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Abstract

In this paper, we obtain the superstability of the functional equation

f(pr, qs) + g(ps, qr) = θ(pq, rs)h(p, q)k(r, s)

for all p, q, r, s ∈ G, where G is an Abelian group, f, g, h, k are functionals on G2, and θ is a cocycle on G2.
This functional equation is a generalized form of the functional equation f(pr, qs)+f(ps, qr) = f(p, q) f(r, s),
which arises in the characterization of symmetrically compositive sum-form distance measures and the in-
formation measures, and also they can be represented as products of some multiplicative functions and the
exponential functional equations. As corollaries, we obtain the superstability of the many functional equa-
tions (combination of three variables functions, for example: f(pr, qs) + g(ps, qr) = θ(pq, rs)h(p, q)g(r, s)).
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1. Introduction

Let (G, ·) be a commutative semigroup. Let I denote the open unit interval (0, 1). Let R and C denote
the set of real and complex numbers, respectively. Let R+ = {x ∈ R |x > 0} be a set of positive real
numbers and Rw = {x ∈ R |x > w > 0} for some k ∈ R.
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Further, let

Γon =

{
P = (p1, p2, ..., pn)

∣∣ 0 < pk < 1,
n∑
k=1

pk = 1

}
denote the set of all n-ary discrete complete probability distributions (without zero probabilities), that is
Γon is the class of discrete distributions on a finite set Ω of cardinality n with n ≥ 2. Almost all similarity,

affinity or distance measures µn : Γon × Γon → R+ that have been proposed between two discrete probability
distributions can be represented in the sum-form

µn(P,Q) =

n∑
k=1

φ(pk, qk), (1.1)

where φ : I × I → R is a real-valued function on unit square, or a monotonic transformation of the right
side of (1.1), that is,

µn(P,Q) = ψ

(
n∑
k=1

φ(pk, qk)

)
, (1.2)

where ψ : R→ R+ is an increasing function on R. The function φ is called a generating function. It is also
referred to as the kernel of µn(P,Q).

In information theory, for P and Q in Γon, the symmetric divergence of degree α is defined as

Jn,α(P,Q) =
1

2α−1 − 1

[
n∑
k=1

(
pαk q

1−α
k + p1−αk qαk

)
− 2

]
.

For all P,Q ∈ Γon, we define the product

P ·R = (p1r1, p1r2, ..., p1rm, p2r1, ..., p2rm, ..., pnrm).

Chung, Kannappan, Ng and Sahoo [1] characterized symmetrically compositive sum-form distance mea-
sures with a measurable generating function. The following functional equation

f(pr, qs) + f(ps, qr) = f(p, q) f(r, s) (FE)

holding for all p, q, r, s ∈ I was instrumental in the characterization of symmetrically compositive sum-form
distance measures.

They obtained that the general solution of equation (FE) is represented by f(p, q) = M1(p)M2(q) +
M1(q)M2(p), where M1,M2 : R→ C are multiplicative functions. Further, either M1 and M2 are both real
or M2 is the complex conjugate of M1. The converse is also true.

The stability of the functional equation (FE), as well as the four generalizations of (FE), namely,

f(pr, qs) + f(ps, qr) = f(p, q)g(r, s), (FEfg)

f(pr, qs) + f(ps, qr) = g(p, q)f(r, s), (FEgf )

f(pr, qs) + f(ps, qr) = g(p, q)g(r, s), (FEgg)

f(pr, qs) + f(ps, qr) = g(p, q)h(r, s) (FEgh)

for all p, q, r, s ∈ G, were studied by Kim and Sahoo in [13], [12]. For other functional equations similar to
(FE), the interested reader should refer to [4], [5], [15]. J. Tabor [16] investigated the cocycle property. The
definition of a cocycle as follows:

Definition 1.1. A function θ : G2 → R is a cocycle if it satisfies the equation

θ(a, bc)θ(b, c) = θ(ab, c)θ(a, b), ∀ a, b, c ∈ G.
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For example, if F (x, y) = f(x)f(y)
f(xy) for a function f : R → R+, then F is a cocycle. Also if θ(x, y) =

ln(x) ln(y) for a function θ : R2
+ → (R,+), then θ is a cocycle, that is, θ(a, bc) + θ(b, c) = θ(ab, c) + θ(a, b),

and in this case, it is well known that θ(x, y) is represented by B(x, y) + M(xy) −M(x) −M(y) where B
is an arbitrary skew-symmetric biadditive function and M is some function [2]. If θ(x, y) = aln(x) ln(y), then
θ : R2

+ → (R, ·) is a cocycle and in this case, θ(x, y) is represented by eB(x,y)eM(xy)−M(x)−M(y).
Let us consider the generalized characterization of a symmetrically compositive sum-form related to

distance measures with a cocycle:

f(pr, qs) + f(ps, qr) = θ(pq, rs) f(p, q) f(r, s), (CDM)

for all p, q, r, s ∈ G and where f, θ are functionals on G2, which can be represented as exponential functional
equation in reduction.

In fact, if f(x, y) = 1
x + 1

y , then f(pr, qs) + f(ps, qr) = f(p, q) f(r, s), and also if f(x, y) = alnxy, and
θ(x, y) = 2 then f, θ satisfy the equation f(pr, qs) + f(ps, qr) = θ(pq, rs) f(p, q) f(r, s).

The superstability of (CDM) and four generalized functional equations of (CDM) namely,

f(pr, qs) + f(ps, qr) = θ(pq, rs)f(p, q)g(r, s), (CMfffg)

f(pr, qs) + f(ps, qr) = θ(pq, rs)g(p, q)f(r, s), (CMffgf )

f(pr, qs) + f(ps, qr) = θ(pq, rs)g(p, q)g(r, s), (CMffgg)

f(pr, qs) + f(ps, qr) = θ(pq, rs)g(p, q)h(r, s) (CMffgh)

for all p, q, r, s ∈ G, were studied by Lee and Kim in [14].
The present work continues the study for the superstability of the more generalized Pexider type func-

tional equation
f(pr, qs) + g(ps, qr) = θ(pq, rs)h(p, q)k(r, s) (CDMfghk)

than (CMffgh) considered in Lee and Kim [14].
As corollaries, due to a combination of three variable functions, we obtain the superstability of the

following functional equations, namely,

f(pr, qs) + g(ps, qr) = θ(pq, rs)g(p, q)k(r, s), (CDMfggk)

f(pr, qs) + g(ps, qr) = θ(pq, rs)f(p, q)k(r, s), (CDMfgfk)

f(pr, qs) + g(ps, qr) = θ(pq, rs)h(p, q)g(r, s), (CDMfghg)

f(pr, qs) + g(ps, qr) = θ(pq, rs)h(p, q)f(r, s), (CDMfggf )

f(pr, qs) + g(ps, qr) = θ(pq, rs)h(p, q)h(r, s), (CDMfghh)

f(pr, qs) + g(ps, qr) = θ(pq, rs)h(p, q)f(r, s), (CDMfghf )

f(pr, qs) + g(ps, qr) = θ(pq, rs)f(p, q)f(r, s), (CDMfgff )

f(pr, qs) + g(ps, qr) = θ(pq, rs)f(p, q)g(r, s), (CDMfgfg)

f(pr, qs) + g(ps, qr) = θ(pq, rs)g(p, q)g(r, s). (CDMfggg)

We will skip appearance for half of above equations and remainder equations.
In reduction, the above equations can be represented as a (hyperbolic) cosine(sine, trigonometric) func-

tional equation, exponential, and Jensen functional equation, respectively.
Indeed, it should be noted that many well known functional equations like d’Alembert functional equa-

tion, Wilson functional equation, Jensen functional equation can be obtained from the functional equation
(CDMfghk). For instance, letting r = s = 1 , cocycle θ(pq, rs) = 1 in (CDMfghk), one obtains the equation

f(p, q) + g(p, q) = k(1, 1)h(p, q), ∀ p, q ∈ J. (1.3)
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When f(p, q) = ψ(p+ q), g(p, q) = ψ(p− q), and k(1, 1)h(p, q) = 2ψ(p)ψ(q), then the equation (1.3) yields
the well known d’Alembert functional equation. Similarly, when f(p, q) = ψ(p + q), g(p, q) = ψ(p − q),
and k(1, 1)h(p, q) = ψ(p)φ(q), then (1.3) yields the Wilson functional equation. Letting f(p, q) = ψ(p +
q), g(p, q) = ψ(p − q), and k(1, 1)h(p, q) = 2ψ(p) it is easy to see that (1.3) reduces to Jensen functional
equation. For stability of related functional equations see [6], [7], [8], [9], [10], [11] and [14]. The book [3] is
an excellent source for reference on stability of functional equations.

2. Superstability of equations

In this section, we investigate the superstability of the equation (CDMfghk) bounded by the two variables
cases φ(r, s), φ(p, q). In this section, M and M ′ are some nonnegative constants.

Theorem 2.1. Let f, g, h, k : G2 → R, φ : G2 → R+ be functions and a function θ : G2 → Rw be a
cocycle satisfying

|f(pr, qs) + g(ps, qr)− θ(pq, rs)h(p, q)k(r, s)| ≤ φ(r, s) (2.1)

with |h(p, q)− f(p, q)| ≤ M , and |h(p, q)− g(p, q)| ≤ M ′ for all p, q, r, s ∈ G. Then, either h is bounded or
k is a solution of (CDM). In particular, if h satisfies (CDM), then k and h satisfy the equation

k(pr, qs) + k(ps, qr) = θ(pq, rs) h(p, q) k(r, s),

without above bounded condition by M and M ′.

Proof. Let h be an unbounded solution of inequality (2.1). Then, there exists a sequence {(xn, yn)|n ∈ N}
in G2 such that 0 6= |h(xn, yn)| → ∞ as n→∞.

Letting p = xn, q = yn in (2.1) and dividing |θ(xnyn, rs)h(xn, yn)|, we have∣∣∣f(xnr, yns) + g(xns, ynr)

θ(xnyn, rs)h(xn, yn)
− k(r, s)

∣∣∣ ≤ φ(r, s)

w|h(xn, yn)|
.

Passing to the limit as n→∞, we obtain that

k(r, s) = lim
n→∞

f(xnr, yns) + g(xns, ynr)

θ(xnyn, rs)h(xn, yn)
. (2.2)

Letting p = xnp, q = ynq in (2.1) and dividing |h(xn, yn)| , we have∣∣∣f(xnpr, ynqs) + g(xnps, ynqr)

h(xn, yn)
− θ(xnpynq, rs)h(xnp, ynq)

h(xn, yn)
k(r, s)

∣∣∣ ≤ φ(r, s)

|h(xn, yn)|
→ 0 (2.3)

as n→∞. Letting p = xnq, q = ynp in (2.1) and dividing |h(xn, yn)|, we have∣∣∣f(xnqr, ynps) + g(xnqs, ynpr)

h(xn, yn)
− θ(xnqynp, rs)h(xnq, ynp)

h(xn, yn)
k(r, s)

∣∣∣ ≤ φ(r, s)

|h(xn, yn)|
→ 0 (2.4)

as n → ∞. Note that for any a, b, c in G, θ(ba, c)θ(b, a) = θ(b, ac)θ(a, c) by the definition of the cocycle.
Letting pq = a, xnyn = b and rs = c we have

θ(xnynpq, rs)θ(xnyn, pq)

θ(xnyn, pqrs)
= θ(pq, rs)

for any p, q, r, s, xn, yn in G. Thus, from (2.2), (2.3) and (2.4), we obtain∣∣∣k(pr, qs) + k(ps, qr)− θ(pq, rs)k(p, q)k(r, s)
∣∣∣
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= lim
n→∞

∣∣∣f(xnpr, ynqs) + g(xnqs, ynpr) + f(xnps, ynqr) + g(xnqr, ynps)

θ(xnyn, prqs)h(xn, yn)

− θ(pq, rs)k(p, q)k(r, s)
∣∣∣

≤ lim
n→∞

∣∣∣ 1

θ(xnyn, prqs)

∣∣∣ · ∣∣∣f(xnpr, ynqs) + g(xnps, ynqr)

h(xn, yn)

− θ(xnpynq, rs)h(xnp, ynq)k(r, s)

h(xn, yn)

∣∣∣
+ lim
n→∞

∣∣∣ 1

θ(xnyn, prqs)

∣∣∣ · ∣∣∣f(xnqr, ynps) + g(xnqs, ynpr)

h(xn, yn)

− θ(xnqynp, rs)h(xnq, ynp)k(r, s)

h(xn, yn)

∣∣∣
+ |k(r, s)| lim

n→∞

∣∣∣θ(xnynpq, rs)θ(xnyn, pq)
θ(xnyn, pqrs)

· h(xnp, ynq) + h(xnq, ynp)

θ(xnyn, pq)h(xn, yn)

− θ(pq, rs)k(p, q)
∣∣∣

≤ k(r, s)θ(pq, rs) lim
n→∞

∣∣∣f(xnp, ynq) + g(xnq, ynp)

θ(xnyn, pq)h(xn, yn)

+
(h− f)(xnp, ynq) + (h− g)(xnq, ynp)

θ(xnyn, pq)h(xn, yn)
− k(p, q)

∣∣∣
≤ k(r, s)θ(pq, rs) lim

n→∞

∣∣∣ M +M ′

wh(xn, yn)

∣∣∣
+ k(r, s)θ(pq, rs) lim

n→∞

∣∣∣f(xnp, ynq) + g(xnq, ynp)

θ(xnyn, pq)h(xn, yn)
− k(p, q)

∣∣∣
= 0.

Theorem 2.2. Let f, g, h, k : G2 → R, φ : G2 → R+ be functions and a function θ : G2 → Rw be a
cocycle satisfying

|f(pr, qs) + g(ps, qr)− θ(pq, rs)h(p, q)k(r, s)| ≤ φ(p, q), (2.5)

with |k(p, q)− f(p, q)| ≤M,and |k(p, q)− g(q, p)| ≤M ′ for all p, q, r, s ∈ G. Then, either k is bounded or
h is a solution of (CDM).

In addition, if k satisfies the equation (CDM), then h and k satisfies the equation

h(pr, qs) + h(ps, qr) = θ(pq, rs)h(p, q) k(r, s),

without above bounded condition by M and M ′.

Proof. For k to be an unbounded solution of inequality (2.5), we can choose a sequence {(xn, yn)|n ∈ N} in
G2 such that 0 6= |k(xn, yn)| → ∞ as n→∞.

Letting r = xn, s = yn in (2.5) and dividing |θ(pq, xnyn)k(xn, yn)|, we have∣∣∣f(pxn, qyn) + g(pyn, qxn)

θ(pq, xnyn)k(xn, yn)
− h(p, q)

∣∣∣ ≤ φ(p, q)

w|k(xn, yn)|
.

Passing to the limit as n→∞, we obtain that

h(p, q) = lim
n→∞

f(pxn, qyn) + g(pyn, qxn)

θ(pq, xnyn)k(xn, yn)
. (2.6)
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Replacing r = rxn, s = syn in (2.5) and dividing |k(xn, yn)|, we have∣∣∣f(prxn, qsyn) + g(psyn, qrxn)

k(xn, yn)
− θ(pq, rxnsyn)h(p, q)

k(rxn, syn)

k(xn, yn)

∣∣∣ ≤ φ(p, q)

|k(xn, yn)|
→ 0 (2.7)

as n→∞. Replacing r = ryn, s = sxn in (2.5) and dividing |k(xn, yn)|, we have∣∣∣f(pryn, qsxn) + g(psxn, qryn)

k(xn, yn)
− h(p, q)θ(pq, rynsxn)

k(ryn, sxn)

k(xn, yn)

∣∣∣ ≤ φ(p, q)

|k(xn, yn)|
→ 0 (2.8)

as n→∞. Thus from (2.6), (2.7), and (2.8), we obtain∣∣∣h(pr, qs) + h(ps, qr)− θ(pq, rs)h(p, q)h(r, s)
∣∣∣

= lim
n→∞

∣∣∣f(prxn, qsyn) + g(pryn, qsxn) + f(psxn, qryn) + g(psyn, qrxn)

θ(prqs, xnyn)k(xn, yn)

− θ(pq, rs)h(p, q)h(r, s)
∣∣∣

≤ lim
n→∞

∣∣∣ 1

θ(pqrs, xnyn)

∣∣∣ · ∣∣∣f(prxn, qsyn) + g(psyn, qrxn)

k(xn, yn)

− h(p, q)θ(pq, rxnsyn)
k(rxn, syn)

k(xn, yn)

∣∣∣
+ lim
n→∞

∣∣∣ 1

θ(pqrs, xnyn)

∣∣∣ · ∣∣∣f(pryn, qsxn) + g(psxn, qryn)

k(xn, yn)

− h(p, q)θ(pq, rynsxn)
k(ryn, sxn)

k(xn, yn)

∣∣∣
+ |h(p, q)| lim

n→∞

∣∣∣θ(pq, rxnsyn)θ(rs, xnyn)

θ(pqrs, xnyn)
· k(rxn, syn) + k(ryn, sxn)

θ(rs, xnyn)k(xnyn)

− θ(pq, rs)h(r, s)
∣∣∣

= |h(p, q)|θ(pq, rs) lim
n→∞

∣∣∣(k − f)(rxn, syn) + (k − g)(ryn, sxn)

θ(rs, xnyn)k(xn, yn)

+
f(rxn, syn) + g(ryn, sxn)

θ(rs, xnyn)k(xn, yn)
− h(r, s)

∣∣∣
≤ |h(p, q)|θ(pq, rs) M +M ′

w|k(xn, yn)|

+ |h(p, q)|θ(pq, rs) lim
n→∞

∣∣∣f(rxn, syn) + g(ryn, sxn)

θ(rs, xnyn)k(xn, yn)
− h(r, s)

∣∣∣
= 0.

We can obtain many corollaries by reducing of functions in above two theorems. Namely, the reduced
functional equations are maked by three functions, two functions and one function. In here, we only will
represent the equations reduced by three functions. The representation of the other reduced equations will
be skip.

Corollary 2.3. Let f, g, h : G2 → R, φ : G2 → R+ be functions and a function θ : G2 → Rw be a cocycle
satisfying

|f(pr, qs) + g(ps, qr)− θ(pq, rs)h(p, q)h(r, s)| ≤ φ(r, s)orφ(p, q), (2.9)

with |h(p, q) − f(p, q)| ≤ M , and |h(p, q) − g(p, q)| ≤ M ′ for all p, q, r, s ∈ G. Then, either h is bounded
or h is a solution of (CDM).
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Corollary 2.4. Let f, g, h : G2 → R, φ : G2 → R+ be functions and a function θ : G2 → Rw be a cocycle
satisfying

|f(pr, qs) + g(ps, qr)− θ(pq, rs)h(p, q)f(r, s)| ≤ φ(r, s), (2.10)

with |h(p, q) − f(p, q)| ≤ M , and |h(p, q) − g(p, q)| ≤ M ′ for all p, q, r, s ∈ G. Then, either h is bounded
or f is a solution of (CDM). In particular, if h satisfies (CDM), then f and h satisfy the solutions of
(CMffgf ) without above bounded condition by M and M ′ , that is

f(pr, qs) + f(ps, qr) = θ(pq, rs) h(p, q) f(r, s).

Corollary 2.5. Let f, g, h : G2 → R, φ : G2 → R+ be functions and a function θ : G2 → Rw be a cocycle
satisfying

|f(pr, qs) + g(ps, qr)− θ(pq, rs)h(p, q)f(r, s)| ≤ φ(p, q), (2.11)

with |f(p, q) − g(q, p)| ≤ M , and |f(p, q) − g(q, p)| ≤ M ′ for all p, q, r, s ∈ G. Then, either f is bounded
or h is a solution of (CDM).

In addition, if f satisfies the equation (CDM), then h and f satisfies the equation

h(pr, qs) + h(ps, qr) = θ(pq, rs)h(p, q) f(r, s),

without above bounded condition by M and M ′.

Corollary 2.6. Let f, g, h : G2 → R, φ : G2 → R+ be functions and a function θ : G2 → Rw be a cocycle
satisfying

|f(pr, qs) + g(ps, qr)− θ(pq, rs)h(p, q)g(r, s)| ≤ φ(r, s), (2.12)

with |h(p, q) − f(p, q)| ≤ M , and |h(p, q) − g(p, q)| ≤ M ′ for all p, q, r, s ∈ G. Then, either h is bounded
or g is a solution of (CDM). In particular, if h satisfies (CDM), then g and h satisfy the equation

g(pr, qs) + g(ps, qr) = θ(pq, rs) h(p, q) g(r, s),

without above bounded condition by M and M ′.

Corollary 2.7. Let f, g, h : G2 → R, φ : G2 → R+ be functions and a function θ : G2 → Rw be a cocycle
satisfying

|f(pr, qs) + g(ps, qr)− θ(pq, rs)h(p, q)g(r, s)| ≤ φ(p, q), (2.13)

with |f(p, q) − g(p, q)| ≤ M , and |f(p, q) − g(q, p)| ≤ M ′ for all p, q, r, s ∈ G. Then, either g is bounded
or h is a solution of (CDM).

In addition, if g satisfies the equation (CDM), then h and g satisfies the equation

h(pr, qs) + h(ps, qr) = θ(pq, rs)h(p, q) g(r, s),

without above bounded condition by M and M ′.

Corollary 2.8. Let f, g, k : G2 → R, φ : G2 → R+ be functions and a function θ : G2 → Rw be a cocycle
satisfying

|f(pr, qs) + g(ps, qr)− θ(pq, rs)f(p, q)k(r, s)| ≤ φ(r, s), (2.14)

|f(p, q) − g(p, q)| ≤ M for all p, q, r, s ∈ G. Then, either f is bounded or k is a solution of (CDM). In
particular, if f satisfies (CDM), then k and f satisfy the equation

k(pr, qs) + k(ps, qr) = θ(pq, rs) f(p, q) k(r, s),

without above bounded condition by M .
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Corollary 2.9. Let f, g, k : G2 → R, φ : G2 → R+ be functions and a function θ : G2 → Rw be a cocycle
satisfying

|f(pr, qs) + g(ps, qr)− θ(pq, rs)f(p, q)k(r, s)| ≤ φ(p, q), (2.15)

with |k(p, q)− f(p, q)| ≤M,and |k(p, q)− g(q, p)| ≤M ′ for all p, q, r, s ∈ G. Then, either k is bounded or
f is a solution of (CDM).

In addition, if k satisfies the equation (CDM), then f and k satisfies the equation

f(pr, qs) + f(ps, qr) = θ(pq, rs)f(p, q) k(r, s),

without above bounded condition by M and M ′.

Corollary 2.10. Let f, g, k : G2 → R, φ : G2 → R+ be functions and a function θ : G2 → Rw be a cocycle
satisfying

|f(pr, qs) + g(ps, qr)− θ(pq, rs)g(p, q)k(r, s)| ≤ φ(r, s), (2.16)

with |g(p, q)− f(p, q)| ≤M for all p, q, r, s ∈ G. Then, either g is bounded or k is a solution of (CDM).
In particular, if g satisfies (CDM), then k and g satisfy the equation

k(pr, qs) + k(ps, qr) = θ(pq, rs) g(p, q) k(r, s),

without above bounded condition by M .

Corollary 2.11. Let f, g, k : G2 → R, φ : G2 → R+ be functions and a function θ : G2 → Rw be a cocycle
satisfying

|f(pr, qs) + g(ps, qr)− θ(pq, rs)g(p, q)k(r, s)| ≤ φ(p, q), (2.17)

with |k(p, q) − f(p, q)| ≤ M, and |k(p, q) − g(q, p)| ≤ M ′ for all p, q, r, s ∈ G. Then, either k is bounded
or g is a solution of (CDM).

In addition, if k satisfies the equation (CDM), then g and k satisfies the equation

g(pr, qs) + g(ps, qr) = θ(pq, rs)g(p, q) k(r, s),

without above bounded condition by M and M ′.

Corollary 2.12. Let f, g, h : G2 → R, φ : G2 → R+ be functions and a function θ : G2 → Rw be a cocycle
satisfying

|f(pr, qs) + f(ps, qr)− θ(pq, rs)g(p, q)h(r, s)| ≤ φ(r, s), (2.18)

with |g(p, q)− f(p, q)| ≤M for all p, q, r, s ∈ G. Then, either g is bounded or h is a solution of (CDM).
In particular, if g satisfies (CDM), then h and g satisfy the equation

h(pr, qs) + h(ps, qr) = θ(pq, rs) g(p, q) h(r, s),

without above bounded condition by M .

Corollary 2.13. Let f, g, h : G2 → R, φ : G2 → R+ be functions and a function θ : G2 → Rw be a cocycle
satisfying

|f(pr, qs) + f(ps, qr)− θ(pq, rs)g(p, q)h(r, s)| ≤ φ(p, q), (2.19)

with |h(p, q)− f(p, q)| ≤M,and |h(p, q)− f(q, p)| ≤M ′ for all p, q, r, s ∈ G. Then, either h is bounded or
g is a solution of (CDM).

In addition, if h satisfies the equation (CDM), then g and h satisfies the equation

g(pr, qs) + g(ps, qr) = θ(pq, rs)g(p, q)h(r, s),

without above bounded condition by M and M ′.
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Corollary 2.14. Let f, g, h, k : G2 → R, φ : G2 → R+ be functions and a function θ : G2 → Rw be a
cocycle satisfying

|f(pr, qs) + g(ps, qr)− θ(pq, rs)h(p, q)k(r, s)| ≤ ε, (2.20)

with |k(p, q) − f(p, q)| ≤ Mand |k(p, q) − g(q, p)| ≤ M ′ for all p, q, r, s ∈ G. Then, either h (or k) is
bounded or k ( or h) is a solution of (CDM), respectively. In addition,

(i) If h satisfies (CDM), then k and h satisfy (CDMkkhk) without above bounded condition by M and
M ′,

k(pr, qs) + k(ps, qr) = θ(pq, rs) h(p, q) k(r, s).

(ii) If k satisfies (CDM), then h and k satisfies CDMhhhk without above bounded condition by M and
M ′,

h(pr, qs) + h(ps, qr) = θ(pq, rs)h(p, q) k(r, s).

Corollary 2.15. Let (S; �) be a commutative semigroup with operation �. Let f, g, h, k : S2 → R and
φ : S2 → R be a nonzero function satisfying

|f(p � r, q � s) + g(p � s, q � r)− θ(p � q, r � s)h(p, q)k(r, s)| ≤
{

(i) φ(r, s)
(ii) φ(p, q)

(2.21)

for all p, q, r, s ∈ S
(a) In case (i), let |h(p, q)− f(p, q)| ≤M and |h(p, q)− g(p, q)| ≤M ′.
Then, either h is bounded or k is a solution of (CDM). In particular, if h satisfies (CDM), then k

and h satisfy the equation

k(p � r, q � s) + k(p � s, q � r) = θ(p � q, r � s) h(p, q) k(r, s),

without above bounded condition by M and M ′.
(b) In case (ii), let |k(p, q)− f(p, q)| ≤Mand |k(p, q)− g(q, p)| ≤M ′.
Then, either k is bounded or h is a solution of (CDM). In addition, if k satisfies the equation (CDM),

then h and k satisfies the equation

h(p � r, q � s) + h(p � s, q � r) = θ(p � q, r � s)h(p, q) k(r, s),

without above bounded condition by M and M ′.

Remark 2.16. (i) As Corollary 2.14, letting φ(r, s) = φ(p, q) = ε in all corollary, then we obtain the same
type results.

(ii) For the following equations reduced to two functions : (CDMfgfg), (CDMfgff ), (CDMfggf ),
(CDMfggg), (CDMfghf ), (CMfffg), (CMffgf ), (CMffgg), (CMffgh), (FEgf ), (FEgg), (FEfg), and (FEgh)
under cocycle condition θ(pq, rs) = 1, we can obtain the same results. In this case, note that f is bounded
iff g is bounded, by using of this, we can obtain more good results(see [12], [13]).

(iii) For example of a cocycle function θ : R2
+ → R+, apply θ(pq, rs) = kln(pq) ln(rs), θ(pq, rs) = c:

constant, etc,.
(iv) In Corollary 2.15, replacing the operation � on S to + in all results, then we obtain same results for

each corollary.

3. Extension of results to Banach algebra

All results in Section 2 can be extended to the superstability on the Banach algebra. In this section, let
(E, ‖ · ‖) be a semisimple commutative Banach algebra.
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Theorem 3.1. Let f, g, h, k : G2 → E, φ : G2 → R+ be functions and a function θ : G2 → Rw be a
cocycle satisfying

‖f(pr, qs) + g(ps, qr)− θ(pq, rs)h(p, q)k(r, s)‖ ≤ φ(r, s), ∀ p, q, r, s ∈ G (3.1)

and let ‖h(p, q)− f(p, q)‖ ≤M , and ‖h(p, q)− g(p, q)‖ ≤M ′ for all p, q, r, s ∈ G.
For an arbitrary linear multiplicative functional x∗ ∈ E∗, either the superposition x∗ ◦ h is bounded or k

satisfies the equation (CDM).
In particular, the superposition x∗ ◦ h satisfies the equation (CDM), then k and h satisfy the equation

k(pr, qs) + k(ps, qr) = θ(pq, rs) h(p, q) k(r, s),

without above bounded condition by M and M ′.

Proof. Assume that (3.1) holds, and fix arbitrarily a linear multiplicative functional x∗ ∈ E. As well known
we have ‖x∗‖ = 1 whence, for every x, y ∈ G, we have

φ(r, s) ≥ ‖f(pr, qs) + g(ps, qr)− θ(pq, rs)h(p, q)k(r, s)‖
≥
∣∣x∗(f(pr, qs)

)
+ x∗

(
g(ps, qr)

)
− θ(pq, rs)x∗

(
h(p, q)

)
x∗
(
k(r, s)

)∣∣,
which states that the superpositions x∗ ◦ f , x∗ ◦ g, x∗ ◦h, and x∗ ◦k yield solutions of inequality (3.1). Since
the superposition x∗ ◦ h is unbounded, an appeal to Theorem 2.1 shows that the function x∗ ◦ k solves the
equation (CDM). In other words, bearing the linear multiplicativity of x∗ in mind, for all p, q, r, s ∈ G, the
difference

DGMfghk(p, q, r, s) := k(pr, qs) + k(ps, qr)− θ(pq, rs)k(p, q)k(r, s),

falls into the kernel of x∗. Therefore, in view of the unrestricted choice of x∗, we infer that

DGMfghk(p, q, r, s) ∈
⋂
{kerx∗ : x∗ is a multiplicative member of E∗}

for all p, q, r, s ∈ G. Since the algebra E has been assumed to be semisimple, the last term of the above
formula coincides with the singleton {0}, i.e.

k(pr, qs) + k(ps, qr)− θ(pq, rs)k(p, q)k(r, s) = 0, for all p, q, r, s ∈ G

as claimed.
The additional case also can be check easily.

Theorem 3.2. Let f, g, h, k : G2 → E, φ : G2 → R+ be functions and a function θ : G2 → Rw be a
cocycle satisfying

‖f(pr, qs) + g(ps, qr)− θ(pq, rs)h(p, q)k(r, s)‖ ≤ φ(p, q), ∀ p, q, r, s ∈ S

and let ‖k(p, q)− f(p, q)‖ ≤Mand ‖k(p, q)− g(q, p)‖ ≤M ′ for all p, q, r, s ∈ G.
For an arbitrary linear multiplicative functional x∗ ∈ E∗, either the superposition x∗ ◦ k is bounded or h

satisfies the equation (CDM).
In particular, if the superposition x∗◦h satisfies the equation (CDM), then h and k satisfies the equation

h(pr, qs) + h(ps, qr) = θ(pq, rs)h(p, q) k(r, s),

without above bounded condition by M and M ′.

Remark 3.3. As Theorems 3.1 and 3.2, All results of the section 2 can be extended to the Banach algebra.
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