the value of the mapping A (or

B).

Then S, T,A and B have a unique common fixed point in X.

Proof. Since two pairs (S,A) and (T,B) have the common limit with respect to the value of A, there exists
two sequence {xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = Az

for some z ∈ X.
Now, we show that Sz = Az. By (4.1), we have

dp(Sz, Tyn) ≤
[
ϕ
(

max
{
dp(Az,Byn),

dp(Az, Sz)dp(Byn, T yn)

1 + dp(Az,Byn)
,
dp(Az, Tyn)dp(Byn, Az)

1 + dp(Az,Byn)

})]λ
.

Taking n→∞ in the above inequality, we obtain

dp(Sz,Az) ≤
[
ϕ
(

max
{
dp(Az,Az),

dp(Az, Sz)dp(Az,Az)

1 + dp(Az,Az)
,
dp(Az,Az)dp(Az,Az)

1 + dp(Az,Az)

})]λ
≤ [d(Sz,Az)]pλ,

which implies that Sz = Az. Since S(X) ⊂ B(X), there exists v ∈ X such that Sz = Bz.
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Next, we show Tv = Bv. By (4.1), we have

dp(Bv, Tv) = d(Sz, Tv) ≤
[
ϕ
(

max
{
dp(Az,Bv),

dp(Az, Sz)dp(Bv, Tv)

1 + dp(Az,Bv)
,
dp(Az, Tv)dp(Bv,Az)

1 + dp(Az,Bv)

})]λ
≤ [d(Bv, Tv)]pλ

and so Bv = Tv. Therefore, we have
Sz = Az = Bv = Tv.

Since the pairs A,S and B, T are weakly compatible, Sz = Az, Tv = Bv and

SAz = ASz = AAz = SSz, TBv = BTv = TTv = BBv. (4.2)

Now, we show that Sz is a common fixed point of S, T,A and B. By (4.1), we obtain

dp(S2z, Sz) = d(S2z, Tv)

≤
[
ϕ
(

max
{
dp(ASz,Bv),

dp(ASz, S2z)dp(Bv, Tv)

1 + dp(ASz,Bv)
,
dp(ASz, Tv)dp(Bv,Az)

1 + dp(ASz,Bv)

})]λ
≤ [d(S2z, Sz)]pλ.

This implies that S2z = Sz. Therefore, SSz = ASz = Sz. By (4.1), we obtain

dp(Tv, T 2v) = d(Sz, T 2v)

≤
[
ϕ
(

max
{
dp(Az,BTv),

dp(Az, Sz)dp(BTv, T 2v)

1 + dp(Az,BTv)
,
dp(Az, T 2v)dp(BTv,Az)

1 + dp(ASz,BTv)

})]λ
≤ [d(Tv, T 2v)]pλ.

This implies that Tv = TTv. Therefore, TBv = BTv = TTv, that is, Bv is a common fixed point of B and
T . Since Sv = Tv, we have

SSz = ASz = TSz = BSz

and so Sz is a common fixed point of S, T,A and B. We can obtain the uniqueness of common fixed point
z, similarly, in Theorem 3.1. This completes the proof.

If we take p = 1 and ϕ(t) = t in Theorem 4.1, we have the following result.

Corollary 4.2. Let (X, d) be a multiplicative metric space. Let S, T,A,B : X → X be single-valued
mappings such that S(X) ⊂ B(X), T (X) ⊂ A(X) and there exists λ ∈ (0, 12) such that

d(Sx, Ty) ≤
[

max
{
d(Ax,By),

d(Ax, Sx)d(By, Ty)

1 + d(Ax,By)
,
d(Ax, Ty)d(By,Ax)

1 + d(Ax,By)

}]λ
for all x, y ∈ X. Assume the following conditions are satisfied:

(a) the pairs (S,A) and (T,B) are weakly compatible;
(b) the pairs (B, T ) and (T,B) have the common limit with respect to the value of the mapping A (or

B).

Then S, T,A and B have a unique common fixed point in X.

Now, we give an example to illustrate Corollary 4.2.

Example 4.3. LetX = [0, 64) be a usual metric space. Define a mapping d : X×X −→ R by d(x, d) = e|x−y|

for all x, y ∈ X. Then (X, d) is a complete multiplicative metric space. Define the mappings S, T,A,B :
X −→ X by

Sx =
1

64
x, Tx =

1

32
x, Ax = x, Bx = 2x.
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Then we have have the following:
(1) T (X) = [0, 2) ⊂ [0, 64) = A(X);
(2) Clearly, the pairs (S,A) and (T,B) have the common limit of the value of the mapping B;
(3) Clearly, the pairs (S,A) and (T,B) are weakly compatible mappings. For all x, y ∈ X,

d(Sx, Ty) = e|
1
64
x− 1

32
y| ≤

[
max

{
e|x−2y|,

e|x−
1
64
x|e|2y−

1
32
y|

1 + e|x−2y|
,
e|x−

1
32
y|e|2y−x|

1 + e|x−2y|

}] 2
3
.

Therefore, all the conditions of Corollary 4.2 are satisfied and, further, S(0) = T (0) = A(0) = B(0) = 0 and
so 0 is a unique common fixed point of the maps S, T,A and B.

Note that (X, d), in Example 4.3, is not complete. Therefore, Theorem 4.1 cannot be applied.

As a consequence of Theorem 4.1, by putting A = B = Ix, we obtain the following result.

Corollary 4.4. Let (X, d) be a multiplicative metric space. Let S, T,A,B : X → X be single-valued
mappings such that S(X) ⊂ B(X), T (X) ⊂ A(X) and there exists λ ∈ (0, 12) such that

dp(Sx, Ty) ≤
[
ϕ
(

max
{
dp(x, y),

dp(x, Sx)dp(y, Ty)

1 + dp(x, y)
,
dp(x, Ty)dp(y,Ax)

1 + dp(x, y)

})]λ
for all x, y ∈ X and p ≥ 1, where ϕ : [0,∞)→ [0,∞) is a monotone increasing function such that ϕ(0) = 0
and ϕ(t) < t for all t > 0. Assume the following conditions are satisfied:

(a) the pairs (S,A) and (T,B) are weakly compatible;
(b) the pairs (B, T ) and (T,B) have the common limit with respect to the value of the mapping A (or

B).
Then S, T,A and B have a unique common fixed point in X.

If we take ϕ(t) = t in Theorem 4.1, we have the following result.

Corollary 4.5. Let (X, d) be a multiplicative metric space. Let S, T,A,B : X → X be single-valued
mappings such that S(X) ⊂ B(X), T (X) ⊂ A(X) and there exists λ ∈ (0, 12) such that

dp(Sx, Ty) ≤
[

max
{
dp(Ax,By),

dp(Ax, Sx)dp(By, Ty)

1 + dp(Ax,By)
,
dp(Ax, Ty)dp(By,Ax)

1 + dp(Ax,By)

}]λ
for all x, y ∈ X and p ≥ 1. Assume the following conditions are satisfied:

(a) the pairs (S,A) and (T,B) are weakly compatible;
(b) the pairs (B, T ) and (T,B) have the common limit with respect to the value of the mapping A (or

B).
Then S, T,A and B have a unique common fixed point in X.

If we take p = 1, A = B and S = T in Corollary 4.5, we have the following result.

Corollary 4.6. Let (X, d) be a multiplicative metric space. Let T,A : X → X be single-valued mappings
such that T (X) ⊂ A(X) and there exists λ ∈ (0, 12) such that

d(Tx, Ty) ≤
[

max
{
d(Ax,Ay),

d(Ax, Tx)d(Ay, Ty)

1 + d(Ax,Ay)
,
d(Ax, Ty)d(Ay,Ax)

1 + d(Ax,Ay)

}]λ
for all x, y ∈ X. Assume the following conditions are satisfied:

(a) the pair (T,A) is weakly compatible;
(b) the pair (T,A) has the common limit with respect to the value of the mapping A (or B).

Then T and A have a unique common fixed point in X.

Remark 4.7. In all results in this section, we don’t need the completeness of a multiplicative metric space.
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