

Journal of Nonlinear Science and Applications

Print: ISSN 2008-1898 Online: ISSN 2008-1901

On the Appell type λ -Changhee polynomials

Dongkyu Lim^{a,*}, Feng Qi^{b,c}

Communicated by C. Park

Abstract

In the paper, by virtue of the p-adic fermionic integral on \mathbb{Z}_p , the authors consider a λ -analogue of the Changhee polynomials and present some properties and identities of these polynomials. ©2016 All rights reserved.

Keywords: Identity, property, Appell type λ -Changhee polynomial, Changhee polynomial, degenerate Changhee polynomial.

2010 MSC: 05A30, 05A40, 11B68, 11S80.

1. Introduction

Let p be a fixed odd prime number and let \mathbb{Z}_p , \mathbb{Q}_p , and \mathbb{C}_p denote respectively the ring of p-adic integers, the field of p-adic rational numbers, and the completion of the algebraic closure of \mathbb{Q}_p . The p-adic norm is normally defined as $|p| = \frac{1}{p}$. Recently, degenerate Changhee polynomials $Ch_{n,\lambda}(x)$ are defined [6, p. 296] by

$$\frac{2\lambda}{2\lambda + \ln(1+\lambda t)} \left[1 + \frac{\ln(1+\lambda t)}{\lambda} \right]^x = \sum_{n=0}^{\infty} \operatorname{Ch}_{n,\lambda}(x) \frac{t^n}{n!}.$$

When x = 0, we call $\operatorname{Ch}_{n,\lambda} = \operatorname{Ch}_{n,\lambda}(0)$ the degenerate Changhee numbers. It is common knowledge that the Euler polynomials $E_n(x)$ are given by

$$\frac{2}{e^t + 1}e^{xt} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}$$

Email addresses: dgrim84@gmail.com (Dongkyu Lim), qifeng618@gmail.com, qifeng618@hotmail.com (Feng Qi)

^aSchool of Mathematical Sciences, Nankai University, Tianjin Ciy, 300071, China.

^bDepartment of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300160, China.

^cInstitute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China.

^{*}Corresponding author

and that, when x = 0, we call $E_n = 2^n E_n(\frac{1}{2})$ the Euler numbers.

Let $C(\mathbb{Z}_p)$ be the space of all continuous functions on \mathbb{Z}_p . For $f \in C(\mathbb{Z}_p)$, the fermionic p-adic integral on \mathbb{Z}_p was defined [3, p. 134] by

$$I_{-1}(f) = \int_{\mathbb{Z}_p} f(x) \, \mathrm{d}\, \mu_{-1}(x) = \lim_{N \to \infty} \sum_{x=0}^{p^N - 1} f(x) \mu_{-1} \big(x + p^N \mathbb{Z}_p \big) = \lim_{N \to \infty} \sum_{x=0}^{p^N - 1} f(x) (-1)^x.$$

From the above definition, we can derive

$$I_{-1}(f_1) + I_{-1}(f) = 2f(0),$$

where $f_1(x) = f(x+1)$. Consequently, it follows from [2, p. 1256], [4, p. 994], and [5, p. 366] that

$$\int_{\mathbb{Z}_p} (1+t)^{x+y} d\mu_{-1}(y) = \sum_{n=0}^{\infty} Ch_n(x) \frac{t^n}{n!},$$

where $Ch_n(x)$ are called the Changhee polynomials.

We note that the Euler polynomials $E_n(x)$ may also be represented by

$$\int_{\mathbb{Z}_p} e^{(x+y)t} d\mu_{-1}(y) = \frac{2}{e^t + 1} e^{xt} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}.$$

The purpose of this paper is to construct a new type of polynomials, the Appell type λ -Changhee polynomials, and to investigate some properties and identities of these polynomials.

2. Appell type λ -Changhee polynomials

Assume that $\lambda, t \in \mathbb{C}_p$ such that

$$\mid \lambda t\mid_p < p^{-1/(p-1)} \quad \text{and} \quad (1+\lambda t)^{x/\lambda} = e^{x\ln(1+\lambda t)/\lambda}.$$

Now we define the Appell type λ -Changhee polynomials $\mathfrak{Ch}_n(x|\lambda)$ by

$$\int_{\mathbb{Z}_p} e^{y \ln(1+\lambda t)/\lambda + xt} \, \mathrm{d}\,\mu_{-1}(y) = \frac{2}{(1+\lambda t)^{1/\lambda} + 1} e^{xt} = \sum_{n=0}^{\infty} \mathfrak{Ch}_n(x|\lambda) \frac{t^n}{n!}.$$
 (2.1)

When x = 0, we call $\mathfrak{Ch}_n(\lambda) = \mathfrak{Ch}_n(0|\lambda)$ the λ -Changhee numbers. Note that $\mathfrak{Ch}_n(1) = \mathrm{Ch}_n$ for $n \geq 0$.

Theorem 2.1. For $n \geq 0$, we have

$$\mathfrak{Ch}_n(x|\lambda) = \sum_{m=0}^n \binom{n}{m} \mathfrak{Ch}_m(\lambda) x^{n-m}.$$

Proof. From (2.1), we can derive

$$\sum_{n=0}^{\infty}\mathfrak{Ch}_n(x|\lambda)\frac{t^n}{n!} = \left[\sum_{n=0}^{\infty}\mathfrak{Ch}_n(\lambda)\right] \left(\sum_{l=0}^{\infty}\frac{x^l}{l!}t^l\right) = \sum_{n=0}^{\infty} \left[\sum_{m=0}^{n}\binom{n}{m}\mathfrak{Ch}_m(\lambda)x^{n-m}\right]\frac{t^n}{n!}.$$

Equating coefficients on the very ends of the above identity arrives at the required result.

Theorem 2.2. For $n \geq 0$, we have

$$\mathfrak{Ch}_n(x|\lambda) = \sum_{k=0}^n \sum_{m=0}^k \binom{n}{k} \lambda^{k-m} E_m(0) S_1(k,m) x^{n-k},$$

where $S_1(n,m)$ is the Stirling number of the first kind.

Proof. From Theorem 2.1, it follows that

$$\frac{\mathrm{d}}{\mathrm{d}x}\mathfrak{Ch}_n(x|\lambda) = \sum_{m=1}^n \binom{n}{m} \mathfrak{Ch}_m(\lambda)(n-m)x^{n-m-1} = n \sum_{m=1}^n \binom{n-1}{m-1} \mathfrak{Ch}_m(\lambda)x^{n-m-1}$$
$$= n \sum_{m=0}^{n-1} \binom{n-1}{m} \mathfrak{Ch}_{n-m-1}(\lambda)x^m = n \mathfrak{Ch}_{n-1}(x|\lambda).$$

This means that $\mathfrak{Ch}_n(x|\lambda)$ is an Appel sequence. Furthermore, we observe that

$$\int_{\mathbb{Z}_p} e^{y \ln(1+\lambda t)/\lambda + xt} \, \mathrm{d} \, \mu_{-1}(y) = \left(\sum_{m=0}^{\infty} \lambda^{-m} \int_{\mathbb{Z}_p} y^m \mu_{-1}(y) \frac{1}{m!} (\ln(1+\lambda t))^m \right) \left(\sum_{l=0}^{\infty} \frac{x^l}{l!} t^l \right) \\
= \left(\sum_{m=0}^{\infty} \lambda^{-m} E_m(0) \sum_{k=m}^{\infty} S_1(k,m) \frac{\lambda^k t^k}{k!} \right) \left(\sum_{l=0}^{\infty} \frac{x^l}{l!} t^l \right) \\
= \left(\sum_{k=0}^{\infty} \left(\sum_{m=0}^{k} \lambda^{k-m} E_m(0) S_1(k,m) \right) \frac{t^k}{k!} \right) \left(\sum_{l=0}^{\infty} \frac{x^l}{l!} t^l \right) \\
= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \sum_{m=0}^{k} \binom{n}{k} \lambda^{k-m} E_m(0) S_1(k,m) x^{n-k} \right) \frac{t^n}{n!}.$$

Combining this with (2.1) yields the required identity.

Theorem 2.3. For $n \geq 0$, we have

$$\sum_{m=0}^{n} \mathfrak{Ch}_{m}(x|\lambda)\lambda^{n-m}S_{2}(n,m) = \sum_{m=0}^{n} \binom{n}{m} B_{m} \left(\frac{x}{\lambda}\right) \lambda^{m} E_{n-m}(0),$$

where $S_2(m,n)$ is the Stirling number of the second kind.

Proof. By replacing t by $\frac{e^{\lambda t}-1}{\lambda}$ in (2.1), we obtain

$$\frac{2}{e^{t}+1}e^{x(e^{\lambda t}-1)/\lambda} = \sum_{m=0}^{\infty} \mathfrak{Ch}_{m}(x|\lambda) \frac{1}{m!} \left(\frac{e^{\lambda t}-1}{\lambda}\right)^{m}$$

$$= \sum_{m=0}^{\infty} \mathfrak{Ch}_{m}(x|\lambda) \frac{1}{\lambda^{m}} \sum_{n=m}^{\infty} S_{2}(n,m) \frac{\lambda^{n}t^{n}}{n!}$$

$$= \sum_{n=0}^{\infty} \left[\sum_{m=0}^{n} \mathfrak{Ch}_{m}(x|\lambda)\lambda^{n-m} S_{2}(n,m)\right] \frac{t^{n}}{n!}.$$
(2.2)

Recall from [1, p. 265] that the Bell polynomials $B_n(x)$ are generated by

$$e^{x(e^t-1)} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}.$$

Therefore, we acquire that

$$\frac{2}{e^t + 1} e^{x(e^{\lambda t} - 1)/\lambda} = \left(\sum_{l=0}^{\infty} \frac{E_l(0)}{l!} t^l\right) \left(\sum_{m=0}^{\infty} B_m \left(\frac{x}{\lambda}\right) \frac{\lambda^m t^m}{m!}\right) = \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \binom{n}{m} B_m \left(\frac{x}{\lambda}\right) \lambda^m E_{n-m}(0)\right) \frac{t^n}{n!}.$$

Comparing this with (2.2) leads to the required identity.

For $r \in \mathbb{N}$, define the higher order λ -Changhee polynomials $\mathfrak{Ch}_n^{(r)}(x)$ by

$$\int \cdots \int_{\mathbb{Z}_p^r} e^{(x_1 + \dots + x_r) \ln(1 + \lambda t)/\lambda + xt} \, \mathrm{d}\,\mu_{-1}(x_1) \cdots \, \mathrm{d}\,\mu_{-1}(x_r) = \left[\frac{2}{(1 + \lambda t)^{1/\lambda} + 1} \right]^r e^{xt} = \sum_{n=0}^{\infty} \mathfrak{Ch}_n^{(r)}(x|\lambda) \frac{t^n}{n!}. \quad (2.3)$$

When x = 0, we call $\mathfrak{Ch}_n^{(r)}(\lambda) = \mathfrak{Ch}_n^{(r)}(0|\lambda)$ the higher order λ -Changhee numbers.

Theorem 2.4. For $n \ge 1$, we have

$$\mathfrak{Ch}_n^{(r)}(x|\lambda) = \sum_{m=0}^n \binom{n}{m} \mathfrak{Ch}_m^{(r)}(\lambda) x^{n-m} \quad and \quad \frac{\mathrm{d}}{\mathrm{d} x} \mathfrak{Ch}_n^{(r)}(x|\lambda) = n \mathfrak{Ch}_{n-1}^{(r)}(x|\lambda).$$

Proof. This follows from the observation that

$$\sum_{n=0}^{\infty}\mathfrak{Ch}_{n}^{(r)}(x|\lambda)\frac{t^{n}}{n!}=\left[\frac{2}{(1+\lambda t)^{1/\lambda}+1}\right]^{r}e^{xt}=\sum_{n=0}^{\infty}\left[\sum_{m=0}^{n}\binom{n}{m}\mathfrak{Ch}_{m}^{(r)}(\lambda)x^{n-m}\right]\frac{t^{n}}{n!}.$$

Recall from [8, p. 12] that the higher order Euler polynomials $E_n^{(r)}(x)$ may be represented by

$$\int \cdots \int_{\mathbb{Z}_p^r} e^{(x_1 + \dots + x_r + x)t} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r) \left(\frac{2}{e^t + 1}\right)^r e^{xt} = \sum_{n=0}^{\infty} E_n^{(r)}(x) \frac{t^n}{n!}.$$

When x = 0, we call $E_n^{(r)}(0)$ the higher order modified Euler numbers.

Theorem 2.5. For $n \geq 0$, we have

$$\mathfrak{Ch}_{n}^{(r)}(x|\lambda) = \sum_{k=0}^{n} \sum_{m=0}^{k} \binom{n}{k} \lambda^{k-m} E_{m}^{(r)}(0) S_{1}(k,m) x^{n-k}.$$

Proof. We observe that

$$\int \cdots \int_{\mathbb{Z}_p^r} e^{(x_1 + \dots + x_r) \ln(1 + \lambda t)/\lambda + xt} \, \mathrm{d} \, \mu_{-1}(x_1) \cdots \mathrm{d} \, \mu_{-1}(x_r)$$

$$= \left(\sum_{m=0}^{\infty} \int \cdots \int_{\mathbb{Z}_p^r} (x_1 + \dots + x_r)^m \, \mathrm{d} \, \mu_{-1}(x_1) \cdots \mathrm{d} \, \mu_{-1}(x_r) \frac{[\ln(1 + \lambda t)]^m}{m! \lambda^m} \right) \sum_{l=0}^{\infty} \frac{x^l}{l!} t^l$$

$$= \left(\sum_{m=0}^{\infty} \lambda^{-m} E_m^{(r)}(0) \sum_{k=m}^{\infty} S_1(k, m) \frac{\lambda^k t^k}{k!} \right) \left(\sum_{l=0}^{\infty} \frac{x^l}{l!} t^l \right)$$

$$= \left(\sum_{k=0}^{\infty} \left(\sum_{m=0}^k \lambda^{k-m} E_m^{(r)}(0) S_1(k, m) \right) \frac{t^k}{k!} \right) \left(\sum_{l=0}^{\infty} \frac{x^l}{l!} t^l \right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^n \sum_{m=0}^k \binom{n}{k} \lambda^{k-m} E_m^{(r)}(0) S_1(k, m) x^{n-k} \right) \frac{t^n}{n!}.$$

Combination of this identity with (2.3) results in the required identity.

Theorem 2.6. For $n \geq 0$, we have

$$\sum_{m=0}^{n} \lambda^{n-m} \mathfrak{Ch}_{m}^{(r)}(x|\lambda) S_{2}(n,m) = \sum_{m=0}^{n} B_{m} \left(\frac{x}{\lambda}\right) \lambda^{m} E_{n-m}^{(r)}(0).$$

Proof. Substituting $\frac{e^{\lambda t}-1}{\lambda}$ for t in (2.3) gives

$$\left(\frac{2}{e^t+1}\right)^r e^{x(e^{\lambda t}-1)/\lambda} = \sum_{m=0}^{\infty} \mathfrak{Ch}_m^{(r)}(x|\lambda) \frac{1}{\lambda^m} \frac{1}{m!} \left(e^{\lambda t}-1\right)^m
= \sum_{m=0}^{\infty} \mathfrak{Ch}_m^{(r)}(x|\lambda) \frac{1}{\lambda^m} \sum_{n=m}^{\infty} S_2(n,m) \frac{\lambda^n t^n}{n!} = \sum_{n=0}^{\infty} \left[\sum_{m=0}^n \lambda^{n-m} \mathfrak{Ch}_m^{(r)}(x|\lambda) S_2(n,m)\right] \frac{t^n}{n!}.$$

On the other hand,

$$\left(\frac{2}{e^t+1}\right)^r e^{x(e^{\lambda t}-1)/\lambda} = \left[\sum_{l=0}^{\infty} E_l^{(r)}(0) \frac{t^l}{l!}\right] \left[\sum_{m=0}^{\infty} B_m\left(\frac{x}{\lambda}\right) \frac{\lambda^m t^m}{m!}\right] = \sum_{n=0}^{\infty} \left[\sum_{m=0}^{n} B_m\left(\frac{x}{\lambda}\right) \lambda^m E_{n-m}^{(r)}(0)\right] \frac{t^n}{n!}.$$

The required result thus follows.

Remark 2.7. This paper is a slightly modified version of the preprint [7].

References

- [1] E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 258–277.2
- [2] D. V. Dolgy, T. Kim, S.-H. Rim, J.-J. Seo, A note on Changhee polynomials and numbers with q-parameter, Int. J. Math. Anal., 8 (2014), 1255–1264.1
- [3] T. Kim, A note on p-adic q-integral on Z_p associated with q-Euler numbers, Adv. Stud. Contemp. Math. (Kyung-shang), 15 (2007), 133−138.1
- [4] D. S. Kim, T. Kim, J.-J. Seo, A note on Changhee numbers and polynomials, Adv. Stud. Theor. Phys., 7 (2013), 993-1003.
- [5] D. S. Kim, T. Kim, J.-J. Seo, S.-H. Lee, Higher order Changhee numbers and polynomials, Adv. Stud. Theor. Phys., 8 (2014), 365–373.1
- [6] H. I. Kwon, T. Kim, J.-J. Seo, A note on degenerate Changhee numbers and polynomials, Proc. Jangjeon Math. Soc., 18 (2015), 295–305.1
- [7] D. Lim, F. Qi, On the Appell type λ -Changhee polynomials, ResearchGate Technical Report, **2015** (2015), 5 pages. 2.7
- [8] H. Ozden, I. N. Cangul, Y. Simsek, Multivariate interpolation Functions of higher-order q-Euler numbers and their applications, Abstr. Appl. Anal., 2008 (2008), 16 pages. 2