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Abstract

Recently Abbas [M. Abbas, Coincidence points of multivalued f−almost nonexpansive mappings, Fixed
Point Theory, 13 (1) (2012), 3–10] introduced the concept of f−almost contraction which generalizes the
class of multivalued almost contraction mapping and obtained coincidence point results for this new class
of mappings. We extend this notion to multivalued f−almost F−contraction mappings and prove the
existence of coincidence points for such mappings. As a consequence, coincidence point results are obtained
for generalized multivalued f−almost F−nonexpansive mappings which assume closed values only. Related
common fixed point theorems are also proved. In the last section, applications of our results in dynamic
programming and integral equations to show the existence and uniqueness of solutions are obtained. We
present some remarks to show that our results provide extension as well as substantial generalizations and
improvements of several well known results in the existing comparable literature. c©2015 All rights reserved.
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1. Introduction and Preliminaries

Let (X, d) be a metric space. Let CB(X) (CL(X)) be the family of all nonempty closed and bounded
(nonempty closed) subsets of X. For A,B ∈ CL(X), define a set

EA,B = {ε > 0 : A ⊆ Nε(B), B ⊆ Nε(A)}.
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The Hausdorff metric H on CL(X) induced by metric d is given as:

H(A,B) =

{
inf EA,B if EA,B 6= ∅,
∞ if EA,B = ∅.

Let f : X → X and T : X → CL(X). A point x in X is called a fixed point of T if x ∈ Tx. The set of all
fixed points of T is denoted by F (T ). Furthermore, a point x in X is called a coincidence point of f and T
if fx ∈ Tx. The set of all such points is denoted by C(f, T ). If for some point x in X, we have x = fx ∈ Tx,
then a point x is called a common fixed point of f and T. We denote set of all common fixed points of f
and T by F (f, T ). A mapping T : X → CL(X) is said to be continuous at p ∈ X if for any sequence {xn}
in X with lim

n→∞
d(xn, p) = 0, we have lim

n→∞
H(Txn, Tp) = 0.

Berinde [12] introduced the following concept of a weak contraction mapping.

Definition 1.1 ([12]). Let (X, d) be a metric space. A self mapping f on X is called weak contraction if
there exist constants θ ∈ (0, 1) and L ≥ 0 such that

d(fx, fy) ≤ θd(x, y) + Ld(y, fx)

for every x, y in X.

For more discussion on weak contraction mappings, we refer to [15, 17] and references therein.
Berinde and Berinde [13] extended the notion of weak contraction mappings as follows:

Definition 1.2 ([13, 14]). A mapping T : X → CL(X) is called a multivalued weak contraction if there
exist two constants θ ∈ (0, 1) and L ≥ 0 such that

H(Tx, Ty) ≤ θd(x, y) + Ld(y, Tx) (1.1)

for every x, y in X.

Following definition of a generalized multivalued (θ, L)−strict almost contraction mapping is due to
Berinde and Păcurar [16].

Definition 1.3 ([16]). A mapping T : X → CL(X) is called generalized multivalued (θ, L)−strict almost
contraction mapping if there exist two constants θ ∈ (0, 1) and L ≥ 0 such that

H(Tx, Ty) ≤ θd(x, y) + Lmin{d(y, Tx), d(x, Ty), d(x, Tx), d(y, Ty)} (1.2)

for every x, y in X.

We have following fixed point theorem given in [16].

Theorem 1.4. Let (X, d) be a complete metric space and T : X → CL(X) a generalized multivalued
(θ, L)−strict almost contraction mapping. Then F (T ) 6= ∅, moreover for any p ∈ F (T ), T is continuous at
p.

Kamran [22] extended the notion of a multivalued weak contraction mapping to hybrid pair {f, T} of
single valued mapping f and multivalued mapping T.

Definition 1.5. Let (X, d) be a metric space and f a self map on X. A multivalued mapping
T : X → CL(X) is called generalized multivalued (f, θ, L)−weak contraction mapping if there exist two
constants θ ∈ (0, 1) and L ≥ 0 such that

H(Tx, Ty) ≤ θd(fx, fy) + Ld(fy, Tx) (1.3)

for every x, y in X.
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Abbas [1] extended the above definition as follows.

Definition 1.6 ([1]). Let (X, d) be a metric space and f a self map on X. A multivalued mapping
T : X → CL(X) is called generalized multivalued (f, θ, L)−almost contraction mapping if there exist two
constants θ ∈ (0, 1) and L ≥ 0 such that

H(Tx, Ty) ≤ θM(x, y) + LN(x, y) (1.4)

for every x, y in X, where

M(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty),
d(fx, Ty) + d(fy, Tx)

2
},

N(x, y) = min{d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Tx)}.

Let z be the collection of all mappings F : R+ → R which satisfy the following conditions:

C1 F is strictly increasing, that is, for all α, β ∈ R+ such that α < β ⇒ F (α) < F (β);

C2 For every sequence {αn}n∈N of positive numbers lim
n→∞

αn = 0 if and only if lim
n→∞

F (αn) = −∞;

C3 There exist k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0.

Recently Wardowski [31] introduced the following concept of F−contraction mappings.

Definition 1.7 ([31]). Let (X, d) be a metric space. A self map f on X is said to be an F−contraction on
X if there exists τ > 0 such that

d(fx, fy) > 0⇒ τ + F (d(fx, fy)) ≤ F (d(x, y)) (1.5)

for all x, y ∈ X, where F ∈ z.

Remark 1.8 ([31]). Every F−contraction mapping is continuous.

Abbas et al.([3]) extended the concept of F− contraction mapping and obtained common fixed point
results. Further in this direction, Abbas et al.([2]) introduced a notion of generalized F−contraction and
employed their results to obtain a fixed point of a generalized nonexpansive mappings on star shaped subsets
of normed linear spaces. Recently, Minak [25] proved some fixed point results for Ciric type generalized
F−contractions on complete metric spaces.

Sgroi and Vetro [30] proved the following result to obtain fixed point of multivalued mappings as a
generalization of Nadler’s Theorem [24].

Theorem 1.9 ([30]). Let (X, d) be a complete metric space and T : X → CL(X) a multivalued mapping.
Assume that there exists an F ∈ z and τ ∈ R+ such that

2τ + F (H(Tx, Ty)) ≤ F (αd(x, y) + βd(x, Tx) + γd(y, Ty) + δd(x, Ty) + Ld(y, Tx))

for all x, y ∈ X, with Tx 6= Ty, where α, β, γ, δ, L ≥ 0, α + β + γ + 2δ = 1 and γ 6= 1. Then T has a fixed
point.

Acar et al. [4] proved the following result.

Theorem 1.10 ([4]). Let (X, d) be a complete metric space and T : X → K(X) (Compact subsets of X).
Assume that there exist an F ∈ z and τ ∈ R+ such that

x, y ∈ X,H(Tx, Ty) > 0 =⇒ τ + F (H(Tx, Ty)) ≤ F (M(x, y))

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2
}.

Moreover if T or F is continuous, then T has a fixed point.
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Recently, Altun et al. [5] proved the following result.

Theorem 1.11 ([5]). Let (X, d) be a complete metric space and T : X → CB(X). Assume that there exist
an F ∈ z and τ, λ ∈ R+ such that

x, y ∈ X,H(Tx, Ty) > 0 implies that τ + F (H(Tx, Ty)) ≤ F (d(x, y) + λd(y, Tx)).

Then the mapping T is multivalued weakly Picard operator.

For the definition of multivalued weakly Picard operator and the related results, we refer to [13].
Now, we give the following definition.

Definition 1.12. Let f be a self map on metric space X and T : X → CL(X) a multivalued mapping,
then T is called generalized multivalued (f, L)−almost F−contraction mapping if there exist F ∈ z and
τ ∈ R+ and L ≥ 0 such that

2τ + F (H(Tx, Ty)) ≤ F (M(x, y) + LN(x, y)) (1.6)

for every x, y in X, with Tx 6= Ty and

M(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty),
d(fx, Ty) + d(fy, Tx)

2
},

N(x, y) = min{d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Tx)}).

Remark 1.13. Take F (x) = lnx in the Definition 1.12. Then (1.6) becomes

2τ + ln(H(Tx, Ty)) ≤ ln(M(x, y) + LN(x, y),

that is

H(Tx, Ty)) ≤ e−2τM(x, y) + e−2τLN(x, y)

= θ1M(x, y) + L1N(x, y),

where θ1 = e−2τ ∈ (0, 1) and L1 = e−2τL ≥ 0, so we get generalized multivalued (f, θ1, L1)−almost
contraction mapping introduced by Abbas [1].

Remark 1.14. Take α =
1

4
, β =

1

4
, γ =

1

4
, δ =

1

8
= L. Note that α + β + γ + 2δ = 1. Then a contraction

condition in Theorem 1.9 becomes

2τ + F (H(Tx, Ty)) ≤ F

(
1

4

(
d(x, y) + (d(x, Tx) + d(y, Ty)) +

d(x, Ty) + d(y, Tx)

2

))
≤ F

(
1

4
(4M(x, y))

)
= F ((M(x, y) + 0N(x, y)))

for all x, y ∈ X, with Tx 6= Ty. Thus, for L = 0 and f = I ( Identity map ) in

M(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty),
d(fx, Ty) + d(fy, Tx)

2
},

N(x, y) = min{d(fx, fy), d(fx, Tx), d(fy, Ty)},

a contraction condition in Theorem 1.10 is an (f, 0)−almost F−contraction which is a special case of
generalized multivalued (f, L)−almost F−contraction ( for L = 0 and τ = 2τ1).

Let f : X −→ X and T : X −→ CL(X) a multivalued mapping.

Definition 1.15. The pair (f, T ) is called (e) commuting if Tfx = fTx for all x ∈ X (f) weakly compatible
if they commute at their coincidence points, that is, fTx = Tfx whenever x ∈ C(f, T ) ([21]).
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The map f is called T - weakly commuting at x ∈ X if f2x ∈ Tfx. If hybrid pair (f, T ) is weakly
compatible at x ∈ C(f, T ), then f is T−weakly commuting at x and hence fn(x) ∈ C(f, T ). However the
converse is not true in general. For detailed discussion on above mentioned notions and their implications,
we refer to [6], [18], [19, 20, 21], and references therein.

Definition 1.16. A mapping T : X → CL(X) is called a closed mapping if

G(T ) = {(x, y) : x ∈ X, y ∈ Tx} ( graph of T )

is a closed subset of X ×X.

Note that, a mapping T is closed if and only if it satisfies the following condition:
For two sequences {xn}n∈N and {yn}n∈N in X with yn ∈ T (xn) for each n ∈ N, xn → x and yn → y, we

have y ∈ T (x).

2. Coincidence and Common Fixed Point Theorems

Throughout this section, we assume that the mapping F is right continuous.
We start with the following.

Theorem 2.1. Let X be a metric space, f : X → X and T : X → CL(X) be a generalized multivalued
(f, L)−almost F−contraction with T (X) ⊆ f(X). If T (X) is complete, then C(f, T ) 6= ∅ provided that
either F is continuous or T is closed multivalued mapping. Moreover F (f, T ) 6= ∅ if one of the following
conditions holds:

(a) for some x ∈ C(f, T ), f is T−weakly commuting at x, f2x = fx.

(b) f and T are weakly compatible on C(f, T ), f is continuous, and lim
n→∞

fnx exists for some x ∈ C(f, T )

provided that F is continuous or T is closed multivalued mapping.

(c) for some z ∈ C(f, T ), f is continuous at z, and lim
n→∞

fny = z for some y ∈ X.

(d) f(C(f, T )) is a singleton subset of C(f, T ).

Proof. We first note that, by Remark 1.13, H(Tx, Ty) <∞ for all x, y ∈ X.
Now we shall show that C(f, T ) 6= ∅. Indeed, let x0 be a given point in X. Since Tx0 ⊆ f(X), we can

choose an element x1 ∈ X such that fx1 ∈ Tx0. If H(Tx0, Tx1) = 0, then Tx0 = Tx1, so x1 ∈ C(f, T ).
Assume H(Tx0, Tx1) > 0. Since, by hypothesis, F is right continuous at H(Tx0, Tx1), there exists h > 1
such that

F (hH(Tx0, Tx1)) < F (H(Tx0, Tx1)) + τ.

Since fx1 ∈ Tx0 we deduce that d(fx1, Tx1) ≤ H(Tx0, Tx1), and thus there exists y1 ∈ Tx1 such that

d(fx1, y1) < hH(Tx0, Tx1).

Pick an element x2 in X such that fx2 = y1. Then, above inequality becomes

d(fx1, fx2) < hH(Tx0, Tx1).

If fx1 = fx2, then fx1 ∈ Tx1. In this case x1 becomes a coincidence point of f and T and the proof is
finished. Assume that fx1 6= fx2, that is, d(fx1, fx2) > 0. Since F is strictly increasing we obtain

F (d(fx1, fx2)) < F (hH(Tx0, Tx1)) < F (H(Tx0, Tx1)) + τ.

As T is generalized multivalued (f, L)- almost F - contraction, it follows that
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F (d(fx1, fx2)) < F (H(Tx0, Tx1)) + τ

≤ F (M(x0, x1) + LN(x0, x1))− 2τ + τ

= F (max{d(fx0, fx1), d(fx0, Tx0), d(fx1, Tx1),
d(fx0, Tx1) + d(fx1, Tx0)

2
}

+Lmin{d(fx0, Tx0), d(fx1, Tx1), d(fx0, Tx1), d(fx1, Tx0)})− τ

≤ F (max{d(fx0, fx1), d(fx0, fx1), d(fx1, fx2),
d(fx0, fx2) + d(fx1, fx1)

2
}

+Lmin{d(fx0, fx1), d(fx1, fx2), d(fx0, fx2), d(fx1, fx1)})− τ

≤ F (max{d(fx0, fx1), d(fx1, fx2),
d(fx0, fx1) + d(fx1, fx2)

2
})− τ

= F (max{d(fx0, fx1), d(fx1, fx2)})− τ.

So we have
τ + F (d(fx2, fx1)) < F (max{d(fx0, fx1), d(fx1, fx2)}.

Continuing this way, we can obtain a sequence {xn} in X such that fxn+1 ∈ Txn ⊆ T (X) and it satisfies

τ + F (d(fxn, fxn+1)) < F (max{d(fxn−1, fxn), d(fxn, fxn+1)}) (2.1)

for all n ∈ N. Since F is strictly increasing, therefore

d(fxn, fxn+1) < max{d(fxn−1, fxn), d(fxn, fxn+1)}.

If
max{d(fxn−1, fxn), d(fxn, fxn+1) = d(fxn, fxn+1)

for some n, then,
d(fxn, fxn+1) < d(fxn, fxn+1)

gives a contradiction. So we have

d(fxn, fxn+1) < d(fxn−1, fxn). (2.2)

Consequently
τ + F (d(fxn, fxn+1)) < F (d(fxn−1, fxn)), (2.3)

for all n ∈ N. If λn = d(fxn, fxn+1), then we obtain that

F (λn) < F (λn−1)− τ < ... < F (λ0)− nτ

On taking limit as n→∞, we have lim
n→∞

F (λn) = −∞. By (C1), we get lim
n→∞

λn = 0. By (C3) there exists

an r ∈ (0, 1) such that
lim
n→∞

λrnF (λn) = −∞.

Hence it follows that

λrnF (λn)− λrnF (λ0) ≤ λrnF (λ0)− nλrnτ − λrnF (λ0) = −nλrnτ.

On taking limit as n tends to ∞, we obtain lim
n→∞

nλrn = 0, that is, lim
n→∞

n1/rλn = 0. This implies that
∞∑
n=1

λn is convergent and hence the sequence {fxn}n≥1 is a Cauchy sequence in T (X) ⊆ T (X). As T (X) is

complete, so there is p ∈ T (X) such that lim
n→∞

fxn = p. Now T (X) ⊆ f(X) implies that there exists u∗ in

X such that fu∗ = p.
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Next we prove that fu∗ ∈ Tu∗. Indeed, assume the contrary, then d(fu∗, Tu∗) > 0 because Tu∗ is closed.
Since F is strictly increasing, we deduce from Remark 1.13 that

H(Txn, Tu
∗) < M(xn, u

∗) + LN(xn, u
∗)

for all n ∈ N. Therefore

d(fxn+1, Tu
∗) ≤ H(Txn, Tu

∗) < M(xn, u
∗) + LN(xn, u

∗)

so, by Remark 1.13,

2τ + F (d(fxn+1, Tu
∗)) ≤ 2τ + F (H(Txn, Tu

∗))

≤ F (M(xn, u
∗) + LN(xn, u

∗))

for all n ∈ N.
Next suppose that F is continuous. Since

lim
n→∞

d(fxn, Tu
∗) = d(fu∗, Tu∗)

we deduce that
lim
n→∞

M(xn, u
∗) = d(fu∗, Tu∗).

Moreover
lim
n→∞

N(xn, u
∗) = 0

so, by continuity of F,
2τ + F (d(fu∗, Tu∗)) ≤ F (d(fu∗, Tu∗)

which provides a contradiction. We conclude that d(fu∗, Tu∗) = 0, and thus fu∗ ∈ Tu∗.
Now suppose that T is closed multivalued mapping. Since lim

n→∞
fxn = lim

n→∞
fxn+1 = fu∗ and

fxn+1 ∈ Tfxn, we have fu∗ ∈ Tfu∗, that is, fu∗ ∈ C(f, T ) and hence C(f, T ) 6= ∅.
Now let (a) holds, that is for x ∈ C(f, T ), f is T−weakly commuting at x. So we get f2x ∈ Tfx. By the

given hypothesis fx = f2x and hence fx = f2x ∈ Tfx. Consequently fx ∈ F (f, T ).
Suppose (b) holds when F is continuous: let y = lim

n→∞
fnx for some x in C(f, T ). Since f is continuous,

this implies that y is a fixed point of f. That is y = fy. Furthermore fn+1x ∈ C(f, T ) for all n ≥ 1 and hence
fn+1x ∈ Tfnx. Exactly as in the first part of the proof (taking p = u∗ = y) we deduce that d(y, Ty) = 0.
Hence y = fy ∈ Ty and F (f, T ) 6= ∅.

Suppose (b) holds when T is closed: Since lim
n→∞

fnx = lim
n→∞

fn+1x = y and fn+1x ∈ Tfnx then y ∈ Ty.
Consequently y = fy ∈ Ty.

(c) Suppose for some z ∈ C(f, T ), f is continuous at z and lim
n→∞

fnx = z for some x ∈ X. Then

z = fz ∈ Tz, and F (f, T ) 6= ∅.
(d) Since f(C(f, T )) = {x} ( say ) and x ∈ C(f, T ), this implies that x = fx ∈ Tx. Thus F (f, T ) 6= ∅.

In Theorem 1.9 underlying space is a complete metric space but in above theorem we do not assume
the completeness of underlying space, instead we take the completeness of T (X). In Theorem 1.10 authors
assume that a mapping T is compact valued but we prove the result when T is closed valued mapping.

Theorem 2.1 generalizes Theorem 3.4 of [30] and Theorem 2.2 of [4].

Corollary 2.2. Let X be a metric space, T : X −→ CL(X) generalized multivalued (f, θ1, L1)−almost
contraction with T (X) ⊆ X for θ1 = e−2τ ∈ (0, 1) and L1 = Le−2τ , where τ > 0. Suppose that T (X) is
complete. Then C(f, T ) 6= ∅. Moreover, F (f, T ) 6= ∅ if one of the conditions from (a)-(d) in Theorem 2.1
holds.
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Proof. The result follows if we take F (x) = lnx in Theorem 2.1.

Corollary 2.3. Let X be a metric space, T : X −→ CL(X) generalized multivalued (θ1, L1)−almost con-
traction with T (X) ⊆ X for θ1 = e−2τ ∈ (0, 1) and L1 = Le−2τ , where τ > 0. Suppose that T (X) is
complete. Then T has a fixed point.

Proof. Take f = I (identity map on X) in Corollary 2.2.

Remark 2.4. Theorem 2.1 generalizes the results proved in [1, 13, 16, 22, 24].

If we take T as single valued self map in Theorem 2.1, then we get the following corollary. We will apply
this corollary to show the existence and uniqueness of common and bounded solution of functional equations
arising in dynamic programming. We shall also give an application of this corollary in finding the solution
of volterra type system of integral equations.

Corollary 2.5. Let X be a metric space, f, T : X → X two mappings with T (X) ⊆ f(X). Assume that
there exist τ > 0 and L ≥ 0 such that

2τ + F (d(Tx, Ty)) ≤ F (M(x, y) + LN(x, y))

for every x, y in X, with Tx 6= Ty and

M(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty),
d(fx, Ty) + d(fy, Tx)

2
},

N(x, y) = min{d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Tx)}).

If T (X) is complete, then C(f, T ) 6= ∅ provided that either F is continuous or T is continuous. Moreover if
for some x ∈ C(f, T ), f and T are commuting at x, then f2x = fx, F (f, T ) is nonempty and singleton.

Proof. From Theorem 2.1 it follows that C(f, T ) 6= ∅. Let x ∈ C(f, T ), that is fx = Tx. Since f and T are
commuting therefore we obtain that f2x = fTx = Tfx. Now we claim that fx = f2x. If fx 6= f2x. Then
we have

2τ + F (d(fx, f2x)) = 2τ + F (d(Tx, Tfx))

≤ F (M(x, fx) + LN(x, fx))

= F (max{d(fx, ffx), d(fx, Tx), d(ffx, Tfx),
d(fx, Tfx) + d(ffx, Tx)

2
}

+Lmin{d(fx, Tx), d(ffx, Tfx), d(fx, Tfx), d(ffx, Tx)}).

≤ F (max{d(fx, ffx), d(fx, fx), d(ffx, ffx),
d(fx, ffx) + d(ffx, fx)

2
}

+Lmin{d(fx, fx), d(ffx, ffx), d(fx, ffx), d(ffx, fx)}).
≤ F (d(fx, ffx)).

This implies that τ ≤ 0, a contradiction. So fx = f2x. Consequently fx = f2x = Tfx. Now we prove the
uniqueness of common fixed point of f and T. Suppose that there exist u and w in F (f, T ) such that u 6= w.
Then by given assumption, we have

2τ + F (d(fu, fw)) = 2τ + F (d(Tu, Tw))

≤ F (M(u,w) + LN(u,w))

= F (max{d(fu, fw), d(fu, Tu), d(fw, Tw),
d(fu, Tw) + d(fw, Tu)

2
}

+Lmin{d(fu, Tu), d(fw, Tw), d(fu, Tw), d(fw, Tu)}).

≤ F (max{d(fu, fw), d(fu, fu), d(fw, fw),
d(fu, fw) + d(fw, fu)

2
}

+Lmin{d(fu, fu), d(fw, fw), d(fu, fw), d(fw, fu)})
≤ F (d(fu, fw)).
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This implies that τ ≤ 0, a contradiction. So u = w.

Note that Corollary 2.5 generalizes Theorem 2.4 in [32]. Now we present an example to validate Theorem
2.1.

Example 2.6. Let X = [1,∞) be the usual metric space. Define f : X → X, and T : X → CL(X) by
fx = x2 and Tx = [x + 2,∞) for all x ∈ X. Note that T (X) = T (X) = [3,∞), so T (X) is complete. It is
easy to check that for all x, y ∈ X with Tx 6= Ty (equivalently with x 6= y), one has

2τ + F (H(Tx, Ty)) ≤ F (M(x, y))

where τ = ln
√

2, and F (α) = lnα. So we can apply Theorem 2.1. In fact C(f, T ) = [2,∞). Observe also
that F (f, T ) = ∅.

Definition 2.7. Let f : Y −→ Y be a self map, and T : Y −→ CL(Y ) a multivalued mapping, where Y is a
subset of a normed linear space X. Then the mapping f −T is called demiclosed at 0 if whenever a sequence
{xn} in Y converges weakly to x0 in Y and {yn} ⊆ (f − T )xn converges to 0 strongly, then 0 ∈ (f − T )x0.

Definition 2.8. Let Y be a subset of a normed space X and q ∈ Y. It is said to be

(a) q−starshaped or starshaped with respect to q if λx+ (1− λ)q ∈ Y for all x ∈ Y and λ ∈ [0, 1];

(b) convex if λx+ (1− λ)y ∈ Y for all x, y ∈ Y and λ ∈ [0, 1].

Definition 2.9. Let f be a self map on a normed space X and Y ⊆ X, then f is called

(c) affine on Y if Y is convex and f(λx+ (1− λ)y) = λfx+ (1− λ)fy for all x, y ∈ Y and λ ∈ [0, 1];

(d) q−affine on Y if Y is q−starshaped and f(λx+ (1−λ)q) = λfx+ (1−λ)q for all x ∈ Y and λ ∈ [0, 1].

Definition 2.10. Let Y be a q−starshaped subset of a normed space X, f : Y −→ Y and T : Y −→ CL(Y ).
A pair (f, T ) satisfies the coincidence point condition on a closed subset A of Y if, whenever {xn} is a
sequence in A such that lim

n→∞
d(fxn, Txn) = 0 then fu ∈ Tu for some u ∈ A. A map T satisfies the fixed

point condition on A ∈ CL(Y ) if, whenever {xn} is a sequence in A such that lim
n→∞

d(xn, Txn) = 0, then

u ∈ Tu for some u ∈ A.

We also define
δ(fy, Tx) = inf{d(fy, Tλx) : 0 ≤ λ ≤ 1},

where Tλx = λTx+ (1− λ)q.

Definition 2.11. Let (X, ‖·‖) be normed space, f : X −→ X and T : X −→ CL(X). If there exist an
F ∈ z and L ≥ 0 such that the pair (f, T ) satisfies

F (H(Tx, Ty)) ≤ F (max{‖fx− fy‖, δ(fx, Tx), δ(fy, Ty),
δ(fx, Ty) + δ(fy, Tx)

2
}

+Lmin{δ(fx, Tx), δ(fy, Ty), δ(fx, Ty), δ(fy, Tx)}) (2.4)

for all x, y ∈ Y with Tx 6= Ty. Then T is called an Ff− nonexpansive.

Theorem 2.12. Let Y be a subset of a normed space X, f : Y −→ Y and T : Y −→ CL(Y ) be an
Ff−nonexpansive. Suppose that Y is q−starshaped, f(Y ) = Y [resp. f is q−affine on Y ], T (Y ) is bounded,

T (Y ) is complete, T (Y ) ⊆ f(Y ). Then C(f, T ) 6= ∅ provided that either F is continuous or T is closed
multivalued mapping. Moreover F (f, T ) 6= ∅ if one of the conditions (a)-(d) of Theorem 2.1 holds.



M. Abbas, B. Ali, S. Romaguera, J. Nonlinear Sci. Appl. 8 (2015), 919–934 928

Proof. Let {λn} be a sequence in (0, 1) such that lim
n→∞

λn = 1. For n ≥ 1, let

Tn(x) = Tλn(x) = λnTx+ (1− λn)q

for all x in Y. As Y is q−starshaped, T (Y ) is complete, T (Y ) ⊆ f(Y ), and f(Y ) = Y [resp. f is q−affine
on Y ], we have Tn(Y ) ⊆ f(Y ) and Tn(Y ) is complete for each n ≥ 1. Now consider,

F (H(Tnx, Tny)) = F (H(Tλn(x), Tλn(y))

= F (H(λnTx+ (1− λn)q, λnTy + (1− λn)q))

= F (λnH(Tx, Ty)).

As F is strictly increasing and λn < 1 for each n ≥ 1, so we obtain

F (H(Tnx, Tny)) = F (λnH(Tx, Ty)) < F (H(Tx, Ty)).

This implies
µn = F (H(Tx, Ty))− F (H(Tnx, Tny)) > 0.

Since n ≥ 1 is fixed, therefore by Archimedean property there exists nµn ∈ N for each n ≥ 1 such that

0 <
1

nµn
< µn.

If τ =
1

2nµn
, then 0 < 2τn < µn for each n ≥ 1. So we have

0 < 2τn < F (H(Tx, Ty))− F (H(Tnx, Tny)).

Thus

2τn + F (H(Tnx, Tny)) < F (H(Tx, Ty))

≤ F (max{‖fx− fy‖, δ(fx, Tx), δ(fy, Ty),
δ(fx, Ty) + δ(fy, Tx)

2
}

+ min{δ(fx, Tx), δ(fy, Ty), δ(fx, Ty), δ(fy, Tx)})

≤ F (max{‖fx− fy‖, d(fx, Tnx), d(fy, Tny),
d(fx, Tny) + d(fy, Tnx)

2
}

+Lmin{d(fx, Tnx), d(fy, Tny), d(fx, Tny), d(fy, Tnx)})

holds for all x, y ∈ Y. Consequently, each Tn is a generalized multivalued (f, L)−almost F−contraction on
Y. Hence, from Theorem 2.1 we conclude that

fxn ∈ Txn = λnTxn + (1− λn)q

for some xn ∈ Y. As
fxn = λnyn + (1− λn)q

for some yn ∈ Txn ⊆ T (Y ). As T (Y ) is bounded, and

‖fxn − yn‖ = (1− λn) ‖q − yn‖ ≤ (1− λn)(‖q‖+ ‖yn‖),

so lim
n→∞

‖fxn − yn‖ = 0 because lim
n→∞

λn = 1. Hence

lim
n→∞

d(fxn, Txn) ≤ lim
n→∞

‖fxn − yn‖ = 0.

Since the pair (f, T ) satisfies the coincidence point condition on Y, there exists a u ∈ Y such that fu ∈ Tu.
Thus C(f, T ) 6= ∅. Using arguments similar to those given in the proof of Theorem 2.1, it can be shown
that F (f, T ) 6= ∅ if one of the conditions (a)-(d) of Theorem 2.1 holds.
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Remark 2.13. Clearly an Ff−nonexpansive multivalued map T is f−almost nonexpansive in [1]. Thus
F = lnx in inequality (2.4) yields f−almost nonexpansive, so Theorem 2.12 improves and generalizes
Theorem 2.3 in [1], Corollary 2.5 in [18], Corollaries 3.2, 3.4 in [20], Theorems 2.2-2.5 in [23], and Theorem
3 in [29].

Example 2.14. Let l1 be the linear space of all summable sequences of real numbers. Then the pair

(l1, ‖ · ‖1) is a Banach space. For each x = (x1, x2, x3, ...), y = (y1, y2, y3, ...) ∈ l1, define ‖x‖1 =
∞∑
n=1
|xn| ,

and ‖x − y‖1 =
∞∑
n=1
|xn − yn| . Let Y = {x ∈ l1 : ‖x‖1 ≤ 1} ⊆ l1. Define the mappings f : Y → Y and

T : Y → CL(Y ) by

f(x) = (x1, x2, 0, 0, ...)

T (x) = {(0, 0, 0, ...), kf(x)}

for some k ∈ (0, 12). Clearly Y is starshaped with star center z = (0, 0, 0, ...), f is z−affine and T (Y ) is

bounded. It is easy to see that T (Y ) ⊆ f(Y ). Since f(Y ) is homeomorphic to the compact subset D of R2,
where D = {(u, v) : |u|+ |v| ≤ 1}, therefore f(Y ) is compact. Since (l1, ‖ · ‖1) is Hausdorff space, therefore
f(Y ) is closed and so f(Y ) is complete. This further implies that T (Y ) is complete. Now for x, y ∈ Y with
Tx 6= Ty, we obtain that

H(Tx, Ty) = ‖kf(x)− kf(y)‖1
= k(|x1 − y1|+ k |x2 − y2|
≤ (|x1 − y1|+ |x2 − y2|)
= ‖f(x)− f(y)‖1

≤ (max{‖fx− fy‖1, δ(fx, Tx), δ(fy, Ty),
δ(fx, Ty) + δ(fy, Tx)

2
}

+Lmin{δ(fx, Tx), δ(fy, Ty), δ(fx, Ty), δ(fy, Tx)})

for any L ≥ 0. If we set F (x) = lnx, then we have

F (H(Tx, Ty)) ≤ F (max{‖fx− fy‖, δ(fx, Tx), δ(fy, Ty),
δ(fx, Ty) + δ(fy, Tx)

2
}

+Lmin{δ(fx, Tx), δ(fy, Ty), δ(fx, Ty), δ(fy, Tx)})).

Thus all the conditions of Theorem 2.12 are satisfied. Hence C(f, T ) 6= ∅. In particular C(f, T ) = F (f, T ) =
{0}, where 0 = (0, 0, 0, ...) ∈ Y.

Corollary 2.15. Let Y be a subset of a normed space X, f : Y −→ Y and T : Y −→ CL(Y ) be an
Ff−nonexpansive. Suppose that Y is q−starshaped, f(Y ) = Y [resp. f is q−affine on Y ], T (Y ) is complete,

T (Y ) ⊆ f(Y ). Assume that one of the following conditions holds:

(e) T (Y ) is bounded and (f − T )(Y ) is closed.

(f) Y is weakly compact and f−T is demiclosed at 0. Then C(f, T ) 6= ∅ provided that either F is continuous
or T is closed multivalued mapping.

Moreover F (f, T ) 6= ∅ if one of the conditions (a)-(d) of Theorem 2.1 holds.

Proof. (e) As in the proof of Theorem 2.12, we obtain that lim
n→∞

(fxn − yn) = 0, where yn ∈ Txn. Since

(f−T )(Y ) is closed, 0 ∈ (f−T )(Y ). Hence the pair (f, T ) satisfies the coincidence point condition on Y and
result follows from Theorem 2.12. (f) As in the proof of Theorem 2.12 we obtain that lim

n→∞
(fxn − yn) = 0,

where yn ∈ Txn. By the weak compactness of Y , there is a subsequence {xm} of the sequence {xn} such
that {xm} converges weakly to y ∈ Y as m tends to∞. Since f−T is demiclosed at 0, therefore 0 ∈ (f−T )y.
Hence the pair (f, T ) satisfies coincidence point condition on Y and result follows from Corollary 2.3.
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Corollary 2.16. Let Y be a subset of a normed space X and T : Y −→ CL(Y ) be an FI−nonexpansive,
where I is identity map. Suppose that Y is q−starshaped, T (Y ) is bounded, T (Y ) is complete, T (Y ) ⊆ Y.
Then T has a fixed point.

3. Applications

(1) Existence and uniqueness of common solution of system of functional equations in dynamic
programming:

Decision space and a state space are two basic components of dynamic programming problem. State
space is a set of states including initial states, action states and transitional states. So a state space is
set of parameters representing different states. A decision space is the set of possible actions that can be
taken to solve the problem. These general settings allow us to formulate many problems in mathematical
optimization and computer programming. In particular the problem of dynamic programming related to
multistage process reduces to the problem of solving functional equations

p(x) = sup
y∈D
{g(x, y) +G1(x, y, p(ξ(x, y)))}, for x ∈W (3.1)

q(x) = sup
y∈D
{g′(x, y) +G2(x, y, q(ξ(x, y)))}, for x ∈W, (3.2)

where U and V are Banach spaces, W ⊆ U and D ⊆ V and

ξ : W ×D −→W

g, g′ : W ×D −→ R
G1, G2 : W ×D × R −→ R,

for more details on dynamic programming we refer to [8, 9, 10, 11, 28]. Suppose that W and D are the state
and decision spaces respectively. We aim to give the existence and uniqueness of common and bounded
solution of functional equations given in (3.1) and (3.2). Let B(W ) denotes the set of all bounded real
valued functions on W . For an arbitrary h ∈ B(W ), define ‖h‖ = supx∈W |h(x)| . Then (B(W ), ‖·‖) is a
Banach space endowed with the metric d defined as

d(h, k) = sup
x∈W
|hx− kx| . (3.3)

Suppose that the following conditions hold:

(C1) : G1, G2, g, and g′ are bounded.
(C2) : For x ∈W , h ∈ B(W ) and b > 0, define

Kh(x) = supy∈D{g(x, y) +G1(x, y, h(ξ(x, y)))}, (3.4)

Jh(x) = supy∈D{g′(x, y) +G2(x, y, h(ξ(x, y)))}. (3.5)

Moreover assume that there exist τ > 0 and L ≥ 0 such that for every (x, y) ∈ W ×D, h, k ∈ B(W ) and
t ∈W implies

|G1(x, y, h(t))−G1(x, y, k(t))| ≤ e−2τ [M(h(t), k(t)) + LN(h(t), k(t))] (3.6)

where

M((h(t), k(t)) = max{d(Jh(t), Jk(t)), d(Jk(t),Kk(t)), d(Jh(t),Kh(t)),

d(Jh(t),Kk(t)) + d(Jk(t),Kh(t))

2
},

N((h(t), k(t)) = min{d(h(t),Kh(t)), d(k(t),Kk(t)), d(h(t),Kk(t)), d(k(t),Kh(t))}.
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(C3) : For any h ∈ B(W ), there exists k ∈ B(W ) such that for x ∈W

Kh(x) = Jk(x).

(C4) : There exists h ∈ B(W ) such that

Kh(x) = Jh(x) implies that JKh(x) = KJh(x).

Theorem 3.1. Assume that the conditions (C1)−(C4) are satisfied. If J(B(W )) is a closed convex subspace
of B(W ), then the functional equations (3.1) and (3.2) have a unique, common and bounded solution.

Proof. Note that (B(W ), d) is a complete metric space. By (C1), J,K are self-maps of B(W ). The condition
(C3) implies that K(B(W )) ⊆ J(B(W )). It follows from (C4) that J and K commute at their coincidence
points. Let λ be an arbitrary positive number and h1, h2 ∈ B(W ). Choose x ∈W and y1, y2 ∈ D such that

Khj < g(x, yj) +G1(x, yj , hj(xj) + λ, (3.7)

where xj = ξ(x, yj), j = 1, 2. Further from (3.4) and (3.5), we have

Kh1 ≥ g(x, y2) +G1(x, y2, h1(x2)) (3.8)

Kh2 ≥ g(x, y1) +G1(x, y1, h2(x1)). (3.9)

Then (3.7) and (3.9) together with (3.6) imply

Kh1(x)−Kh2(x) < G1(x, y1, h1(x1))−G1(x, y1, h2(x2)) + λ

≤ |G1(x, y1, h1(x1))−G1(x, y1, h2(x2))|+ λ

≤ e−2τ (M((h(t), k(t)) + LN(h(t), k(t))) + λ. (3.10)

Then (3.7) and (3.8) together with (3.6) imply

Kh2(x)−Kh1(x) ≤ G1(x, y1, h2(x2))−G1(x, y1, h1(x1))

≤ |G1(x, y1, h1(x1))−G1(x, y1, h2(x2))|
≤ e−2τ (M((h(t), k(t)) + LN(h(t), k(t))). (3.11)

From (3.10) and (3.11), we have

|Kh1(x)−Kh2(x)| ≤ e−2τ (M((h(t), k(t)) + LN(h(t), k(t))). (3.12)

The inequality (3.12) implies

d(Kh1(x)−Kh2(x)) ≤ e−2τ [(M((h(t), k(t)) + LN(h(t), k(t)))]. (3.13)

2τ + ln[d(Kh1(x)−Kh2(x))] ≤ ln[(M((h(t), k(t)) + LN(h(t), k(t)))]. (3.14)

Therefore by Corollary (2.5), the pair (K,J) has a common fixed point h∗, that is, h∗(x) is unique, bounded
and common solution of (3.1) and (3.2).

(1) Existence and uniqueness of common solution of system of integral equations:

Now we discuss an application of fixed point theorem we proved in the previous section in solving the
system of Volterra type integral equations. Such system is given by the following equations:

u(t) =

t∫
0

K1(t, s, u(s))ds+ g(t), (3.15)

w(t) =

t∫
0

K2(t, s, w(s))ds+ f(t). (3.16)
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for t ∈ [0, a], where a > 0. We find the solution of the system (3.15) and (3.16). Let C([0, a],R) be
the space of all continuous functions defined on [0, a]. For u ∈ C([0, a],R), define supremum norm as:
‖u‖τ = sup

t∈[0,a]
{u(t)e−τt}, where τ > 0 is taken arbitrary. Let C([0, a],R) be endowed with the metric

dτ (u, v) = sup
t∈[0,a]

‖ |u(t)− v(t)| e−τt‖τ (3.17)

for all u, v ∈ C([0, a],R). With these setting C([0, a],R, ‖ · ‖τ ) becomes Banach space.
Now we prove the following theorem to ensure the existence of solution of system of integral equations.

For more details on such applications we refer the reader to [7, 26].

Theorem 3.2. Assume the following conditions are satisfied:
(i) K1,K2 : [0, a]× [0, a]× R→ R and f, g : [0, a]→ R are continuous;
(ii) Define

Tu(t) =

t∫
0

K1(t, s, u(s))ds+ g(t),

Su(t) =

t∫
0

K2(t, s, u(s))ds+ f(t).

Suppose there exist τ ≥ 1 and L ≥ 0such that

|K1(t, s, u)−K1(t, s, v)| ≤ τe−2τ [M(u, v) + LN(u, v)]

for all t, s ∈ [0, a] and u, v ∈ C([0, a],R), where

M(u, v) = max{|Su(t)− Sv(t)| , |Sv(t)− Tv(t)| , |Su(t)− Tu(t)| , |Su(t)− Tv(t)|+ |Sv(t)− Tu(t)|
2

},

N(u, v) = min{|u(t)− Tu(t)| , |v(t)− Tv(t)| |u(t)− Tv(t)| , |v(t)− Tu(t)|};

(iii) there exists u ∈ C([0, a],R) such that Tu(t) = Su(t) implies TSu(t) = STu(t). Then the system of
integral equations given in (3.15) and (3.16) has a solution.

Proof. By assumption (iii)

|Tu(t)− Tv(t)| =

t∫
0

|K1(t, s, u(s)−K1(t, s, v(s)))| ds

≤
t∫

0

τe−2τ ([M(u, v) + LN(u, v)]e−τs)eτsds

≤
t∫

0

τe−2τ‖M(u, v) + LN(u, v)‖τeτsds

≤ τe−2τ‖M(u, v) + LN(u, v)‖τ

t∫
0

eτsds

≤ τe−2τ‖M(u, v) + LN(u, v)‖τ
1

τ
eτt

≤ e−2τ‖M(u, v) + LN(u, v)‖τeτt.
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This implies
|Tu(t)− Tv(t)| e−τt ≤ e−2τ‖M(u, v) + LN(u, v)‖τ ,

That is
‖Tu(t)− Tv(t)‖τ ≤ e−2τ‖M(u, v) + LN(u, v)‖τ

which further implies
2τ + ln ‖Tu(t)− Tv(t)‖τ ≤ ln ‖M(u, v) + LN(u, v)‖τ .

So all the conditions of Corollary 2.5 are satisfied. Hence the system of integral equations given in (3.15)
and (3.16) has a unique common solution.
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