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Abstract

In this paper, we study Sturm-Liouville boundary value problems for second order difference equations on a
half line. By using the discrete upper and lower solutions, the Schauder fixed point theorem, and the degree
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1. Introduction

In this paper, we study Sturm-Liouville boundary value problems for second order difference equations
on an infinite interval

— N2z 1 = f(k,zp, ONxp—q), keN,
{ zp—1 = f(k, xp, Azp_y) (11)

rg — alxg = B, Nxo = C,
where Az = w31 —  is the forward difference operator. N = {1,2,--- ,00} and f : N x R? — R is

continuous. a > 0, B, C € R, Az = klim Axy. Recall that the map f : N x R?> — R is continuous
— 00

if it maps continuously the topological space N x R? into R. The topology on N is the discrete topology.
By a solution x of ([L.1)), we mean a sequence x = (g, 21, ,Zn, -+ ) which satisfy (1.1). We will provide
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sufficient conditions on f so that the discrete boundary value problem have one solution, and three
solutions. An important aspect of our existence theory is that the solutions may be unbounded.

Recently, the existence of linear and nonlinear discrete boundary value problems has been studied by
many authors. We refer here to some works using the upper and lower solutions method, e.g., see [3|
10, 11 13 14, 15, 18, 20, 21, 24, 25, 28, 29] for finite interval problems, and [I, 5l [7, 27] for infinite
interval problems. Discrete infinite interval problems have also been studied by several other methods in
12, 4 [©, 8, @, [12], 16, 17, 19, 2], 22, 26].

In [5], R. P. Agarwal and D. O’Regan studied the existence of nonnegative solutions to the boundary

value problem
APz(i— 1) + f(i,2(i)) =0,
z(0) =0, lim (i) = 0.
71— 00

They employed upper and lower solutions on finite intervals, and a diagnolization process, to prove the
existence of at least one nonnegative (bounded) solution. Later, similar methods were used for the existence
of solutions to such discrete BVP and on the time scales, see [11 [7].

In [25], Y. Tian, C. C. Tisdell and Weigao Ge established the existence of three (bounded) solutions of
the discrete boundary value problem

{ A*z(n —1) — pAz(n —1) — gz(n — 1) + f(n,2(n), Az(n)) =0,
z(0) —yz(l) = x0,  x(n) bounded on [0, 0).

For this, they assumed the existence of two pairs of upper and lower solutions on finite intervals, and used
the sequential arguments and the degree theory.

As far as we know the existence of unbounded solutions for the discrete boundary value problems has not
been studied. The only known work where unbounded positive solutions of second order nonlinear neutral
delay difference equation have been established is a recent contribution of Zeqing Liu et al. [17].

Since the infinite interval is noncompact, the discussion here is more complicated compared to finite
interval problems. In Section 2, we shall begin with the whole discrete infinite interval and introduce a new
Banach space. Here discrete Areza-Ascoli lemma, is also established, which is necessary to prove that the
summation mapping is compact. In Section 3, we will show that in the presence of a pair of upper and lower
solutions the problem has a solution. For this we shall apply the Schauder fixed point theorem. Here
to show how easily our result can be applied in practice two examples are also illustrated. In Section 4, we
shall employ the topological degree theory to show that the problem , in the presence of two pairs of
upper and lower solutions, has three solutions.

2. Definitions and Green’s function

Let Ny be the set of all nonnegative integers and S be the space of sequences, i.e., by x € S, we means
x = {x }ken,- For x,y € S, we write z < y if x; <y for all £ € Ng. We consider

Soo = {av €S: lim Axp exists}
k—00

endowed with the norm

]l = max{|[z[l1, [|Az]eo},
where Az = {Azk}ren,, |21 = sup %, |zl = sup |zk|. Because lim Auwzy exists, {Axg}ren, 1S
keNg keNg k—oo

bounded. If we denote by M = sup |Axg|, then it follows that
keNg
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|2k |
a1 B A
11k 14k Z B
k—
<
1 + k 2% A
x k
< dml ko
1+k 1+Ek
Hence, sup |1 jf,i < oo. It is clear that (Se, || - ||) is a normed linear space. We claim that it is in fact a
keNg
Banach space.
Lemma 2.1. (S, || - ||) s a Banach space.

Proof We shall prove its completeness. Suppose {x(”)}fbozl C Sso is a Cauchy sequence. Then {y(") : ylgn)

(
1+k’ k € No} and {z : ( ) = Aa:;n), k € No} are bounded for each n € N. Now since for any k € Ny,

{yk }neN and {zk }neN are Cauchy sequences in R, there exist two sequences y* and z* in S such that
5™ — 4" le = 0, and ||z — 2*||c = 0, asn — oco.
Clearly, y* and z* are bounded. Let x} = (1 + k)y; and o* = («],25,--- ,x},---), then
2™ — 2*||; = 0, asn — .

But this means that for each k € Ng,
(n) *

nll_)rgo x, = xy.
Further,
Axp, = a3y —xf, = nlgn;o .CE](H}l — HILH;O at,(g " = Jingo(x,ﬁ)l - x,(cn))
_ (n) _ .
nh_)II;OAl‘k =z, k=1,2,...
Hence, ||z — z*|| = 0(n — oo). The proof is completed. O

(o]
Lemma 2.2. Ife = {ex}ren satisfy > ex < 0o, then the linear discrete BVP
k=1

— A%z =er, keN,
Th—1 = €} (2.1)
xo — alxg = B, Nxo = C,
has a unique solution in Ss. Further, this solution can be expressed as
vy =aC+ B+kC+> G(k,i)e;, keN,
i=1
where
a-+1, 1 <k,
Gk, i) = | (2.2)
a+k, 1> k.

We define T': Soo — S by

(Tx)p = aC + B+kC+ > G(k,i)f(i, 2, Ar; 1), k€N
=1

Clearly, x is a solution of problem (1.1 if and only if x is a fixed point of the mapping T'.
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Definition 2.3. A function « € S is called a lower solution of (|1.1)) provided

_A2 — < k;7 ) ’
{ Qg1 <f( o, ) (2.3)

ag — alog < B, Nog < C

for all £k € N and u < Aayg_1. If all inequalities are strict, it will be called a strict lower solution.
Definition 2.4. A function § € S is called an upper solution of (1.1 provided

- AQﬁk*l P f(kaﬁk?v)a
=

B, Afsx>C (24)

for all k € N and v > ABi_1. If all inequalities are strict, it will be called a strict upper solution.

Definition 2.5. Let o, [ be the lower and upper solutions for the problem (1.1) satisfying @ < 5. We
say that f satisfies a discrete Bernstein Nagumo condition with respect to « and § if there exist positive
functions ¢ € C(N) and h € C|0, +00) such that

|f (R zr, y)| < Y (R)A(Jyl)

for all £k € N and oy < x < B with h nondecreasing, and

fe’e) . s
;w(z) < 00, / %ds = 00.
We will use the Schauder fixed point theorem to obtain a fixed point of the mapping 7. To show the

mapping is compact, the following generalized discrete Areza-Ascoli lemma will be used.

Lemma 2.6 ([4]). M C Boxc ={z €S klim xy ewists.} is relatively compact if it is uniformly bounded and
—00

uniformly convergent at infinity.

Lemma 2.7. M C Sy is relatively compact if it is uniformly bounded and uniformly convergent at infinity,
that is, for each € > 0, there erists K = K(e) € N such that

Th__ lim —~_

<e, and |Axp—ADrl<e, k>K

forallxz € M.

Proof. M C Sy is relatively compact if every sequence of M has a convergent subsequence. First, we will

show that klim ﬁ—’“k exists for any = {z} }ren, € Soo. Since klim Az, exists, we can denote its limit by c.
— 00 — 00

Now Ve > 0, there exists a K = K(¢,x) > 0 such that
|Axp —c| <€, Vk>K,
which implies that
trk1+(kE—K—-1)c—(k—K—-1)e<azp<zgi1+(k—K—-1)c+ (k— K —1)e,

and hence either {zj}ren, is bounded or zj tends to infinity as & — oo. For the later case, by using the
Stolz rule (the discrete L’Hospital rule), we have

lim —*_ — lim Axp, exists.
k—oo 1+ k k—o00
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Now, consider the sequence {z(™},en C Sa. Since

(n)
n n z
{y“: y,i)zljk,keNo} ENcBoo

and
{z(”) : z,gn) = A:c;n), ke No} C Beo,

n€eNg
the conditions of Lemma guarantee that they both have convergent subsequences. Without loss of
generality, we write these convergent subsequences as y(™ and z(™ satisfying

lim y™ =y*, and  lim 2™ = 2*.
n—o0 n—oo

Now following the discussion as in Lemma we can show that
||:L“(") —z*|| -0, n— oo,

where z* = {2} }ren,, 5 = (1 + k)y; and Az} = 2. O

3. The existence of a solution
Theorem 3.1. Assume that

(Hy) The discrete boundary value problem (1.1) has one pair of upper and lower solution « and  in S
satisfying a < S.

(Hy) f € C(Ng x R%,R) satisfies the Bernstein-Nagumo condition with respect to o and f3.

(Hs) There exists v > 1 such that sup(1 + k)7 (k) < oo.
keN

Then the discrete boundary value problem (L.1) has at least one solution x satisfying

where R > 0 is a constant (independent of the solution x).

Proof. We choose n, R > C' such that

{ Br — ap Bo — g }
7 2 max q sup , sSup ,
keN K keN K

R B : o, — (2+i)7 = (1+i)
/,7 s> M (2‘;5 E AL EEYE +N; Q+ipt1+i)y |’

where C' is the nonhomgeneous boundary value, and M = sup(1l + k)Y (k), N = max{||«|, |5}
keN
Define the auxiliary functions Fy, Fy : N x R? — R as follows

f(k76kay) - Wﬂ%’ T > /Bka
F()(k',l',y): f(kvxay)7 akgxgﬁkv
f(k’akvy) +mv T < Qp,

and
Fo(k,x,R), y> R,
Fl(kvxvy): FO(k,JT,?/), _R<y<R7
Fy(k,z,—R), y<-—R.
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Clearly, F} is a continuous function on N x R? and satisfies

2 for all (k,z,y) € N x R,

Consider the modified boundary value problem

— N’z = By (k,og, Axg—1), k€N, (3.1)

rg — alxg = B, Nxs = C. '
To complete the proof, it suffices to show that (3.1]) has at least one solution x = {xj }ren, such that

o < < B, and |A$k‘ < R, k € Np.
We divided the proof into the followmg three steps.
Step 1. Problem (3.1) has a solution.
To show that the problem (3.1)) has a solution, we define the operator T} : Soc — S as
(T12)r = aC + B+ kC + > _ G(k,i)F (i,:, Azi_1), k€ No. (3.2)

i=1
From Lemma we can see that the fixed points of T} are the solutions of . We will prove that
T1 : S = So is completely continuous and has at least one fixed point from the Schauder fixed point
theorem.
For any = € S, because

Z G(k, i)Fl(i, i, Ami 1
=1

= 1
a+k2;< Z,2)<c>o,
for any k € Ng, from the definition of 77, we have

lim A(Tyz), = lim (T12)k1 — (Th2)k)
k—00 k—o00

=C+ ) lim (Glk+1,0) = G(k,0)) Fy (i, 23, Axis)
=1

=C.
Thus, 7155 C Sxc.

Next, for any convergent sequence 2™ — 2 as m — 00 in Ss, we have

(Tiz™),  (Thx)

||T1x(m) —Tiz||y = sup

keN, | 1+ E 1+k
© G | o (m
\Ics;g)o > 1(+ k;) ‘Fl(l,:cg %Aml( 1)) Fy (i, 2, Ami 1)‘

< max{a, 1} Z ‘Fl (i7 xl(m)7 AZL‘ETl)) —F (i, T, A.Z‘ifl)‘

and
ATz ™) — A(Tyz)

= sup Z(G(k+1,z) G(k,1)) (Fl(z,x( ),Aazgml)) Fy (i, 2, Az 1))‘
keNg i=1
‘Fl )7AxET1)) _Fl(zath:E’Lfl)‘
1=1
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Therefore, T} is continuous. Finally, we will show that T} is compact, that is, 77 maps bounded subsets of
S~ into relatively compact sets. For this, let B be any bounded subset of Sy, then there exists a constant
r > 0 such that ||z|| <r, Vo € B.

For any = € B, we have

(Tyw)y,
1+%

aC + B+ Ck
1+k

|T1x||y = sup
keNy

o

Fy (i, @i, Axiy)

< max{|aC + B|,|C|} + max{a, 1} Z <h(7“)w(i) + ;2)

i=1
< 400

and
[A(T17) |00 = sup |A(Tiz)y]
keNg

= sup

C+Z k—l—l Z G(k,i))Fl(i,x,;,Axi_l)
keNp

<o+ Z |Fy (i, 2, Dzii)]

i=1
<icl+ i:; (hrrw+ ).

Thus, T} B is uniformly bounded. From Lemma [2.7] if T3 B is uniformly convergent at infinity, then 71 B is
relatively compact. In fact,

(Liz)e . (L)

aC + B+ Ck > (G(k,i)
1+k_0+2<1+k

- 1> Fy (i, 24, Awi_y)

=1

(i(f_,]? _ 1| (h(rw(i) * z12>

~

1+k

=1

— 0, as k — +o0

and
oo

= (G(k+1,i) = G(k, i) Fy (i, 25, Awi 1)

’A(Tlx)k - hm A(Tyx)g,
i=1

<3160+ 1)tk 0] (1w + 3 )
=1

— 0, as k — 4o0.

Hence, we find that T B is relatively compact. Therefore, T : Soo — S is completely continuous.
Now choose N1 > max {Lq, |||, |||}, where

L = max{|aC + B|,|C|} + max{a, 1} Z <w(z)h(R) + 22> (3.3)

=1
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and set Q1 = {z € S, |lz|| < N1}. Then for any z € y, it is easy to see that | Tx| < Nj, and thus
T1Q C Q4. The Schiuder fixed point theorem now guarantees that the operator T} has at least one fixed
point in S, which is a solution of BVP (3.1).
Step 2: Every solution x of the problem satisfies a < = < 6.
We assume that the right hand inequality does not hold. Then z — 8 has a positive maximum in Ny.
The positive maximum does not occur at infinity because kli_>m A(zp — Br) < 0. If the positive maximum
o

occurs at 0, then A(zg — fp) < 0. However, we have
ro — alAzg — (Bo — al\Bo) = (w0 — Bo) — al(xzo — o) >0

which is a contradiction to the left boundary condition.
If the positive maximum occurs at kg € N, then

Ly — Bko > 07 A(xko—l - Bko—l) 2 07 (xk‘o Bk‘o)

and
A2("1:‘14:0—1 - 5k0—1) < 0
However, it follows from and . that

_A Tpo—1 = Fl (k()axk’oa Axko—l)

Tk — Bk
= £ (ko By, Ay 1) — e
(o, Bror S%ha-1) = g -5
< =21 — Tho — Py < —A?By1,

k3(1 + |2k, — Brol)

which is a contradiction. Thus, x; < B hold for all £ € Ng. The proof for x > « is similar.
Step 3: If the solution x of the problem satisfies a < x < 3, then |Axg| < R, Vk € Np.

We claim that |Axg| > n does not hold for all k& € Ny. Otherwise, without loss of generality, we can
suppose that Axg > n for all £ € Ny, but then it follows that

k—
ﬁk—a0>mk_‘r0_12Ax.> >M Vk € N
k.~ k ke nE T ’

which is a contraction. Thus there must exist a k; € Ny such that [Axg, | < .
If |Axk| < R does not hold for all £ € N, then there exists k2 € Ny such that |Azy,| > R. Proceeding
with this argument, we may suppose ko > ki and

0<A$k1<n<R<A$k2, néAwkgR, k1 <k < ks.

Let I ={i: ki <i<ko Awg, > Az, 1} and I = (k1, k2] N No \ I. Then, we have

/R s Z Ax; Z Z Azj_q
S s < / / s / s
n h(S) i=ky+1 Nxi_q Axi_q Axj
1 Ax; AI] 1
< T sds
B ’LGZI h(AJIi_l) /sz 1 Z h Al'] 1 »/Aa:]
B f’: (Axi + Azimy) N3xiq
N i=k1+1 2 h(sz_l)
ko ko ko—1
< ~ - - 7 < =
< 2 2 <3| 2 (1+¢)v+;(1+i)7
=K1

i=k1+1 i=k1+1
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< % < Tho+1 Lo N Liy+1 _ Ty >
- 2 (2+k2)7 (1 —l—kz)'y (2-{—]{11)7 (1-i—k1)'Y
o0 . .
Thel N~ (248)7 — (1 +4)7
+M - -
S Sk 2 @ T )
By (2414)7 — (1 +4)7
< M ——— —inf ———+ N
= <§‘é§ 1+ k) ken (L+ k) k) * Z 2+ i) (1 +i)

which is a contradiction. Hence, Az < R, k € Ny. Here we note that the series

i (24+4)7 —( 1+z)
=

(249711 +4)
is convergent. In a similarly way, we can also show that Az, > —R for all £ € Ny. Hence there exists a
R > 0, independent of every solution x of (|1.1] -, such that [|Az||s < R. O]

Example 1. Consider the Sturm-Liouville boundary value problem involving the second order difference
equation

2 —Axzp_1)(2
B2 Snn@htm)
(1+k) (3.4)
g — Axg =1, Azso = 1.

AQ:Ek_l +

Clearly, BVP (3.4)) is a particular case of (1.1]) with

(3/2 —y)(2k + )

f(kaxay):_ (1—|—k)4 )

and a =1, B=1,C = 1. Consider the upper and lower solutions of (3.4) defined by
ap = —k, B =2k + 3, k € Np.

Here the function f is continuous and we will show that it satisfies the Bernstein Nagumo condition with
respect to o and S. In fact, when k € Ny, —k <z < 2k + 3, y € R, it follows that

(3/2 — y)(2k + a)
(1+k)*
1 < 4k + 3

< - -
1+ 5)2 oo, (1 + K2

(lyl +3/2).

()] = \

) 1yl +3/2)

3
<
(14 k)2

Set (k) = ﬁ, h(s) =3(s+3/2) and 1 < v < 2, then

> 1
Z(1+k)2<oo

k=1

1
sup(l +k)'——= =sup ————5—
R o T e

* s 1 [ s
P gs=- [ —2 s =
/ h(s)" 3/ s+3/270 7

Hence, all conditions of Theorem are satisfied, and thus the problem (3.4) has at least one nontrival
solution x satisfying —k < xp < 2k + 3 for all £ € N.

<1< oo,
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Example 2. Consider the Sturm-Liouville boundary value problem involving the second order difference
equation

A 1
Az q — Tr—1+ (smxk—kazk—kx/\azk) =0, keN,

1+ k) ) (3.5)
Tro — 3AZEO = 0, Al‘oo = 5
Clearly, BVP (3.5) is a particular case of (|1.1)) with
1
f(k7m7y):_(1gl_:_k)4 (Slnl’+l‘2—|— ‘:L'|)’

anda=3, B=0,C = % Consider the upper and lower solutions of (3.5 defined by
ap=—k—4, B =k+4, k € Ng.

Here the function f is continuous and we will show that it satisfies the Bernstein Nagumo condition with
respect to o and B. In fact, when k € Ng, —k —4 <z < k+ 4, y € R, it follows that

Y+ .
|f(t,xp,y >‘_‘(1+k) (sm:r;—i—x2+ \x!)‘
1 (k +4)? VEk+4 )
AV + s +1)
e (1 2 (g 2 s e V)
19
<m(‘y|+1)-

Set (k) = Hk)z, h(s) =19(s+1) and 1 < v < 2, then

2

i —€—1<oo

k:l

sup(1 + k)7 <1< o0,

1 1
S P —
keN (L+k)?  pen (L+k)2
< s Y

——ds = — ——ds = 0.

/ )T 19) s170 T
Hence, Theorem guarantees that problem (3.5) has at least one nontrival solution x satisfying

—k—4<x, <k+4forall ke N.

4. The multiplicity results

Here we shall show that in the presence of two pairs of upper and lower solutions the problem (|1.1)) has
at least three solutions.

Theorem 4.1. Suppose that the following condition holds.

(Hy) The discrete boundary value problem (L.1)) has two pairs of upper and lower solutions 59), a9, j =1,2
in Soo with o?, B strict and

oD <a® <50 o<V <O 0@ g0 pen,

Suppose further that conditions (Hy) and (Hs) hold with o, § replaced by oY), B3 respectively. Then the
problem 1) has at least three solutions V), £ and 3 satisfying

of) <o) <80 =12, o 24" and 2’ #aff, keN.
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Proof. Define the truncated function F5, the same as F; in Theorem with «, 8 replaced by a(*) and 2
respectively. Consider the modified difference equation

Aka 1= Fy (k) Thy ANTp_ 1) keN, (4 1)
rg — alxg = B, Az = C. '
To show that the problem (4.1)) has at least three solutions, we define a mapping 75 : Seo — Seo
(0.)
(Tox)g = aC + B+ kC + Y G(k,i)Fy(i, i, Azi1), k€ N, (4.2)

i=1

As in Theorem [3.1], 75 is completely continuous. By using the degree theory, we will show that 75 has at
least three fixed pomts which coincide with the solutions of (| .

Choose Ny > max{Lo, |[|aM],[|8@|}, where Ly has the same expression as L; in (3.3) except that R
given by a, B is now defined by o), 32, Set Qy = {x € S4, ||| < N2}. Then for any z € Qo, it follows
that || Tz|| < N2. Thus, ToQs C Q, and so we have deg(I — Ty, 9,0) = 1.

Set

Qa(z) = {:IZ € Qo, a1 > a,(c), ke NQ},

Y = {x €y, 2, < BV, ke No}
Because o2 £ 5(1)’ a® <a® < 5(2) and a®) < ,8(1) < ﬂ(2), we have
Qe # 0, Q7 £0, 2\ Qe UQBY £0, QN7 =0,
Noticing that (?, 81 are strict lower and upper solutions, there is no solution on 9 e UANSY . Therefore

Aeg(1 — T, 9,0) =deg(I — T, 9\ Ly U 0)
+ deg([ — T‘27 QQ(Q)’ ) + deg<]’ TQ, Qﬁ(l) )
To show that
deg(I — Ty, Qa(z),O) =1,

we define another mapping 73 : Qs — Q9 by

(Tsa)p = aC + B+ kC + Y G(k,i)F3(i, i, Azi_1), k€N
=1

where the function Fj is similar to F» except a() is replaced by o(?). Similar to the proof of Theorem
we find that x is a fixed point of T3 only if 04/,(C ) <z < ( ) k € Ny. So deg(I —T5,Q\ Q,2,0) = 0. Thus
from the Schiuder fixed point theorem and T30y C o, We have deg(I — T5,€9,0) = 1. Furthermore,
deg(I TQ, Qa<2 O) :deg(I — Tg, Qa(g) s O)
:deg(I — T3, QQ, 0) + deg([ — Tg, QQ \ Qa(Q),O) =1.

Similarly, we have deg(I — TQ,QfB(l) 0) = 1. And then
deg([ - TQ, QQ \ Qa(z) U Q'B(l),O) =—1

Using the properties of the degree, we conclude that T has at least three fixed points z(!) € Q,@),
@ ¢ 08" and 2® ¢ Q2 \ Q2 U QY which are the claimed three different solutions of the BVP
(@1). Similarly, we can show that o) < 2 < 8®) and |Az®| s < R. Thus they are the solutions of
BVP (1.1)). O
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