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Abstract

We obtain (common) fixed point results for mappings in b-metric and b-rectangular metric spaces, under the
Pata-type conditions. In particular, we show that the results of paper Balasubramanian, [S. Balasubrama-
nian, Math. Sci. (Springer) 8 (2014), no. 3, 65–69] can be obtained as consequences of more general results
and in a much shorter way. We demonstrate these facts by some examples. c©2015 All rights reserved.
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1. Introduction

There are hundreds of articles dealing with generalization of the basic Banach Contraction Principle.
Roughly speaking, they follow two lines of investigation.

The first line is concerned with generalizations of contractive condition. We mention here just the work
of Lj. Ćirić (see, e.g., [8, 9]). One of the interesting recent results of this kind was obtained by V. Pata
in [32]. Several authors have already used Pata-type conditions to obtain new fixed point results (e.g.,
[5, 7, 12, 20, 23, 24]).

The other line of investigation deals with various generalizations of metric spaces and the results that
can be obtained in new frameworks. Among dozens of such generalizations, we mention the following.

b-metric spaces (sometimes called metric-type spaces) were first considered by I. A. Bakhtin in 1989 [4]
and S. Czerwik in 1993 [10]. There is a vast literature concerning this type of spaces, we mention just some
of them [1, 2, 3, 16, 17, 18, 25, 26, 27, 29, 33, 37, 42].
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Rectangular metric spaces (sometimes called just generalized metric spaces, g.m.s.) were introduced by
A. Branciari in 2000 [6]. Some of the papers where the structure of such spaces has been discussed and some
fixed point results have been obtained are [11, 14, 21, 22, 28, 30, 31, 38, 39, 41].

As a combination of rectangular and b-metric spaces, b-rectangular metric spaces were introduced and
treated in [13, 34, 40].

In this paper, we obtain (common) fixed point results for mappings in b-metric and b-rectangular metric
spaces, under the Pata-type conditions. In particular, we show that the results of paper [5] can be obtained
as consequences of more general results and in a much shorter way. We demonstrate these facts by some
examples.

2. Preliminaries

In a recent paper, V. Pata obtained the following interesting refinement of the classical Banach Contrac-
tion Principle.

Theorem 2.1 ([32]). Let (X, d) be a metric space, f : X → X, let Λ ≥ 0, α ≥ 1 and β ∈ [0, α] be fixed
constants and ψ : [0, 1]→ [0,∞) be an increasing function, vanishing with continuity at 0. If the inequality

d(fx, fy) ≤ (1− ε)d(x, y) + Λεαψ(ε)[1 + ‖x‖+ ‖y‖]β

is satisfied for every ε ∈ [0, 1] and all x, y ∈ X, then f has a unique fixed point z ∈ X. Here, ‖x‖ = d(x0, x)
for a chosen point x0 ∈ X.

It was also shown by an example that the previous theorem is a real generalization of Banach’s result.
More results of this kind were subsequently obtained by various authors.

b-metric spaces were firstly used by I. A. Bakhtin and S. Czerwik.

Definition 2.2 ([4, 10]). Let X be a nonempty set, s ≥ 1 be a given real number. A mapping d : X×X → X
is called a b-metric with parameter s if

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x) for all x, y ∈ X;

3. d(x, z) ≤ s[d(x, y) + d(y, z)] for all x, y, z ∈ X (b-triangular inequality).

Then (X, d) is called a b-metric space.

The following are some easy and well-known examples of b-metric spaces.

Example 2.3. Let (X, ρ) be a metric space and p ≥ 1 be a given real number. Then d(x, y) = [ρ(x, y)]p is
a b-metric on X with parameter s ≤ 2p−1.

Example 2.4 ([26, 35]). Let (X, ρ) be a cone metric space (in the sense of [15]), over a normal cone with
normal constant K. Then d(x, y) = ‖ρ(x, y)‖ defines a b-metric on X with parameter s = K.

Remark 2.5. It is easy to see that b-metrics in the previous two examples are (sequentially) continuous
functions (in both variables). However, examples were provided [16, 17, 29] showing that, in general, this
might not be the case. We present here the following

Example 2.6. [17] Let X = N ∪ {∞} and let d : X ×X → R be defined by

d(m,n) =


0, if m = n,

| 1m −
1
n |, if one of m,n is even and the other is even or ∞,

5, if one of m,n is odd and the other is odd (and m 6= n) or ∞,
2, otherwise.
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Then, considering all possible cases, it can be checked that (X, d) is a b-metric space with s = 5/2. However,
let xn = 2n for each n ∈ N. Then

d(2n,∞) =
1

2n
→ 0 as n→∞,

that is, xn →∞, but d(xn, 1) = 2 6→ 5 = d(∞, 1) as n→∞.

The following definition was given by A. Branciari in 2000.

Definition 2.7 ([6]). Let X be a nonempty set, and let d : X ×X → [0,+∞) be a mapping such that for
all x, y ∈ X and all distinct points u, v ∈ X, each distinct from x and y,

(i) d(x, y) = 0 iff x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) (“rectangular inequality”)

hold. Then (X, d) is called a rectangular or generalized metric space.

Remark 2.8. Obviously, each metric space is a rectangular metric space, but the converse is not true.
Moreover, Sarma et al. [39] and Samet [38] presented examples showing that rectangular spaces might not
be Hausdorff and, again, that rectangular metric might be discontinuous. Also, Suzuki showed in [41] that,
in general, rectangular spaces do not have a compatible topology. We recall here the following

Example 2.9 ([39]). Let A = {0, 2}, B = { 1n : n ∈ N} and X = A ∪ B. Define d : X ×X → [0,+∞) as
follows:

d(x, y) =


0, x = y

1, x 6= y and {x, y} ⊂ A or {x, y} ⊂ B
y, x ∈ A, y ∈ B
x, x ∈ B, y ∈ A.

Then (X, d) is a complete g.m.s. However, it is easy to see that:

• the sequence { 1n}n∈N converges to both 0 and 2 and it is not a Cauchy sequence;

• there is no r > 0 such that Br(0) ∩Br(2) = ∅; hence, the respective topology is not Hausdorff;

• B2/3(
1
3) = {0, 2, 13}, however there does not exist r > 0 such that Br(0) ⊆ B2/3(

1
3);

• limn→∞
1
n = 0 but limn→∞ d( 1

n ,
1
2) 6= d(0, 12); hence d is not a continuous function.

As a combination of b-metric and rectangular metric spaces, b-rectangular metric spaces were introduced
and used in [13, 34].

Definition 2.10 ([13, 34]). Let X be a nonempty set and s ≥ 1 be a fixed real number. Let
d : X × X → [0,+∞) be a mapping such that for all x, y ∈ X and all distinct points u, v ∈ X, each
distinct from x and y,

(i) d(x, y) = 0 iff x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, y) ≤ s[d(x, u) + d(u, v) + d(v, y)] (“b-rectangular inequality”)

hold. Then (X, d) is called a b-rectangular or b-generalized metric space with parameter s.
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Example 2.11 ([34]). If (X, ρ) is a rectangular metric space and p ≥ 1 is a given real number, then
d(x, y) = [ρ(x, y)]p defines a b-rectangular metric on X with parameter s ≤ 3p−1.

Example 2.12. If (X, ρ) is a b-metric space with parameter s′, then it is also a b-rectangular space with
parameter s ≤ s′2.

Remark 2.13. In both of the previous examples, the value of parameter s might be strictly smaller then the
given estimate. For example, the b-metric d introduced in Example 2.4 is also a b-rectangular metric on X
with the same value of parameter s = K as for the b-metric [26, 35].

3. Results in b-metric spaces

Throughout the rest of the paper, for a given b-(rectangular) metric space (X, d) and a fixed x0 ∈ X,
we will denote ‖x‖ = d(x, x0) for x ∈ X. It is easy to see that the obtained results do not depend on the
particular choice of point x0. Also, ψ : [0, 1] → [0,∞) will always be an increasing function, continuous at
0, with ψ(0) = 0.

Theorem 3.1. Let (X, d) be a complete b-metric space with parameter s > 1 and let f, g : X → X be two
self-mappings such that fX ⊆ gX. Suppose that for some Λ ≥ 0, α ≥ 1, β ∈ [0, α],

d (fx, fy) ≤ 1− ε
s

max

{
d (gx, gy)

2s
, d (gx, fx) , d (gy, fy)

}
+ Λεαψ (ε) [1 + ‖gx‖+ ‖gy‖+ ‖fx‖+ ‖fy‖]β , (3.1)

holds for all x, y ∈ X and each ε ∈ [0, 1]. Then f and g have a unique point of coincidence. If, moreover, f
and g are weakly compatible, then they have a unique common fixed point.

Proof. For arbitrary x0 ∈ X, let us form a Jungck sequence {yn} by yn = fxn = gxn+1 (this is possible
since fX ⊆ gX). If yn = yn+1 for some n, there is nothing to prove. Hence, suppose that yn 6= yn+1 for
each n ∈ N0.

Step 1. Putting ε = 0 in (3.1), we get that

d (yn, yn+1) ≤
1

s
d (yn−1, yn) (3.2)

for each n ∈ N. It follows that d (yn, yn+1) is a strictly decreasing sequence, tending to 0 as n→∞.
Step 2. We will prove by induction that the sequence cn = d (yn, y0) is bounded by 2sc1.
The assertion holds for n = 1 and n = 2. Suppose that cn ≤ 2sc1 for some n ∈ N. Then, again taking

ε = 0, we obtain that

cn+1 = d (yn+1, y0) ≤ s (d (yn+1, y1) + d (y1, y0))

= s (d (fxn+1, fx1) + d (y1, y0))

≤ s
(

1

s
max

{
d (gxn+1, gx1)

2s
, d (gxn+1, fxn+1) , d (gx1, fx1)

}
+ d (y1, y0)

)
= max

{
d (yn, y0)

2s
, d (yn, yn+1) , d (y0, y1)

}
+ sd (y1, y0)

= d (y0, y1) + sd (y1, y0)

= (1 + s) c1 ≤ 2sc1,

since both d(yn,y0)
2s and d (yn, yn+1) are not greater than d (y0, y1). This finishes the inductive proof.
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Step 3. In order to prove that {yn} is a Cauchy sequence, suppose the contrary. Using [37, Lemma 1.7]
(with ε replaced by δ), we obtain that there exist δ > 0 and two sequences {n(k)} and {m(k)} of positive
integers such that n (k) > m (k) > k,

d
(
ym(k), yn(k)

)
≥ δ, d

(
ym(k), yn(k)−1

)
< δ,

and
δ

s
≤ lim sup

n→∞
d
(
ym(k)+1, yn(k)

)
. (3.3)

Replacing x = xm(k)+1, y = xn(k) in the condition (3.1) we get

d
(
ym(k)+1, yn(k)

)
≤ 1− ε

s
max

{
d
(
ym(k), yn(k)−1

)
2s

, d
(
ym(k), ym(k)+1

)
, d
(
yn(k)−1, yn(k)

)}
+Kεαψ (ε) ,

for some constant K, since the sequence {yn} is bounded. Passing to the upper limit, and using (3.3), we
get

δ

s
≤ lim sup

k→∞
d
(
ym(k)+1, yn(k)

)
≤ 1− ε

s
max

{
lim sup
k→∞

d
(
ym(k), yn(k)−1

)
2s

, 0, 0

}
+Kεαψ (ε)

=
1− ε
s

δ

2s
+ +Kεαψ (ε) ,

and hence
δ

s
≤ 1− ε

s

δ

2s
+Kεαψ (ε) <

(1− ε) δ
s

+Kεαψ (ε) .

Putting ε = 0, we get that δ = 0, a contradiction.
Hence, yn = fxn = gxn+1 is a Cauchy sequence, and gxn → gz, ad n → ∞, for some z ∈ X. We will

show that fz = gz. We have

1

s
d (fz, gz) ≤ d (fz, fxn) + d (fxn, gz)

≤ 1− ε
s

max

{
d (gz, gxn)

2s
, d (gz, fz) , d (gxn, fxn)

}
+Kεαψ (ε) + d (fxn, gz) .

It follows that, for n big enough,

1

s
d (fz, gz) ≤ 1− ε

s
d (gz, fz) +Kεαψ (ε) ,

and we easily obtain that fz = gz.
The uniqueness of point of coincidence follows easily by taking ε = 0 in (3.1), and that it is a common

fixed point of f and g follows in a standard way (see, e.g., [19]).

Putting g = iX in the previous theorem, we obtain

Corollary 3.2. Let (X, d) be a complete b-metric space with parameter s > 1 and let f : X → X be a
self-mapping. Suppose that for some Λ ≥ 0, α ≥ 1, β ∈ [0, α],

d (fx, fy) ≤ 1− ε
s

max

{
d (x, y)

2s
, d (x, fx) , d (y, fy)

}
+ Λεαψ (ε) [1 + ‖x‖+ ‖y‖+ ‖fx‖+ ‖fy‖]β , (3.4)

holds for all x, y ∈ X and each ε ∈ [0, 1]. Then f has a unique fixed point.
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Remark 3.3. All the results of paper [5] are direct consequences of the previous theorem and the proof
is much shorter. Moreover, our result is strictly stronger, since it is obtained without the assumption of
continuity of the b-metric d, while the b-metric d(x, y) = ‖ρ(x, y‖ (for a given cone metric ρ) that is used in
[5], is always continuous (see Example 2.4 and Remark 2.5). We demonstrate this by the following example.

Example 3.4. Let (X, d) be the b-metric space of Example 2.4 (where the b-metric d is not continuous).
Consider the following mapping f : X → X.

fx =

{
100, x ≤ 100,

4, otherwise,

and let us check the contractive condition (3.4). The only nontrivial case is when x ∈ {1, 2, . . . , 100} and
y ∈ {101, 102, . . . ,∞}. Then

d (fx, fy) = d (100, 4) =

∣∣∣∣ 1

100
− 1

4

∣∣∣∣ =
24

100
,

and we will check that

24

100
≤ 2 (1− ε)

5
max

{
d (x, y)

5
, d (x, 100) , d (y, 4)

}
+ ε2

(which is condition (3.4) with Λ = 1, ψ(ε) = ε, α = 1, β = 0). We have

max
d (x, y)

5
= max


1
5

∣∣∣ 1x − 1
y

∣∣∣ , both x and y are even or one is even ant the other is ∞,
1
5 · 5, both x and y are odd or one is odd the other is ∞,
1
5 · 2, otherwise

≤ 1,

max d (x, 100) =

{∣∣ 1
x −

1
100

∣∣ , if x is even

2, if x is odd
≤ 2,

max d (y, 4) =

{∣∣∣ 1y − 1
100

∣∣∣ , if y is even or ∞,
2, if y is odd or ∞

≤ 2.

Hence, we have to show that
24

100
≤ 2 (1− ε)

5
· 2 + ε2,

which is fulfilled for each ε ∈ R, a fortiori for ε ∈ [0, 1] .

4. Results in b-rectangular metric spaces

The method of proof based on the approach as in [36, Lemma 2.1] was used in many articles. We give
here a version (adapted from [11, 31, 34]) that can be used in b-rectangular metric spaces.

Lemma 4.1. Let (X, d) be a b-rectangular metric space with s ≥ 1 and let {xn} be a sequence in X such
that

xn 6= xm whenever n 6= m and lim
n→∞

d (xn, xn+1) = 0. (4.1)

If {xn} is not a b-rectangular-Cauchy sequence, then there exist δ > 0 and two sequences {m (k)} and {n (k)}
of positive integers such that the following hold:

d
(
xm(k), xn(k)

)
≥ δ, δ

s
≤ lim sup

k→∞
d
(
xm(k), xn(k)−2

)
≤ δ

and
δ

s
≤ lim sup

k→∞
d
(
xm(k)+1, xn(k)−1

)
.
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Proof. If {xn} is not a b-rectangular-Cauchy sequence, then there exists δ > 0 for which we can find two
subsequences

{
xm(k)

}
and

{
xn(k)

}
of {xn} such that n (k) is the smallest index for which

n (k)− 3 ≥ m (k) > k and d
(
xm(k), xn(k)

)
≥ δ. (4.2)

This means that
d
(
xm(k), xn(k)−2

)
< δ.

Now taking the upper limit as k →∞, we obtain

lim sup
k→∞

d
(
xm(k), xn(k)−2

)
≤ δ.

On the other hand, we have

1

s
d
(
xm(k), xn(k)

)
≤ d

(
xm(k), xm(k)+1

)
+ d

(
xm(k)+1,xn(k)−1

)
+ d

(
xn(k)−1,xn(k)

)
.

Using (4.1), (4.2) and taking the upper limit as k →∞, we get

δ

s
≤ lim sup

k→∞
d
(
xm(k)+1,xn(k)−1

)
.

Using the b-rectangular inequality once again we have the following inequality

1

s
d
(
xm(k), xn(k)

)
≤ d

(
xm(k), xn(k)−2

)
+ d

(
xn(k)−2,xn(k)−1

)
+ d

(
xn(k)−1,xn(k)

)
.

Using (4.1), (4.2) and taking the upper limit as k →∞, we now get

δ

s
≤ lim sup

k→∞
d
(
xm(k),xn(k)−2

)
.

The proof of Lemma 4.1 is complete.

We present now the main result of this section.

Theorem 4.2. Let (X, d) be a complete b-rectangular metric space with parameter s > 1 and let f, g : X→X
be such that fX ⊆ gX. Suppose that for some Λ ≥ 0, α ≥ 1, β ∈ [0, α],

d (fx, fy) ≤ 1− ε
s

max

{
d (gx, gy)

2s
, d (gx, fx) , d (gy, fy)

}
+ Λεαψ (ε) [1 + ‖gx‖+ ‖gy‖]β , (4.3)

holds for all x, y ∈ X and each ε ∈ [0, 1]. Then f and g have a unique point of coincidence. If, moreover,
f and g are weakly compatible, then they have a unique common fixed point.

Proof. Similarly as in the proof of Theorem 3.1, it can be proved that

d (yn, yn+1) ≤
1

s
d (yn−1, yn)

and then that d (yn, yn+1) → 0, as n → ∞. Moreover, similarly as in [21, 23], yn 6= ym whenever n 6= m.
Let us prove that the sequence cn = d(y0, yn) is bounded.

Using that yn 6= ym for n 6= m, we get

1

s
cn =

1

s
d (yn, y0) ≤ d (yn, yn+1) + d (yn+1, y1) + d (y1, y0)

≤ 2c1 + d (fxn+1, fx1)
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≤ 2c1 +
1− ε
s

max

{
d (yn, y0)

2s
, d (yn, yn+1) , d (y0, y1)

}
+ Λεαψ (ε) [1 + ‖yn‖+ ‖y0‖]β

≤ 2c1 +
1− ε
s

max

{
d (yn, y0)

2s
, d (yn, yn+1) , d (y0, y1)

}
+ Λεαψ (ε) [1 + ‖yn‖+ ‖y0‖]β

≤ 2c1 +
1− ε
s

max
{cn

2s
, c1

}
+ Λεαψ (ε) [1 + cn]α .

Consider now the following two cases.
1) If max

{
cn
2s , c1

}
= c1 then cn ≤ 2sc1 and the proof is over.

2) max
{
cn
2s , c1

}
= cn

2s . Then we have

1

s
cn ≤ 2c1 +

1− ε
s

cn
2s

+ Λεαψ (ε) [1 + cn]α ,

i.e.
cn ≤ 2sc1 + (1− ε) cn + aεαψ (ε) cαn .

Hence we have obtained
εcn ≤ b+ aεαψ (ε) cαn

where a, b are positive constants. Now it follows that the sequence {cn} is bounded in the same way as in
[32, Lemma 3].

Now we apply Lemma 4.1. If {yn} were not a b-rectangular-Cauchy then, putting ε = 0, x = xm(k)+1

and y = xn(k)−1 in (4.3), we would obtain

d
(
ym(k)+1, yn(k)−1

)
≤ 1

s
max

{
d
(
ym(k), yn(k)−1

)
2s

, d
(
ym(k), ym(k)+1

)
, d
(
yn(k)−1, yn(k)

)}
.

Taking now the upper limit as k →∞ and using Lemma 4.1, it would follow that

δ

s
≤ lim sup

k→∞
d
(
ym(k)+1, yn(k)−1

)
≤ 1

2s2
lim sup
k→∞

d
(
ym(k), yn(k)−1

)
≤ δ

2s2
,

a contradiction since s > 1, δ > 0. Hence, {yn} is a b-rectangular Cauchy sequence.
Moreover, we have

1

s
d (fz, gz) ≤ d (fz, fxn) + d (fxn, gxn) + d (gxn, gz)

≤ 1− ε
s

max

{
d (gz, gxn)

2s
, d (gz, fz) , d (gxn, fxn)

}
+Kεαψ (ε) + d (fxn, gxn) + d (gxn, gz) .

It follows that for n big enough,

1

s
d (fz, gz) ≤ 1− ε

s
d (gz, fz) +Kεαψ (ε) ,

i.e.
ε

s
d (fz, gz) ≤ Kεαψ (ε)

and hence fz = gz.
The rest of proof is standard.

Specifying g = iX in the previous theorem, we get the extension of Pata’s basic result (Theorem 2.1) to
the framework of b-rectangular metric spaces.

Also, the main result (Theorem 1) of [5] is thus extended from cone metric spaces to the framework of
rectangular cone metric spaces:
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Corollary 4.3. Let (X, d) be a complete rectangular cone metric space with normal constant K, x0 ∈ X,
Λ ≥ 0, α ≥ 1, β ∈ [0, α] be fixed constants. If for all ε ∈ [0, 1], x, y ∈ X, the map f : X → X satisfies

‖d(fx, fy)‖ ≤ 1− ε
K

M(x, y) + Λεαψ(ε)[1 + ‖d(x, x0)‖+ ‖d(y, x0)‖]β,

where M(x, y) = max{‖d(x, fx)‖, ‖d(y, fy)‖, 1
2K ‖d(x, y)‖}, then f has a unique fixed point.

Proof. It follows directly from Theorem 4.2 since under these assumptions, (X, ‖d‖) is a b-rectangular metric
space with parameter K.

The following example is inspired by [13, Example 3.2].

Example 4.4. Let X = A ∪B, where A =
{

1
n : n ∈ {2, 3, 4, 5}

}
and B = [1, 2]. Define d : X ×X → [0,∞)

so that d (x, y) = d (y, x) for all x, y ∈ X, and

d

(
1

2
,
1

3

)
= d

(
1

4
,
1

5

)
= 0.03; d

(
1

2
,
1

5

)
= d

(
1

3
,
1

4

)
= 0.02;

d

(
1

2
,
1

4

)
= d

(
1

5
,
1

3

)
= 0.06; d (x, y) = (x− y)2 otherwise.

Then (X, d) is a b-rectangular metric space with coefficient s = 3 (which follows from Example 2.4; in
[13], the value s = 4 was used). But (X, d) is neither a metric space nor a rectangular metric space. Let
f, g : X → X be defined as:

f (x) =


1
3 , if x ∈ A

1
5 , if x ∈ B,

g (x) = x.

We will check the condition

d (fx, fy) ≤ 1− ε
3

max

{
d (x, y)

6
, d (x, fx) , d (y, fy)

}
+ ε2 [1 + ‖x‖+ ‖y‖] ,

with x0 = 1
5 (i.e., ‖x‖ = d(x, 15)). It is enough to consider the case when x ∈ A, y ∈ B. Then,

d (fx, fy) = d
(
1
3 ,

1
5

)
= 0.06,

max d(x,y)
6 = max |x−y|

2

6 =
(2− 1

5)
2

6 = 27
50 ,

max d (x, fx) = max d
(
x, 13

)
= 0.06,

max d (y, fy) = max d
(
y, 15
)

=
(
2− 1

5

)2
= 81

25 .

Hence, if x ∈ A, y ∈ B we have that max
{
d(x,y)

6 , d (x, fx) , d (y, fy)
}

= 81
25 , and we have to check that

0.06 ≤ 1− ε
3
· 81

25
+ ε2 (1 + ‖x‖+ ‖y‖) .

Since min{1 + ‖x‖+ ‖y‖} = 1 + 0 +
(
1− 1

5

)2
= 1 + 16

25 = 41
25 , we have the inequality

0.06 ≤ 1− ε
3
· 81

25
+

41

25
ε2,

which is satisfied for all ε ∈ R, a fortiori for ε ∈ [0, 1].
Thus, we have proved that all the conditions of Theorem 4.2 are fulfilled and f and g have a unique

common fixed point (which is z = 1
3).

Note that the result could also be obtained using Theorem 3.1, even in an easier way, since in this case
the parameter that have to be used is s = 2.
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The following would be a Pata-version of the well-known Ćirić’s result on quasicontractions [8] in the
framework of b-metric or b-rectangular metric space.

Question 4.5. Prove or disprove the following. Let (X, d) be a b-metric or a b-rectangular metric space
with parameter s, let f : X → X and let Λ ≥ 0, α ≥ 1 and β ∈ [0, α] be fixed constants. If the inequality

d(fx, fy) ≤ 1− ε
s

max

{
d(x, y)

2s
, d(x, fx), d(y, fy), d(x, fy), d(y, fx)

}
+ Λεαψ(ε)[1 + ‖x‖+ ‖y‖]β

is satisfied for every ε ∈ [0, 1] and all x, y ∈ X, then f has a unique fixed point z ∈ X.
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[3] A. Azam, N. Mehmood, J. Ahmad, S. Radenović, Multivalued fixed point theorems in cone b-metric spaces, J.
Inequal. Appl., 2103 (2013), 9 pages.1

[4] I. A. Bakhtin, The contraction mapping principle in quasi-metric spaces [in Russian], Funk. An. Ulianowsk Gos.
Ped. Inst., 30, 26–37 (1989).1, 2.2

[5] S. Balasubramanian, A Pata-type fixed point theorem, Math. Sci., 8 (2014), 65–69.1, 3.3, 4
[6] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ.

Math. Debrecen, 57 (2000), 31–37.1, 2.7
[7] M. Chakraborty, S. K. Samanta, A fixed point theorem for Kannan-type maps in metric spaces, arXiv, (2012), 7

pages.1
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[24] Z. Kadelburg, S. Radenović, A note on Pata-type cyclic contractions, Sarajevo J. Math., (in press). 1
[25] E. Karapinar, Wei-Shih Du, A note on b-cone metric and its related results: Generalizations or equivalence?,

Fixed Point Theory Appl., 2013 (2013), 7 pages.1
[26] M. A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point

Theory Appl., 2010 (2010), 7 pages.1, 2.4, 2.13
[27] M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (2010), 3123–3129.1
[28] W. Kirk, W. Shahzad, Fixed Point Theory in Distance Spaces, Springer, cham, (2014).1
[29] P. Kumam, N. V. Dung, V. T. Le Hang, Some equivalences between cone b-metric spaces and b-metric spaces,

Abstract Appl. Anal., 2013 (2013), 8 pages.1, 2.5
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