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Abstract

We introduce a new iterative algorithm for finding a common element of the solution set of the variational
inequality problem for a continuous monotone mapping, the zero point set of a maximal monotone operator,
and the fixed point set of a continuous pseudocontractive mapping in a Hilbert space. Then we establish
strong convergence of the sequence generated by the proposed algorithm to a common point of three sets,
which is a solution of a certain variational inequality. Further, we find the minimum-norm element in
common set of three sets. As applications, we consider iterative algorithms for the equilibrium problem
coupled with fixed point problem. ©2016 All rights reserved.
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1. Introduction

In the real world, many nonlinear problems arising in applied areas are mathematically modeled as
nonlinear operator equations and the operator is decomposed as the sum of two nonlinear operators. The
nonlinear operator equations can be reduced to the monotone inclusion problems or fixed point problems
for nonlinear operators. As the most popular techniques for solving the nonlinear operator equations, many
authors formulated the nonlinear operator equations as finding a zero of the sum of two nonlinear operators
or as finding a fixed point of a nonlinear mapping.

Let H be a real Hilbert space with the inner product 〈·, ·〉, and let C be a nonempty closed convex
subset of H. For the mapping T : C → C, we denote the fixed point set of T by Fix(T ), that is,
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Fix(T ) = {x ∈ C : Tx = x}.
Let F : C → 2H be a maximal monotone operator. Many problems can be formulated as finding a zero

of a maximal monotone operator F in a Hilbert space H, that is, a solution of the inclusion problem 0 ∈ Fx.
(A typical example is to find a minimizer of a convex functional.) A classical method for solving the problem
is proximal point algorithm, proposed by Martinet [20, 21] and generalized by Rockafellar [27, 28]. In the
case of F = A+B, where A and B are monotone operators, the problem is reduced to as follows:

find z ∈ C such that 0 ∈ (A+B)z. (1.1)

The solution set of the problem (1.1) is denoted by (A+B)−10. As we know, the problem (1.1) is very general
in the sense that it includes, as special cases, convexly constrained linear inverse problem, split feasibility
problem, convexly constrained minimization problem, fixed point problems, variational inequalities, Nash
equilibrium problem in noncooperative games, and others; see, for instance, [2, 8, 12, 17, 22, 24, 25] and the
references therein.

Let A be a nonlinear mapping of C into H. The variational inequality problem is to find a u ∈ C such
that

〈v − u,Au〉 ≥ 0, ∀v ∈ C. (1.2)

This problem is called Hartmann-Stampacchia variational inequality (see [13, 31]). We denote the set
of solutions of the variational inequality problem (1.2) by V I(C,A). Also variational inequality theory
has emerged as an important tool in studying a wide class of numerous problem in physics, optimization,
variational inequalities, minimax problem, Nash equilibrium problem in noncooperative games and others;
see, for instance, [4, 6, 18, 19, 40] and the references therein.

Recently, in order to study the monotone inclusion problem (1.1) coupled with fixed point problem for
the nonlinear mapping T , many authors have introduced some iterative methods for finding an element of
Fix(T )∩(A+B)−10, where A is an α-inverse-strongly monotone mapping of C into H, and B is a set-valued
maximal monotone operator on H. For instance, in case that T is a nonexpansive mapping of C into itself,
see [35, 37, 42, 45] and the references therein, and in case that T is a k-strictly pseudocontractive mapping
of C into itself, see [16]. For a Lipschitzian pseudocontractive mapping T of C into itself, refer to [30].

Many researchers have also invented some iterative methods for finding an element of V I(C,A)∩Fix(T ),
where A and T are nonlinear mappings. For instance, in case that A is an α-inverse-strongly monotone
mapping of C into H and T is a nonexpansive mapping of C into itself, see [9, 14, 15, 23, 32, 36] and the
references therein, and in case that A is a continuous monotone mapping of C into H and T is a continuous
pseudocontractive mapping of C into itself, see [7, 38, 44].

In this paper, as a continuation of study in this direction, we introduce a new iterative algorithm for
finding a common element of the set Fix(T ) of fixed points of a continuous pseudocontractive mapping T ,
the solution set V I(C,A) of the variational inequality problem (1.2), where A is a continuous monotone
mapping, and the set B−10 of zero points of B, where B is a multi-valued maximal monotone operator
on H. Then we establish strong convergence of the sequence generated by the proposed algorithm to a
common point of three sets, which is a solution of a certain variational inequality, where the constrained set
is Fix(T )∩V I(C,A)∩B−10. As a direct consequence, we find the unique minimum-norm element of Fix(T )∩
V I(C,A) ∩ B−10. Moreover, as applications, we consider iterative algorithms for the equilibrium problem
coupled with fixed point problem of continuous pseudocontractive mappings. Our results extend, improve
and unify most of the results that have been proven for these important classes of nonlinear mappings.

2. Preliminaries and lemmas

In the following, we write xn ⇀ x to indicate that the sequence {xn} converges weakly to x. xn → x
implies that {xn} converges strongly to x.

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖ · ‖, and let C be a
nonempty closed convex subset of H. A mapping A of C into H is called monotone if

〈x− y,Ax−Ay〉 ≥ 0, ∀x, y ∈ C.



J. S. Jung, J. Nonlinear Sci. Appl. 9 (2016), 4409–4426 4411

A mapping A of C into H is called α-inverse-strongly monotone (see [14, 19]) if there exists a positive real
number α such that

〈x− y,Ax−Ay〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.
Clearly, the class of monotone mappings includes the class of α-inverse-strongly monotone mappings.

A mapping T of C into H is said to be pseudocontractive if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C,

and T is said to be k-strictly pseudocontractive (see [5]) if there exists a constant k ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C,

where I is the identity mapping. Note that the class of k-strictly pseudocontractive mappings includes the
class of nonexpansive mappings as a subclass. That is, T is nonexpansive (i.e., ‖Tx − Ty‖ ≤ ‖x − y‖,
∀x, y ∈ C) if and only if T is 0-strictly pseudocontractive. Clearly, the class of pseudocontractive mappings
includes the class of strictly pseudocontractive mappings and the class of nonexpansive mappings as a
subclass. Moreover, this inclusion is strict due to an example in [10] (see, also Example 5.7.1 and Example
5.7.2 in [1]).

A mapping G : C → C is said to be κ-Lipschitzian and η-strongly monotone with constants κ > 0 and
η > 0 if

‖Gx−Gy‖ ≤ κ‖x− y‖ and 〈Gx−Gy, x− y〉 ≥ η‖x− y‖2, ∀x, y ∈ C,
respectively. A mapping V : C → C is said to be l-Lipschitzian with a constant l ≥ 0 if

‖V x− V y‖ ≤ l‖x− y‖, ∀x, y ∈ C.

Let B be a mapping of H into 2H . The effective domain of B is denoted by dom(B), that is, dom(B) =
{x ∈ H : Bx 6= ∅}. A multi-valued mapping B is said to be a monotone operator on H if 〈x− y, u− v〉 ≥ 0
for all x, y ∈ dom(B), u ∈ Bx, and v ∈ By. A monotone operator B on H is said to be maximal if its graph
is not properly contained in the graph of any other monotone operator on H. For a maximal monotone
operator B on H and r > 0, we may define a single-valued operator JBr = (I+ rB)−1 : H → dom(B), which
is called the resolvent of B. Let B be a maximal monotone operator on H and let B−10 = {x ∈ H : 0 ∈ Bx}.
It is well-known that B−10 = Fix(JBr ) for all r > 0 is closed and convex ([3]), and the resolvent JBr is firmly
nonexpansive, that is,

‖JBr x− JBr y‖2 ≤ 〈x− y, JBr x− JBr y〉, ∀x, y ∈ H, (2.1)

and that the resolvent identity

JBλ x = JBµ

(
µ

λ
x+

(
1− µ

λ

)
JBλ x

)
(2.2)

holds for all λ, µ > 0 and x ∈ H.
In a real Hilbert space H, the following hold:

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x, y〉, (2.3)

and
‖αx+ βy‖2 = α‖x‖2 + β‖y‖2 − αβ‖x− y‖2 ≤ α‖x‖2 + β‖y‖2, (2.4)

for all x, y ∈ H and α, β ∈ (0, 1) with α + β = 1. For every point x ∈ H, there exists a unique nearest
point in C, denoted by PCx, such that

‖x− PCx‖ = inf{‖x− y‖ : y ∈ C}.

PC is called the metric projection of H onto C. It is well known that PC is nonexpansive and PC is
characterized by the property

u = PCx⇐⇒ 〈x− u, u− y〉 ≥ 0, ∀x ∈ H, y ∈ C. (2.5)

We need the following lemmas for the proof of our main results.
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Lemma 2.1 ([1]). In a real Hilbert space H, the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H.

Lemma 2.2 ([33]). Let {xn} and {zn} be bounded sequences in a real Banach space E, and let {γn} be a
sequence in [0, 1] which satisfies the following condition:

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1.

Suppose that xn+1 = γnxn + (1− γn)zn for all n ≥ 1 and

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖zn − xn‖ = 0.

Lemma 2.3 ([39]). Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− ξn)sn + ξnδn, ∀n ≥ 1,

where {ξ} and {δn} satisfy the following conditions:

(i) {ξn} ⊂ [0, 1] and
∑∞

n=1 ξn =∞;

(ii) lim supn→∞ δn ≤ 0 or
∑∞

n=1 ξn|δn| <∞.

Then limn→∞ sn = 0.

The following lemmas are Lemma 2.3 and Lemma 2.4 of Zegeye [43], respectively.

Lemma 2.4 ([43]). Let C be a closed convex subset of a real Hilbert space H. Let A : C → H be a continuous
monotone mapping. Then, for r > 0 and x ∈ H, there exists z ∈ C such that

〈y − z,Az〉+
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

For r > 0 and x ∈ H, define Ar : H → C by

Arx =

{
z ∈ C : 〈y − z,Az〉+

1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
.

Then the following hold:

(i) Ar is single-valued;

(ii) Ar is firmly nonexpansive, that is,

‖Arx−Ary‖2 ≤ 〈x− y,Arx−Ary〉, ∀x, y ∈ H;

(iii) Fix(Ar) = V I(C,A);

(iv) V I(C,A) is a closed convex subset of C.

Lemma 2.5 ([43]). Let C be a closed convex subset of a real Hilbert space H. Let T : C → H be a continuous
pseudocontractive mapping. Then, for r > 0 and x ∈ H, there exists z ∈ C such that

〈y − z, Tz〉 − 1

r
〈y − z, (1 + r)z − x〉 ≤ 0, ∀y ∈ C.

For r > 0 and x ∈ H, define Tr : H → C by

Trx =

{
z ∈ C : 〈y − z, Tz〉 − 1

r
〈y − z, (1 + r)z − x〉 ≤ 0, ∀y ∈ C

}
.

Then the following hold:
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(i) Tr is single-valued;

(ii) Tr is firmly nonexpansive, that is,

‖Trx− Try‖2 ≤ 〈x− y, Trx− Try〉, ∀x, y ∈ H;

(iii) Fix(Tr) = Fix(T );

(iv) Fix(T ) is a closed convex subset of C.

The following lemmas can be easily proven (see [40]), and therefore, we omit their proof.

Lemma 2.6. Let H be a real Hilbert space. Let V : H → H be an l-Lipschitzian mapping with a constant
l ≥ 0, and let G : H → H be a κ-Lipschitzian and η-strongly monotone mapping with constants κ, η > 0.
Then for 0 ≤ γl < µη,

〈(µG− γV )x− (µG− γV )y, x− y〉 ≥ (µη − γl)‖x− y‖2, ∀x, y ∈ C.

That is, µG− γV is strongly monotone with constant µη − γl.

Lemma 2.7. Let H be a real Hilbert space H. Let G : H → H be a κ-Lipschitzian and η-strongly monotone
operator with constants κ > 0 and η > 0. Let 0 < µ < 2η

κ2 and 0 < t < ξ ≤ 1. Then ξI − tµG : H → H is a

contractive mapping with a constant ξ − tτ , where τ = 1−
√

1− µ(2η − µκ2).

Lemma 2.8. Let C be a closed convex subset of a real Hilbert space H. Let A : C → H be a nonlinear
mapping, and let B : dom(B) ⊂ C → 2H be a maximal monotone operator. Then V I(C,A) ∩ B−10 is a
subset of (A+B)−10

Proof. Let z ∈ V I(C,A) ∩B−10. Then we have, for v ∈ Bu,

〈u− z,Az〉 ≥ 0 and 〈z − u,−v〉 ≥ 0.

Thus, we derive
〈z − u,−Az − v〉 = 〈u− z,Az〉+ 〈z − u,−v〉 ≥ 0.

Since B is maximal monotone, −Az ∈ Bz, that is, z ∈ (A+B)−10.

3. Iterative algorithms

Throughout the rest of this paper, we always assume the following:

• H is a real Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖ · ‖;
• C is a nonempty closed subspace of H;

• B : H → 2H is a maximal monotone operator with dom(B) ⊂ C;

• B−10 is the set of zero points of B, that is, B−10 = {z ∈ H : 0 ∈ Bz};
• JBrn : H → dom(B) is the resolvent of B for rn ∈ (0,∞);

• G : C → C is a κ-Lipschitzian and η-strongly monotone mapping with constants κ, η > 0;

• V : C → C is a l-Lipschitzian mapping with constant l > 0;

• Constants µ > 0 and γ ≥ 0 satisfy 0 < µ < 2η
κ2 and 0 ≤ γl < τ , where τ = 1−

√
1− µ(2η − µκ2);

• A : C → H is a continuous monotone mapping;

• V I(C,A) is the solution set of the variational inequality problem (1.2) for A;

• T : C → C is a continuous pseudocontractive mapping with Fix(T ) 6= ∅;
• Arn : H → C is a mapping defined by

Arnx =

{
z ∈ C : 〈y − z,Az〉+

1

rn
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
for x ∈ H and rn ∈ (0,∞);
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• Trn : H → C is a mapping defined by

Trnx =

{
z ∈ C : 〈Tz, y − z〉 − 1

rn
〈y − z, (1 + rn)z − x〉 ≤ 0, ∀y ∈ C

}
for x ∈ H and rn ∈ (0,∞);

• Fix(T ) ∩ V I(C,A) ∩B−10 6= ∅.

By Lemma 2.4 and Lemma 2.5, we note that Arn and Trn are nonexpansive, V I(C,A) = Fix(Arn) and
Fix(Trn) = Fix(T ).

Now, we propose a new iterative algorithm for finding a common element of Fix(T )∩V I(C,A)∩B−10,
where T is a continuous pseudocontractive mapping, A is a continuous monotone mapping, and B is a
multi-valued maximal monotone operator on H.

Algorithm 3.1. For an arbitrarily chosen x1 ∈ C, let the iterative sequence {xn} be generated by{
yn = αnγV xn + (1− αnµG)xn,

xn+1 = βnxn + (1− βn)TrnJ
B
rnArnyn, ∀n ≥ 1,

(3.1)

where {αn} and {βn} are two sequences in (0, 1), and {rn} ⊂ (0,∞).

Theorem 3.2. Suppose that Fix(T )∩V I(C,A)∩B−10 6= ∅. Let the sequence {xn} be generated iteratively
by algorithm (3.1). Let {αn}, {βn} ⊂ (0, 1) and {rn} ⊂ (0,∞) satisfy the following conditions:

(C1) limn→∞ αn = 0;

(C2)
∑∞

n=1 αn =∞;

(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(C4) 0 < a ≤ rn <∞ and limn→∞ |rn+1 − rn| = 0.

Then {xn} converge strongly to a point q ∈ Fix(T ) ∩ V I(C,A) ∩B−10, which is the unique solution of the
following variational inequality:

〈(γV − µG)q, q − p〉 ≥ 0, ∀p ∈ Fix(T ) ∩ V I(C,A) ∩B−10. (3.2)

Proof. First, let Q = PΩ, where Ω := Fix(T ) ∩ V I(C,A) ∩ B−10. Then, by Lemma 2.4 (iv), Lemma 2.5
(iv), PΩ is well-defined. Also, it is easy to show that Q(I − µG + γV ) : C → C is a contractive mapping
with a constant 1− (τ − γl). In fact, from Lemma 2.7 we have

‖Q(I − µG+ γV )x−Q(I − µG+ γV )y‖ ≤ ‖(I − µG+ γV )x− (I − µG+ γV )y‖
≤ ‖(I − µG)x− (I − µG)y‖+ γ‖V x− V y‖
≤ (1− τ)‖x− y‖+ γl‖x− y‖
= (1− (τ − γl))‖x− y‖

for any x, y ∈ C. So, Q(I − µG + γV ) is a contractive mapping with a constant 1 − (τ − γl) < 1. Thus,
by Banach contraction principle, there exists a unique element q ∈ C such that q = PΩ(I − µG + γV )q.
Equivalently, q is a solution of the variational inequality (3.2) (see (2.5)). We can show easily the uniqueness
of a solution of the variational inequality (3.2). Indeed, noting that 0 ≤ γl < τ and µη ≥ τ ⇐⇒ κ ≥ η, it
follows from Lemma 2.6 that

〈(µG− γV )x− (µG− γV )y, x− y〉 ≥ (µη − γl)‖x− y‖2.

That is, µG − γV is strongly monotone for 0 ≤ γl < τ < µη. Hence the variational inequality (3.2) has
only one solution. Below we will use q ∈ Fix(T ) ∩ V I(C,A) ∩ B−10 to denote the unique solution of the
variational inequality (3.2).
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From now on, by conditions (C1) and (C3), without loss of generality, we assume that αn(1−βn)(τ−γl) <
1 for n ≥ 1. And we put wn := Arnyn, un := JBrnwn (= JBrnArnyn), and zn := Trnun (= TrnJ

B
rnwn).

We divide the proof into several steps.
Step 1. We show that {xn} is bounded. To this end, let p ∈ Fix(T ) ∩ V I(C,A) ∩ B−10. It is obvious

that p = JBrnArnp, p = TrnJ
B
rnArnp, and Trnp = p. From Lemma 2.7 we obtain

‖yn − p‖ = ‖αn(γV xn − µG)p+ (I − αnµG)xn − (I − αnµG)p‖
≤ (1− αnτ)‖xn − p‖+ αnγ‖V xn − V p‖+ αn‖γV p− µGp‖
≤ (1− αnτ)‖xn − p‖+ αnγl‖xn − p‖+ αn‖γV p− µGp‖

= (1− (τ − γl)αn)‖xn − p‖+ (τ − γl)‖γV p− µGp‖
τ − γl

.

(3.3)

Thus, since TrnJ
B
rnArn is nonexpansive (by Lemma 2.4 and Lemma 2.5), from (3.3) we deduce

‖xn+1 − p‖ ≤ βn‖xn − p‖+ (1− βn)‖TrnJBrnArnyn − p‖
≤ βn‖xn − p‖+ (1− βn)‖yn − p‖

≤ βn‖xn − p‖+ (1− βn)

[
(1− (τ − γl)αn)‖xn − p‖+ (τ − γl)‖γV p− µGp‖

τ − γl

]
= (1− (1− βn)αn(τ − γl))‖xn − p‖+ (1− βn)αn(τ − γl)‖γV p− µGp‖

τ − γl

≤ max

{
‖xn − p‖,

‖γV p− µGp‖
τ − γl

}
.

Using an induction, we have

‖xn − p‖ ≤ max

{
‖x1 − p‖,

‖γV p− µGp‖
τ − γl

}
.

Hence, {xn} is bounded. Also, {yn}, {V xn}, {Gxn}, {wn} = {Arnyn}, {un} = {JBrnwn} and {zn} = {Trnun}
are bounded. And, from (3.1) and condition (C1) it follows that

‖yn − xn‖ = αn‖γV xn − µGxn‖ → 0 as n→∞. (3.4)

Step 2. We show that limn→∞ ‖xn+1 − xn‖ = 0. For this purpose, first, we notice

‖yn − yn−1‖ = ‖αnγV xn − (I − αnµG)xn − αn−1γV xn−1 − (I − αn−1µG)xn−1‖
≤ ‖(αn − αn−1)(γV xn−1 − µGxn−1)‖+ αnγ‖V xn − V xn−1‖

+ ‖(I − αnµG)xn − (I − αnµG)xn−1‖
≤ |αn − αn−1|(γ‖V xn−1‖+ µ‖Gxn−1‖) + αnγl‖xn − xn−1‖

+ (1− ταn)‖xn − xn−1‖
= (1− (τ − γl)αn)‖xn − xn−1‖+ |αn − αn−1|M1,

(3.5)

where M1 > 0 is an appropriate constant. Let wn = Arnyn and wn−1 = Arn−1yn−1 again. Then we get

〈y − wn, Awn〉+
1

rn
〈y − wn, wn − yn〉 ≥ 0, ∀y ∈ C (3.6)

and

〈y − wn−1, Awn−1〉+
1

rn−1
〈y − wn−1, wn−1 − yn−1〉 ≥ 0, ∀y ∈ C. (3.7)
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Putting y := wn−1 in (3.6) and y := wn in (3.7), we obtain

〈wn−1 − wn, Awn〉+
1

rn
〈wn−1 − wn, wn − yn〉 ≥ 0, (3.8)

and

〈wn − wn−1, Awn−1〉+
1

rn−1
〈wn − wn−1, wn−1 − yn−1〉 ≥ 0. (3.9)

Adding up (3.8) and (3.9), we deduce

−〈wn − wn−1, Awn −Awn−1〉+ 〈wn−1 − wn,
wn − yn
rn

− wn−1 − yn−1

rn−1
〉 ≥ 0.

Since F is monotone, we get

〈wn−1 − wn,
wn − yn
rn

− wn−1 − yn−1

rn−1
〉 ≥ 0,

and hence
〈wn − wn−1, wn−1 − wn + wn − yn−1 −

rn−1

rn
(wn − yn)〉 ≥ 0. (3.10)

From (3.10) we derive

‖wn − wn−1‖2 ≤ 〈wn − wn−1, wn − yn + yn − yn−1 −
rn−1

rn
(wn − yn)〉

= 〈wn − wn−1, yn − yn−1 +

(
1− rn−1

rn

)
(wn − yn)〉

≤ ‖wn − wn−1‖
[
‖yn − yn−1‖+

1

a
|rn − rn−1|‖wn − yn‖

]
.

This implies that

‖wn − wn−1‖ ≤ ‖yn − yn−1‖+
1

a
|rn − rn−1|‖wn − yn‖. (3.11)

Moreover, from the resolvent identity (2.2) and (3.11) we induce

‖JBrnwn − J
B
rn−1

wn−1‖ = ‖JBrn−1

(
rn−1

rn
wn +

(
1− rn−1

rn

)
JBrnwn

)
− JBrn−1

wn−1‖

≤ ‖rn−1

rn
(wn − wn−1) +

(
1− rn−1

rn

)
(JBrnwn − wn−1)‖

≤ ‖wn − wn−1‖+
|rn − rn−1|

a
‖JBrnwn − wn‖

≤ ‖yn − yn−1‖+ |rn − rn−1|
(
‖wn − yn‖

a
+
‖JBrnwn − wn‖

a

)
.

(3.12)

Substituting (3.5) into (3.12), we derive

‖JBrnwn − J
B
rn−1

wn−1‖ ≤ (1− (τ − γl)αn)‖xn − xn−1‖+ |αn − αn−1|M1 + |rn − rn1 |M2, (3.13)

where M2 > 0 is an appropriate constant.
On the other hand, since zn = TrnJ

B
rnwn and zrn−1 = Trn−1J

B
rnwn−1, we have

〈y − zn, T zn〉 −
1

rn
〈y − zn, (1 + rn)zn − JBrnwn〉 ≤ 0, ∀y ∈ C, (3.14)
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and

〈y − zn−1, T zn−1〉 −
1

rn−1
〈y − zn−1, (1 + rn−1)zn−1 − JBrn−1

wn−1〉 ≤ 0, ∀y ∈ C. (3.15)

Putting y := zn−1 in (3.14) and y := zn in (3.15), we get

〈zn−1 − zn, T zn〉 −
1

rn
〈zn−1 − zn, (1 + rn)zn − JBrnwn〉 ≤ 0, (3.16)

and

〈zn − zn−1, T zn−1〉 −
1

rn−1
〈zn − zn−1, (1 + rn−1)zn−1 − JBrn−1

wn−1〉 ≤ 0. (3.17)

Adding up (3.16) and (3.17), we obtain

〈zn−1 − zn, T zn − Tzn−1〉 − 〈zn−1 − zn,
(1 + rn)zn − JBrnwn

rn
−

(1 + rn−1)zn−1 − JBrn−1
wn−1

rn−1
〉 ≤ 0. (3.18)

Using the fact that T is pseudocontractive, we have by (3.18)

〈zn−1 − zn,
zn − JBrnwn

rn
−
zn−1 − JBrn−1

wn−1

rn−1
〉 ≥ 0,

and hence
〈zn−1 − zn, zn − zn−1 + zn−1 − JBrnwn −

rn
rn−1

(zn−1 − JBrn−1
wn−1)〉 ≥ 0. (3.19)

From (3.19) we deduce

‖zn − zn−1‖2 ≤ 〈zn−1 − zn, JBrn−1
wn−1 − JBrnwn +

(
1− rn

rn−1

)
(zn−1 − JBrn−1

wn−1)〉

≤ ‖zn−1 − zn‖
(
‖JBrn−1

wn−1 − JBrnwn‖+
|rn − rn−1|

a
‖zn−1 − JBrn−1

wn−1‖
)
.

Thus we obtain

‖zn − zn−1‖ ≤ ‖JBrn−1
wn−1 − JBrnwn‖+

|rn − rn−1|
a

‖zn−1 − JBrn−1
wn−1‖. (3.20)

Substituting (3.13) into (3.20) yields

‖zn − zn−1‖ ≤ (1− (τ − γl)αn)‖xn − xn−1‖+ |αn − αn−1|M1 + |rn − rn−1|M2

+
|rn − rn−1|

a
‖zn−1 − JBrn−1

wn−1‖

≤ ‖xn − xn−1‖+ |αn − αn−1|M1 + |rn − rn−1|(M2 +M3),

(3.21)

where M3 > 0 is an appropriate constant. In view of conditions (C1) and (C4), we find from (3.21)

lim sup
n→∞

(‖zn − zn−1‖ − ‖xn − xn−1‖ ≤ 0.

Thus, by Lemma 2.2, we have
lim
n→∞

‖zn − xn‖ = 0. (3.22)

Since xn+1 − xn = (1− βn)(zn − xn), by (3.22) and condition (3), we conclude

lim
n→∞

‖xn+1 − xn‖ = 0.



J. S. Jung, J. Nonlinear Sci. Appl. 9 (2016), 4409–4426 4418

Step 3. We show that limn→∞ ‖yn−wn‖ = 0, where wn = Arnyn. To show this, let p ∈ Fix(T )∩V I(C,A)∩
B−10. Then, since p = Arnp, we deduce

‖wn − p‖2 = ‖Arnyn −Arnp‖2

≤ 〈wn − p, yn − p〉

=
1

2
(‖yn − p‖2 + ‖wn − p‖2 − ‖yn − wn‖2),

and hence
‖wn − p‖2 ≤ ‖yn − p‖2 − ‖yn − wn‖2.

Thus we have
‖TrnJBrnwn − p‖

2 ≤ ‖wn − p‖2 ≤ ‖yn − p‖2 − ‖yn − wn‖2.

This implies

‖yn − wn‖2 ≤ ‖yn − p‖2 − ‖TrnJBrnwn − p‖
2

≤ (‖yn − p‖+ ‖TrnJBrnwn − p‖)(‖yn − p‖ − ‖TrnJ
B
rnwn − p‖)

≤ (‖yn − p‖+ ‖TrnJBrnwn − p‖)‖yn − TrnJ
B
rnwn‖

≤ (‖yn − p‖+ ‖TrnJBrnwn − p‖)(‖yn − xn‖+ ‖xn − TrnJBrnwn‖)

= (‖yn − p‖+ ‖TrnJBrnwn − p‖)
(
‖yn − xn‖+

‖xn − xn+1‖
1− βn

)
.

Hence, by (3.4), condition (C3) and Step 2, we obtain

lim
n→∞

‖yn − wn‖ = 0.

Step 4. We show that limn→∞ ‖JBrnwn − yn‖ = 0. To this end, let p ∈ Fix(T ) ∩ V I(C,A) ∩ B−10. First,
by (3.3), we observe

‖yn − p‖ ≤ (1− (τ − γl)αn)‖xn − p‖+ αn‖γV p− µGp‖
≤ ‖xn − p‖+ αn‖γV p− µGp‖.

(3.23)

Then, since JBrn is firmly nonexpansive (see (2.1)) and JBrnp = p, we derive from (2.3)

‖JBrnwn − p‖
2 ≤ 〈JBrnwn − p, wn − p〉

≤ 1

2
(‖JBrnwn − p‖

2 + ‖wn − p‖2 − ‖(JBrnwn − p)− (wn − p)‖2)

=
1

2
(‖JBrnwn − p‖

2 + ‖yn − p‖2 − ‖JBrnwn − yn + yn − wn‖2)

≤ 1

2
(‖JBrnwn − p‖

2 + ‖wn − p‖2 − ‖JBrnwn − yn‖
2 − ‖yn − wn‖2 + 2‖JBrnwn − yn‖‖yn − wn‖),

and so

‖JBrnwn − p‖
2 ≤ ‖wn − p‖2 − ‖JBrnwn − yn‖

2 − ‖yn − wn‖2 + 2‖JBrnwn − yn‖‖yn − wn‖
≤ ‖wn − p‖2 − ‖JBrnwn − yn‖

2 + 2‖JBrnwn − yn‖‖yn − wn‖
≤ ‖yn − p‖2 − ‖JBrnwn − yn‖

2 + 2‖JBrnwn − yn‖‖yn − wn‖.
(3.24)

Thus, by (3.1), (3.23) and (3.24), we obtain

‖xn+1 − p‖2 ≤ βn‖xn − p‖2 + (1− βn)‖TrnJBrnwn − p‖
2

≤ βn‖xn − p‖2 + (1− βn)‖JBrnwn − p‖
2
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≤ βn‖xn − p‖2 + (1− βn)(‖yn − p‖2 − ‖JBrnwn − yn‖
2 + 2‖JBrnwn − yn‖‖yn − wn‖)

≤ βn‖xn − p‖2 + (1− βn)(‖xn − p‖2 + 2αn‖xn − p‖‖γV p− µGp‖+ α2
n‖γV p− µGp‖2)

− (1− βn)‖JBrnwn − yn‖
2 + 2‖JBrnwn − yn‖‖yn − wn‖

≤ ‖xn − p‖2 + αn(2‖xn − p‖‖γV p− µGp‖+ αn‖γV p− µGp‖2)

− (1− βn)‖JBrnwn − yn‖
2 + 2‖JBrnwn − yn‖‖yn − wn‖.

This implies

(1− βn)‖JBrnwn − yn‖
2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn(2‖xn − p‖‖γV p− µGp‖+ αn‖γV p− µGp‖2)

+ 2‖yn − wn‖‖JBrnwn − yn‖
≤ (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖+ αnM5 + ‖yn − wn‖M6,

where M5 > 0 and M6 > 0 are appropriate constants. Thus, by conditions (C1), (C3), Step 2 and Step 3,
we have

lim
n→∞

‖JBrnwn − yn‖ = 0.

Step 5. We show that
lim sup
n→∞

〈(γV − µG)q, yn − q〉 ≤ 0,

where q ∈ Fix(T )∩V I(C,A)∩B−10 is the unique solution of the variational inequality (3.2). To show this,
we can choose a subsequence {yni} of {yn} such that

lim
i→∞
〈(γV − µG)q, yni − q〉 = lim sup

n→∞
〈(γV − µG)q, yn − q〉.

Since {yni} is bounded, there exists a subsequence {ynij
} of {yni} which converges weakly to some point z.

Without loss of generality, we can assume that yni ⇀ z.
Now, we prove z ∈ Fix(T ) ∩ V I(C,A) ∩ B−10. First, we show that z ∈ Fix(T ). Put zn = TrnJ

B
rnwn

again. Then, by Lemma 2.5, we have

〈y − zn, T zn〉 −
1

rn
〈y − zn, (1 + rn)zn − JBrnwn〉 ≤ 0, ∀y ∈ C. (3.25)

Put wt = tv+ (1− t)z for t ∈ (0, 1] and v ∈ C. Then wt ∈ C, and from (3.25) and pseudocontractivity of T
it follows that

〈zn − wt, Twt〉 ≥ 〈zn − wt, Twt〉+ 〈wt − zn, T zn〉 −
1

rn
〈wt − zn, (1 + rn)zn − JBrnwn〉

= − 〈wt − zn, Twt − Tzn〉 −
1

rn
〈wt − zn, zn − J − rnBwn〉 − 〈wt − zn, zn〉

≥ − ‖wt − zn‖2 −
1

rn
〈wt − zn, zn − JBrnwn〉 − 〈wt − zn, zn〉

= − 〈wt − zn, wt〉 − 〈wt − zn,
zn − JBrnwn

rn
〉.

(3.26)

Since ‖yn − zn‖ ≤ ‖yn − xn‖ + ‖xn − zn‖ → 0 as n → ∞ by (3.4) and (3.22), and ‖JBrnwn − yn‖ → 0 as
n → ∞ by Step 4, it follows that zni ⇀ z and JBrni

wni ⇀ z as i → ∞. So, replacing n by ni and letting

i→∞, we derive from (3.26)
〈z − wt, Twt〉 ≥ 〈z − wt, wt〉

and
−〈v − z, Twt〉 ≥ −〈v − z, wt〉, ∀v ∈ C.
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Letting t→ 0 and using the fact T is continuous, we obtain

− 〈v − z, Tz〉 ≥ −〈v − z, z〉. (3.27)

Let v = Tz in (3.27). Then we have z = Tz, that is, z ∈ Fix(T ).
Next, we prove that z ∈ V I(C,A). In fact, from the definition of Arnyn = wn we have

〈y − wn, Awn〉+ 〈y − wn,
wn − yn
rn

〉 ≥ 0, ∀y ∈ C. (3.28)

Set wt = tv + (1− t)z for all t ∈ (0, 1] and v ∈ C. Then, wt ∈ C, and from (3.28) it follows that

〈wt − wn, Awt〉 ≥ 〈wt − wn, Awt〉 − 〈wt − wn, Awn〉 − 〈wt − wn,
wn − yn
rn

〉

= 〈wt − wn, Awt −Awn〉 − 〈wt − wn,
wn − yn
rn

〉.
(3.29)

By Step 3, we have wn−yn
rn

→ 0 as n→∞, and since yni ⇀ z, wni ⇀ z as i→∞. From monotonicity of A
it also follows that 〈wt − wn, Awt −Awn〉 ≥ 0. Thus, replacing n by ni , from (3.29) we derive

0 ≤ lim
i→∞
〈wt − wni , Awt〉 = 〈wt − z, Fwt〉,

and hence
〈v − z,Awt〉 ≥ 0, ∀v ∈ C.

If t→ 0, the continuity of A yields that

〈v − z,Az〉 ≥ 0, ∀v ∈ C.

This means that z ∈ V I(C,A).
Finally, we prove that z ∈ B−10. To this end, recall un = JBrnwn again. Then, it follows that

wn ∈ (I + rnB)un.

That is, wn−un
rn

∈ Bun. Since B is monotone, we know that for any (u, v) ∈ B,

〈un − u,
wn − un
rn

− v〉 ≥ 0. (3.30)

Since ‖wn − un‖ ≤ ‖wn − yn‖+ ‖yn − un‖ → 0 as n→∞ by Step 3 and Step 4, and yni ⇀ z as i→∞, we
obtain uni ⇀ z as i→∞. By replacing n by ni in (3.30) and letting i→∞, we have

〈z − u,−v〉 ≥ 0.

Since B is maximal monotone, 0 ∈ Bz, that is, z ∈ B−10. Therefore, z ∈ Fix(T ) ∩ V I(C,A) ∩B−10.
Now, since q is the unique solution of the variational inequality (3.2), we conclude

lim sup
n→∞

〈(γV − µG)q, yn − q〉 = lim
i→∞
〈(γV − µG)q, yni − q〉

= 〈(γV − µG)q, z − q〉 ≤ 0.

Step 6. We show that limn→∞ ‖xn − q‖ = 0, where q ∈ Fix(T ) ∩ V I(C,A) ∩ B−10 is the unique solution
of the variational inequality (3.2). Indeed, from (3.1), Lemma 2.1 and Lemma 2.7 we derive

‖yn − q‖2 =‖αn(γV xn − µGq) + (I − αnµG)xn − (I − αnµG)q‖2

≤ ‖(I − αnµG)xn − (I − αnµG)q‖2 + 2αn〈γV xn − µGq, yn − q〉
≤ (1− ταn)2‖xn − q‖2 + 2αnγ〈V xn − V q, yn − q〉+ 2αn〈(γV − µG)q, yn − q〉
≤ (1− ταn)2‖xn − q‖2 + 2αnγl‖xn − q‖‖yn − q‖+ 2αn〈(γV − µG)q, yn − q〉
≤ (1− ταn)2‖xn − q‖2 + 2αnγl‖xn − q‖(‖yn − xn‖+ ‖xn − q‖)

+ 2αn〈(γV − µG)q, yn − q〉
= (1− 2(τ − γl)αn)‖xn − q‖2 + α2

nτ
2‖xn − q‖2 + 2αnγl‖xn − q‖‖yn − xn‖

+ 2αn〈(γV − µG)q, yn − q〉.

(3.31)
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Thus, by (3.1) and (3.31), we have

‖xn+1 − q‖2 ≤ βn‖xn − q‖2 + (1− βn)‖TrnJBrnArnyn − q‖
2

≤ βn‖xn − q‖2 + (1− βn)‖yn − q‖2

≤ βn‖xn − q‖2 + (1− βn)(1− 2(τ − γl)αn)‖xn − q‖2 + (1− βn)α2
nτ

2M7

+ 2(1− βn)αnγl‖yn − xn‖M8 + 2(1− βn)αn〈(γV − µG)q, yn − q〉
= (1− 2αn(1− βn)(τ − γl))‖xn − q‖2

+ 2αn(1− βn)(τ − γl)
( 1

2αnτ
2M7 + ‖yn − xn‖M8 + 〈(γV − µG)q, yn − q〉

τ − γl

)
= (1− ξn)‖xn − q‖2 + ξnδn,

where M7 > 0 and M8 > 0 are appropriate constants, ξn = 2αn(1− βn)(τ − γl) and

δn =

( 1
2αnτ

2M7 + ‖yn − xn‖M8 + 〈(γV − µG)q, yn − q〉
τ − γl

)
.

From conditions (C1), (C2), (C3), (3.4) and Step 5 it is easy to see that ξn → 0,
∑∞

n=1 ξn = ∞ and
lim supn→∞ δn ≤ 0. Hence, by Lemma 2.3, we obtain

lim
n→∞

‖xn − q‖ = 0.

This completes the proof.

From Theorem 3.2, we deduce immediately the following result.

Corollary 3.3. Suppose that Fix(T ) ∩ V I(C,A) ∩ B−10 6= ∅. Let the sequence {αn}, {βn} ⊂ (0, 1) and
{rn} ⊂ (0,∞) satisfy the conditions (1) – (4) in Theorem 3.2. Let the sequence {xn} be generated iteratively
by {

yn = (1− αn)xn

xn+1 = βnxn + (1− βn)TrnJ
B
rnArnyn, ∀n ≥ 1,

(3.32)

where x1 ∈ C is an arbitrary initial guess. Then {xn} converge strongly to a point q in Fix(T )∩V I(C,A)∩
B−10, which is the minimum-norm element in Fix(T ) ∩ V I(C,A) ∩B−10.

Proof. Take V ≡ 0, l = 0, G ≡ I, µ = 1, and τ = 1 in Theorem 3.2. Then the variational inequality (3.2) is
reduced to the inequality

〈−q, q − p〉 ≥ 0, ∀p ∈ Fix(T ) ∩ V I(C,A) ∩B−10.

This is equivalent to ‖q‖2 ≤ 〈q, p〉 ≤ ‖q‖‖p‖ for all p ∈ Fix(T ) ∩ V I(C,A) ∩ B−10. It turns out that
‖q‖ ≤ ‖p‖ for all p ∈ Fix(T ) ∩ V I(C,A) ∩ B−10. Therefore, q is the minimum-norm element in Fix(T ) ∩
V I(C,A) ∩B−10.

Remark 3.4.

1) It is worth pointing out that our iterative algorithms (3.1) and (3.32) are new ones different from those
in the literature.

2) From Lemma 2.8, we know that Fix(T ) ∩ V I(C,A) ∩B−10 ⊂ Fix(T ) ∩ (A+B)−10. Thus, as results
for finding a common element of the fixed point set of continuous pseudocontractive mappings more
general than nonexpansive mappings and strictly pseudocontractive mappings and the zero point set of
sum of maximal monotone operators and continuous monotone mappings more general than α-inverse
strongly monotone mappings, Theorem 3.2 and Corollary 3.3 extend, improve and unify most of the
results that have been proved for these important classes of nonlinear mappings; see for instance,
[16, 30, 35, 37, 42, 45] and references therein.
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4. Applications

Let H be a real Hilbert space, and let g be a proper lower semicontinuous convex function of H into
(−∞,∞]. Then the subdifferential ∂g of g is defined as follows:

∂g(x) = {z ∈ H|g(x) + 〈z, y − x〉 ≤ g(y), y ∈ H}

for all x ∈ H. From Rockafellar [26], we know that ∂g is maximal monotone. Let C be a closed convex
subset of H, and let iC be the indicator function of C, that is,

iC(x) =

{
0, x ∈ C,
∞, x /∈ C.

(4.1)

Since iC is a proper lower semicontinuous convex function on H, the subdifferential ∂iC of iC is a maximal
monotone operator. It is well-known that if B = ∂iC , then to find a point u in (A+B)−10 is equivalent to
find a point u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C. (4.2)

The following result is proved by Takahashi et al. [35].

Lemma 4.1 ([35]). Let C be a nonempty closed convex subset of a real Hilbert space H, let PC be the metric
projection from H onto C, let ∂iC be the subdifferential of iC , and let Jr be the resolvent of ∂iC for r > 0,
where iC is defined by (4.1) and Jr = (I + r∂iC)−1. Then

u = Jrx⇐⇒ u = PCx, ∀x ∈ H, y ∈ C.

Applying Theorem 3.2, we can obtain a strong convergence theorem for finding a common element of the
set of solutions to the variational inequality (4.2), the set of fixed points of a continuous pseudocontractive
mapping T , and the set ∂i−1

C 0 of zero points of ∂iC .

Theorem 4.2. Suppose that Fix(T ) ∩ V I(C,A) ∩ ∂i−1
C 0 6= ∅. Let {αn}, {βn} ⊂ (0, 1) and {λn} ⊂ (0, 2α)

satisfy the conditions (C1) – (C4) in Theorem 3.2. Let the sequence {xn} be generated iteratively by{
yn = αnγV xn + (1− αnµG)xn,

xn+1 = βnxn + (1− βn)TrnPCArnyn, ∀n ≥ 1,

where x1 ∈ C is an arbitrary initial guess. Then {xn} converge strongly to a point q in Fix(T )∩V I(C,A)∩
∂i−1
C 0, which is the unique solution of the following variational inequality:

〈(γV − µG)q, q − p〉 ≥ 0, ∀p ∈ Fix(T ) ∩ V I(C,A) ∩ ∂i−1
C 0.

Proof. Put B = ∂iC . From Lemma 4.1 , we get JBrn = PC for all rn. Hence the desired result follows from
Theorem 3.2.

As in [34, 35], we consider the problem for finding a common element of the set of solutions of a mathe-
matical model related to equilibrium problems and the set of fixed points of a continuous pseudocontractive
mapping in a Hilbert space.

Let C be a nonempty closed convex subset of a Hilbert space H, and let us assume that a bifunction
Θ : C × C → R satisfies the following conditions:

(A1) Θ(x, x) = 0 for all x ∈ C;

(A2) Θ is monotone, that is, Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,
lim
t↓0

Θ(tz + (1− t)x, y) ≤ Θ(x, y);
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(A4) for each x ∈ C, y 7→ Θ(x, y) is convex and lower semicontinuous.

Then the mathematical model related to the equilibrium problem (with respect to C) is to find x̂ ∈ C such
that

Θ(x̂, y) ≥ 0

for all y ∈ C. The set of such solutions x̂ is denoted by EP (Θ). The following lemma was given in [2, 11].

Lemma 4.3 ([2, 11]). Let C be a nonempty closed convex subset of H, and let Θ be a bifunction of C × C
into R satisfying (A1)–(A4). Then, for any r > 0 and x ∈ H, there exists z ∈ C such that

Θ(z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Moreover, if we define Kr : H → C as follows:

Krx =

{
z ∈ C : Θ(z, y) +

1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
for all x ∈ H, then, the following hold:

(1) Kr is single-valued;

(2) Kr is firmly nonexpansive, that is, for any x, y ∈ H,

‖Krx−Kry‖2 ≤ 〈Krx−Kry, x− y〉;

(3) Fix(Kr) = EP (Θ);

(4) EP (Θ) is closed and convex.

We call such Kr the resolvent of Θ for r > 0. The following lemma was given in Takahashi et al. [35].

Lemma 4.4 ([35]). Let C be a nonempty closed convex subset of a real Hilbert space H, and let Θ be a
bifunction of C × C into R satisfying (A1)–(A4). Let AΘ be a multivalued mapping of H into itself define
by

AΘx =

{
{z ∈ H : Θ(x, y) ≥ 〈y − x, z〉}, x ∈ C,
∅, x /∈ C.

Then, EP (Θ) = A−1
Θ 0 and AΘ is a maximal monotone operator with dom(AΘ) ⊂ C. Moreover, for any

x ∈ H and r > 0, the resolvent KAΘ
r of Θ coincides with the resolvent of AΘ; that is,

KAΘ
r x = (I + rAΘ)−1x.

Applying Lemma 4.4 and Theorem 3.2, we can obtain the following results.

Theorem 4.5. Let Θ be a bifunction of C×C into R satisfying (A1)–(A4). Let AΘ be a maximal monotone
operator with dom(AΘ) ⊂ C defined as in Lemma 4.4, and let KAΘ

r be the resolvent of Θ for r > 0. Suppose
that Fix(T ) ∩ V I(C,A) ∩A−1

Θ 0 6= ∅. Let {αn}, {βn} ⊂ (0, 1) and {rn} ⊂ (0,∞) satisfy the conditions (C1)
– (C4) in Theorem 3.2. Let {xn} be generated iteratively by{

yn = αnγV xn + (1− αnµG)xn,

xn+1 = βnxn + (1− βn)TrnK
AΘ
rn Arnyn, ∀n ≥ 1,

where x1 ∈ C is an arbitrary initial guess. Then the sequence {xn} converge strongly to a point q in
Fix(T ) ∩ V I(C,A) ∩A−1

Θ 0, which is the unique solution of the following variational inequality:

〈(γV − µG)q, q − p〉 ≥ 0, ∀p ∈ Fix(T ) ∩ V I(C,A) ∩A−1
Θ 0.



J. S. Jung, J. Nonlinear Sci. Appl. 9 (2016), 4409–4426 4424

Theorem 4.6. Let Θ be a bifunction of C×C into R satisfying (A1)–(A4). Let AΘ be a maximal monotone
operator with dom(AΘ) ⊂ C defined as in Lemma 4.4, and let KAΘ

r be the resolvent of Θ for r > 0. Suppose
that Fix(T ) ∩EP (Θ) 6= ∅. Let {αn}, {βn} ⊂ (0, 1) and {rn} ⊂ (0,∞) satisfy the conditions (C1) – (C4) in
Theorem 3.2. Let the sequence {xn} be generated iteratively by{

yn = αnγV xn + (1− αnµG)xn,

xn+1 = βnxn + (1− βn)TrnK
AΘ
rn yn, ∀n ≥ 1,

where x1 ∈ C is an arbitrary initial guess. Then {xn} converge strongly to a point q in Fix(T ) ∩ EP (Θ),
which is the unique solution of the following variational inequality:

〈(γV − µG)q, q − p〉 ≥ 0, ∀p ∈ Fix(T ) ∩ EP (Θ).

Proof. Take A ≡ 0 in Theorem 4.2. Then Arn in Lemma 2.4 is the identity mapping. From Lemma 4.4 we
also know that JAΘ

rn = KAΘ
rn for all n ≥ 1. Hence, the desired result follows from Theorem 4.2.

Remark 4.7.

1) As in Corollary 3.3, if we take V ≡ 0, l = 0, G ≡ I, µ = 1, and τ = 1 in Theorems 4.2, 4.5 and 4.6, then
we can obtain the minimum-norm element in Fix(T ) ∩ V I(C,A) ∩ ∂i−1

C 0, Fix(T ) ∩ V I(C,A) ∩A−1
Θ 0

and Fix(T ) ∩ EP (Θ), respectively.

2) From Lemma 2.8 it follows that Fix(T ) ∩ V I(C,A) ∩ ∂i−1
C 0 ⊂ Fix(T ) ∩ (A + ∂iC)−10 = Fix(T ) ∩

V I(C,A) and Fix(T ) ∩ V I(C,A) ∩ A−1
Θ 0 ⊂ Fix(T ) ∩ (A + AΘ)−10. So, Theorem 4.2, Theorem

4.5, and Theorem 4.6 also improve and unify the corresponding results for nonexpansive mappings,
strictly pseudocontarctive mappings, Lipschitzian pseudocontractive mappings, and α-inverse strongly
monotone mappings; see, for instance, [16, 30, 35, 37, 42, 45], and the references therein.

3) For a certain iterative algorithm for finding a common element of the set (A + B)−10 of zero points
of A + B for an α-inverse-strongly monotone mapping A on H and a set-valued maximal monotone
operator B on H, the solution set of the mixed equilibrium problem and fixed point set for an infinite
family of nonexpansive mappings, we can refer to [41]. For a certain hybrid projection method for
finding a common element of the set of zeros of a finite family maximal monotone operators and the
set of common solutions of a system of generalized equilibrium problems in a certain Banach space,
see [29].
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