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Abstract

The purpose of this paper is to obtain several common fixed point theorems for four mappings in the
setting of cone b-metric spaces over Banach algebras. The obtained results generalize, complement, and
improve some results in the literature. Moreover, we give some supportive examples for our conclusions. In
addition, an application in the solution of a class of equations is given to illustrate the superiority of the
main results. c©2016 All rights reserved.
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1. Introduction and Preliminaries

In 2007, Huang and Zhang [15] introduced the concept of cone metric space, as a generalization of usual
metric space, in which the distance d(x, y) of x and y is defined by a vector in an ordered Banach space,
replacing the usual real line. They proved that the well-known Banach contraction principle is also true in
such spaces. Since then, a large number of fixed point results have appeared in cone metric spaces. The
reader refers to [1–3, 17, 18, 27, 28] and the references therein. Wherein, some authors extend cone metric
spaces into several more general cases. The most famous ones of them are three cases as follows: tvs-cone
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metric spaces or vector spaces valued cone metric spaces (see [3, 4, 24]), cone b-metric spaces or cone metric
type spaces (see [6, 16, 20]), and tvs-cone b-metric spaces (see [23]). We have the following diagram for these
four classes of abstract metric spaces including cone metric spaces:

cone metric space −−−−→ tvs-cone metric spacey y
cone b-metric space −−−−→ tvs-cone b-metric space

Here arrows stand for inclusions. The inverse inclusions do not hold. It is well-known that there exists a
tvs-cone metric space (resp. tvs-cone b-metric space) which is not a cone metric space (resp. cone b-metric
space). There also exists a tvs-cone b-metric space (resp. cone b-metric space) which is not tvs-cone metric
space (resp. cone metric space).

However, in recent years it is not popular since some authors give an answer to the natural problem
that whether cone metric spaces or cone b-metric spaces are equivalent to metric spaces or b-metric spaces
(see [29]), respectively, in terms of the existence of the fixed points of the involved mappings. Concretely,
they appeal to the fact that any cone metric space or cone b-metric space is just equivalent to a metric
space or b-metric space, respectively, if the metric or b-metric function is defined by a nonlinear scalarization
function ξe or by a Minkowski functional qe (see [7–10, 13, 19, 21]). Based on this finding, people start to
lose interest in studying fixed point theorems in cone metric spaces or cone b-metric spaces. Fortunately,
very recently, Liu and Xu [22] introduced the concept of cone metric space over Banach algebra by replacing
Banach space with Banach algebra and proved some fixed point theorems of generalized Lipschitz mappings
with weaker and natural conditions on generalized Lipschitz constant k by means of spectral radius and
pointed out that it is significant to introduce this concept because it can be proved that cone metric spaces
over Banach algebras are not equivalent to metric spaces in terms of the existence of the fixed points of the
generalized Lipschitz mappings. By utilizing the similar ideas, Huang and Radenović [11, 12] introduced
the concept of cone b-metric space over Banach algebra and coped with the non-equivalence between cone
b-metric spaces over Banach algebras and b-metric spaces regarding the existence of the fixed points of the
corresponding mappings. According to these evidences, we make a conclusion that the fixed point results of
vectorial versions are never equivalent to the ones of scalar versions under some hypotheses. Similar to the
work of [11, 12, 22], lots of fixed point theorems of vectorial versions in different spaces have been presented
(see [5, 14, 25, 30]). Throughout this paper, we present several common fixed theorems in the framework
of cone b-metric spaces over Banach algebras. Our results simplify, improve and complement some recent
results from several papers. Further, by using our results, we obtain the existence and uniqueness of solution
for a class of nonlinear integral equations.

For the sake of the reader, we recall some notions and lemmas as follows.

Definition 1.1 ([24]). Let E be a topological vector space (for example, locally convex Hausdorff space)
with its zero vector θ. A nonempty subset P of E is called a proper, closed and convex pointed cone (for
short, a cone) if:

(i) P is closed and P 6= {θ} ;

(ii) λ, µ ∈ R, λ, µ ≥ 0 and x, y ∈ P imply λx+ µy ∈ P ;

(iii) P ∩ (−P ) = {θ}.

For a given cone P we define a partial ordering “�” with respect to P by x � y if y − x ∈ P . We also
define a partial ordering “�” with respect to P by x � y if y − x ∈ intP , where intP stands for the set
of all interiors of P . If intP 6= ∅, then P is called a solid cone. The cone P is called normal if there is a
real number M > 0 such that for all x, y ∈ E, θ � x � y implies ‖x‖ ≤ M‖y‖. The least positive number
satisfying above is called the normal constant of P .

In the following, unless otherwise specified, we always assume that P is a solid cone, and “�” and “�”
are partial orderings with respect to P .
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Definition 1.2 ([7]). Let X be a nonempty set and E a real locally convex Hausdorff space. A vector-valued
function d : X × X → E is said to be a tvs-cone b-metric function on X with the constant K ≥ 1 if the
following conditions are satisfied:

(b1) θ � d (x, y), for all x, y ∈ X, and d (x, y) = θ if and only if x = y;

(b2) d (x, y) = d (y, x) for all x, y ∈ X;

(b3) d (x, z) � K[d (x, y) + d (y, z)] for all x, y, z ∈ X.

The pair (X, d) is called a tvs-cone b-metric space or tvs-cone metric type space. If K = 1, then (X, d) is
called a tvs-cone metric space. In the case when E is an ordered real Banach space, then (X, d) is called a
cone metric space (see [11]).

In [22], the authors modified Definition 1.1 and gave the following notion:

Definition 1.3 ([22]). Let A be a Banach algebra with a unit e, and θ the zero element of A. A nonempty
closed convex subset P of A is called a cone if {θ, e} ⊂ P , P 2 = PP ⊂ P , P ∩ (−P ) = {θ} and λP +µP ⊂ P
for all λ, µ ≥ 0.

Definition 1.4 ([11]). Let X be a nonempty set, K ≥ 1 be a constant, and A be a Banach algebra. Suppose
that the mapping d : X ×X → A satisfies for all x, y, z ∈ X,

(d1) θ � d(x, y) and d(x, y) = θ if and only if x = y;

(d2) d(x, y) = d(y, x);

(d3) d(x, z) � K[d(x, y) + d(y, z)].

Then d is called a cone b-metric on X, and (X, d) is called a cone b-metric space over Banach algebra.

Remark 1.5. In Definition 1.4, if E is a real locally convex Hausdorff space and A is the corresponding locally
convex Hausdorff algebra, then (X, d) is called a tvs-cone b-metric space over locally convex Hausdorff algebra,
which generalizes the notion of cone b-metric space over Banach algebra.

Definition 1.6 ([11]). Let (X, d) be a cone b-metric space over Banach algebra A, x ∈ X, {xn} a sequence
in X and {un} a sequence in A. Then

(i) {xn} converges to x whenever for every c� θ there is a natural number N such that d(xn, x)� c for
all n ≥ N . We denote this by limn→∞ xn = x or xn → x (n→∞);

(ii) {xn} is a Cauchy sequence whenever for each c� θ there is a natural numberN such that d(xn, xm)� c
for all n,m ≥ N ;

(iii) (X, d) is complete if every Cauchy sequence is convergent;

(iv) {un} is a c-sequence if for each c� θ, there is a natural number N such that un � c for all n ≥ N .

Example 1.7. Let A = C1
R[0, 1] and define a norm on A by ‖x‖ = ‖x‖∞ + ‖x′‖∞. Take multiplication

in A as just pointwise multiplication. Then A is a real Banach algebra with a unit e = 1 (e(t) = 1 for all
t ∈ [0, 1]). The set P = {x ∈ A : x(t) ≥ 0 for all t ∈ [0, 1]} is a cone in A. Moreover, P is a non-normal solid
cone (see [17]). Let X = {1, 2, 3}. Define d : X ×X by d(1, 2)(t) = d(2, 1)(t) = et, d(2, 3)(t) = d(3, 2)(t) =
2et, d(1, 3)(t) = d(3, 1)(t) = 4et and d(x, x)(t) = θ for all t ∈ [0, 1] and each x ∈ X. We have that (X, d) is
a complete cone b-metric space over Banach algebra A with the coefficient K = 4

3 .

Definition 1.8 ([1]). Let S, F : X → X be mappings on a set X.
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(1) If y = Sx = Fx for some x ∈ X, then x is called a coincidence point of S and F , and y is called a
point of coincidence of S and F .

(2) The pair {S, F} is called weakly compatible if S and F commute at all of their coincidence points, that
is, SFx = FSx for all x ∈ {x ∈ X : Sx = Fx}.

Lemma 1.9 ([26]). Let A be a Banach algebra with a unit e, then the spectral radius ρ(u) of u ∈ A holds

ρ(u) = lim
n→∞

‖un‖
1
n = inf ‖un‖

1
n .

If ρ(u) < |C| and C is a complex constant, then Ce− u is invertible in A, moreover,

(Ce− u)−1 =
∞∑
i=0

ui

Ci+1
.

Lemma 1.10 ([26]). Let A be a Banach algebra with a unit e, u, v ∈ A. If u commutes with v, then

ρ(u+ v) ≤ ρ(u) + ρ(v), ρ(uv) ≤ ρ(u)ρ(v).

Lemma 1.11 ([11]). Let {un} be a sequence in A with un → θ (n→∞). Then {un} is a c-sequence.

Lemma 1.12 ([17]). Let E be a Banach space.

(i) If a, b, c ∈ E and a � b� c, then a� c.

(ii) If θ � a� c for each c� θ, then a = θ.

Lemma 1.13 ([30]). Let P be a solid cone in a Banach algebra A and {un} be a c-sequence in P . If β ∈ P
is an arbitrarily given vector, then {βun} is a c-sequence.

Lemma 1.14 ([1]). Let S and F be weakly compatible self maps of a set X. If S and F have a unique point
of coincidence w, then w is the unique common fixed point of S and F .

Lemma 1.15 ([11]). Let A be a Banach algebra with a unit e. Let α ∈ A and ρ(α) < 1. Then {αn} is a
c-sequence.

Lemma 1.16 ([11]). Let A be a Banach algebra with a unit e and u ∈ A. If ρ(u) < |C| and C is a complex
constant, then

ρ
(
(Ce− u)−1

)
≤ 1

|C| − ρ(u)
.

2. Main results

In this section, we offer two lemmas, which will be used constantly in the sequel. Then we acquire some
common fixed theorems and their corollaries for four mappings in cone b-metric spaces over Banach algebras.
We also present two examples to support our conclusions. In addition, we give some remarks to account for
the usability of our results.

Lemma 2.1. Let A be a Banach algebra with a unit e and P be a solid cone in A. Let u, α, β ∈ P hold
α � β and u � αu. If ρ(β) < 1, then u = θ.

Proof. By Lemma 1.15, it is valid that {βn} is a c-sequence, and then by Lemma 1.13, {βnu} is also a
c-sequence. As α � β leads to u � αu � α2u � · · · � αnu � βnu, thus by Lemma 1.12 it follows that
u = θ.
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Lemma 2.2. Let (X, d) be a cone b-metric space over Banach algebra A with the coefficient K ≥ 1 and P
be a solid cone in A. Suppose that α ∈ A, ρ(α) < 1

K , and {zn} is a sequence in X satisfying the following
inequality:

d(zn, zn+1) � αd(zn−1, zn). (2.1)

Then {zn} is a Cauchy sequence in X.

Proof. Making full use of (2.1), we have that

d(zn, zn+1) � αd(zn−1, zn) � α2d(zn−2, zn−1) � · · · � αnd(z0, z1).

Since ρ(α) < 1
K leads to ρ(Kα) = Kρ(α) < 1, then by Lemma 1.9, we get that e−Kα is invertible and

(e−Kα)−1 =
∑∞

i=0(Kα)
i. Thus for any n > m, it follows that

d(zm, zn) � K[d(zm, zm+1) + d(zm+1, zn)]

� Kd(zm, zm+1) +K2[d(zm+1, zm+2) + d(zm+2, zn)]

� Kd(zm, zm+1) +K2d(zm+1, zm+2) +K3[d(zm+2, zm+3) + d(zm+3, zn)]

� Kd(zm, zm+1) +K2d(zm+1, zm+2) +K3d(zm+2, zm+3)

+ · · ·+Kn−m−1d(zn−2, zn−1) +Kn−m−1d(zn−1, zn)

� Kαmd(z0, z1) +K2αm+1d(z0, z1) +K3αm+2d(z0, z1)

+ · · ·+Kn−m−1αn−2d(z0, z1) +Kn−m−1αn−1d(z0, z1)

� Kαm(e+Kα+K2α2 + · · ·+Kn−m−2αn−m−2 +Kn−m−1αn−m−1)d(z0, z1)

� Kαm

( ∞∑
i=0

(Kα)i

)
d(z0, z1)

= Kαm(e−Kα)−1d(z0, z1).

Note that ρ(α) < 1
K ≤ 1 and Lemma 1.15, it is easy to see that {αm} is a c-sequence. Therefore, using

Lemma 1.13 and Lemma 1.12 (i), we claim that {zn} is a Cauchy sequence.

Theorem 2.3. Let (X, d) be a cone b-metric space over Banach algebra A with the coefficient K ≥ 1 and
P be a solid cone in A. Suppose that self-mappings F,G, S, T : X → X satisfy SX ⊆ GX, TX ⊆ FX, and
that for some vector λ ∈ P with ρ(λ) ∈

(
0, 2

K2+K

)
, for all x, y ∈ X there exists

u (x, y) ∈
{
d (Fx,Gy) , d (Fx, Sx) , d (Gy, Ty) ,

d (Fx, Ty) + d (Gy, Sx)

2

}
, (2.2)

such that the following inequality
d(Sx, Ty) � λu(x, y) (2.3)

holds. If one of SX, TX,FX or GX is a complete subspace of X, then {S, F} and {T,G} have a unique
point of coincidence in X. Moreover, if {S, F} and {T,G} are weakly compatible pairs, then F,G, S, and T
have a unique common fixed point.

Proof. For any arbitrary point x0 ∈ X, construct sequences {xn} and {zn} as follows:

z2n = Sx2n = Gx2n+1, z2n+1 = Tx2n+1 = Fx2n+2. (2.4)

First we prove that
d (zn, zn+1) � αd (zn−1, zn) , (2.5)

where α ∈ {λ, (2e−Kλ)−1Kλ}.
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To show the inequality (2.5), we need to consider the following cases.

For n = 2l + 1, l ∈ N0, we have d(z2l+1, z2l+2) = d(Sx2l+2, Tx2l+1), and from (2.2), there exists

u(x2l+2, x2l+1) ∈
{
d(Fx2l+2, Gx2l+1), d(Fx2l+2, Sx2l+2), d(Gx2l+1, Tx2l+1),

d(Fx2l+2, Tx2l+1) + d(Gx2l+1, Sx2l+2)

2

}
=

{
d(z2l+1, z2l), d(z2l+1, z2l+2),

d(z2l, z2l+2)

2

}
,

such that d(z2l+1, z2l+2) � λu(x2l+2, x2l+1). Thus we have the following three cases:

(i) d(z2l+1, z2l+2) � λd(z2l+1, z2l) = αd(z2l, z2l+1) (Here α = λ);

(ii) d(z2l+1, z2l+2) � λd(z2l+1, z2l+2). By Lemma 2.1, so d(z2l+1, z2l+2) = θ;

(iii) d(z2l+1, z2l+2) � (λ/2)d(z2l, z2l+2), then

d(z2l+1, z2l+2) �
Kλ

2
[d(z2l, z2l+1) + d(z2l+1, z2l+2)]. (2.6)

Note that ρ(Kλ) = Kρ(λ) < 2K
K2+K

= 2
K+1 ≤ 1 < 2, then by Lemma 1.9 it establishes that 2e −Kλ is

invertible. So by (2.6), we arrive at

d(z2l+1, z2l+2) � (2e−Kλ)−1Kλd(z2l, z2l+1).

Thus, (2.5) holds in this case. Here α = (2e−Kλ)−1Kλ.

For n = 2l, l ∈ N, we have d(z2l, z2l+1) = d(Sx2l, Tx2l+1), and from (2.2), there exists

u(x2l, x2l+1) ∈
{
d(Fx2l, Gx2l+1), d(Fx2l, Sx2l), d(Gx2l+1, Tx2l+1),

d(Fx2l, Tx2l+1) + d(Gx2l+1, Sx2l)

2

}
=

{
d(z2l−1, z2l), d(z2l, z2l+1),

d(z2l−1, z2l+1)

2

}
,

such that d(z2l, z2l+1) � λu(x2l, x2l+1). Hence we have the following three cases:

(i) d(z2l, z2l+1) � λd(z2l−1, z2l) = αd(z2l−1, z2l) (Here α = λ);

(ii) d(z2l, z2l+1) � λd(z2l, z2l+1). By Lemma 2.1, then d(z2l, z2l+1) = θ;

(iii) d(z2l, z2l+1) � (λ/2)d(z2l−1, z2l+1), then

d(z2l, z2l+1) �
Kλ

2
[d(z2l−1, z2l) + d(z2l, z2l+1)],

which implies that
d(z2l, z2l+1) � (2e−Kλ)−1Kλd(z2l−1, z2l).

Accordingly, (2.5) is satisfied in this case, too. Here α = (2e−Kλ)−1Kλ.
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Next we shall prove ρ(α) < 1
K . Indeed, if α = λ, then ρ(α) = ρ(λ) < 2

K2+K
≤ 1

K . If α = (2e−Kλ)−1Kλ,
then by Lemma 1.10 and Lemma 1.16, we speculate that

ρ(α) = ρ((2e−Kλ)−1Kλ) ≤ ρ((2e−Kλ)−1)ρ(Kλ)

≤ Kρ(λ)

2−Kρ(λ)
<

K 2
K2+K

2−K 2
K2+K

=
1

K
.

So from (2.5), by using Lemma 2.2, we claim that {zn} is a Cauchy sequence.
Without loss of generality, let us suppose that SX is a complete subspace of X. Then there exists some

point z ∈ SX ⊆ GX such that zn → z = Gu for some u ∈ X. Of course, the subsequences {z2n} and
{z2n−1} also converge to z. Let us prove z = Tu. From (2.3) we obtain that

d(Tu, z) � Kd(Tu, Sx2n) +Kd(Sx2n, z) � Kλu(x2n, u) +Kd(z2n, z),

where

u(x2n, u) ∈
{
d(Fx2n, Gu), d(Fx2n, Sx2n), d(Gu, Tu),

d(Fx2n, Tu) + d(Gu, Sx2n)

2

}
=

{
d(z2n−1, z), d(z2n−1, z2n), d(z, Tu),

d(z2n−1, Tu) + d(z, z2n)

2

}
.

Thus for each c� θ, making full use of Lemma 1.13, we have the following four cases:

(i) d(Tu, z) � Kλd(z2n−1, z) +Kd(z2n, z)� c;

(ii) d(Tu, z) � Kλd(z2n−1, z2n) +Kd(z2n, z)� c;

(iii) d(Tu, z) � Kλd(z, Tu) +Kd(z2n, z), that is, d(Tu, z) � (e−Kλ)−1Kd(z2n, z)� c;

(iv) d(Tu, z) � Kλd(z2n−1,Tu)+d(z,z2n)
2 +Kd(z2n, z), hence,

d(Tu, z) � KλKd(z2n−1, z) +Kd(Tu, z) + d(z, z2n)

2
+Kd(z2n, z),

which yields that

(2e−K2λ)d(Tu, z) � K2λd(z2n−1, z) +K(λ+ 2e)d(z2n, z). (2.7)

On account of ρ(K2λ) = K2ρ(λ) < 2K2

K2+K
< 2, so by Lemma 1.9, 2e−K2λ is invertible. Then by (2.7),

it is valid that
d(Tu, z) � (2e−K2λ)−1[K2λd(z2n−1, z) +K(λ+ 2e)d(z2n, z)]� c.

Consider the above cases, it follows from Lemma 1.12 (ii) that z = Tu. As a result, Tu = Gu = z. That
is to say, u is a coincidence point and z is a point of coincidence of T and G.

Since TX ⊆ FX, there exists v ∈ X such that z = Fv. Let us prove that z = Sv. From (2.3), we get
that

d(Sv, z) � Kd(Sv, Tx2n+1) +Kd(Tx2n+1, z) � Kλu(v, x2n+1) +Kd(z2n+1, z),

where

u(v, x2n+1) ∈
{
d(Fv,Gx2n+1), d(Fv, Sv), d(Gx2n+1, Tx2n+1),
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d(Fv, Tx2n+1) + d(Gx2n+1, Sv)

2

}
=

{
d(z, z2n), d(z, Sv), d(z2n, z2n+1),

d(z, z2n+1) + d(z2n, Sv)

2

}
.

Thus for each c� θ, taking advantage of Lemma 1.13, we have the following four cases:

(i) d(Sv, z) � Kλd(z, z2n) +Kd(z2n+1, z)� c;

(ii) d(Sv, z) � Kλd(z, Sv) +Kd(z2n+1, z), i.e., d(Sv, z) � (e−Kλ)−1Kd(z2n+1, z)� c;

(iii) d(Sv, z) � Kλd(z2n, z2n+1) +Kd(z2n+1, z)� c;

(iv) d(Sv, z) � Kλd(z,z2n+1)+d(z2n,Sv)
2 +Kd(z2n+1, z), then

d(Sv, z) � Kλd(z, z2n+1) +Kd(z2n, z) +Kd(z, Sv)

2
+Kd(z2n+1, z),

which establishes that

d(Sv, z) � (2e−K2λ)−1[K(λ+ 2e)d(z2n+1, z) +K2λd(z2n, z)]� c.

Uniting the above cases together with Lemma 1.12 (ii), we get Sv = z. As a consequence, Sv = Fv = z.
In other words, v is a coincidence point and z is a point of coincidence of S and F .

In the following, we prove that z is the unique point of coincidence of pairs {S, F} and {T,G}. We
suppose for absurd that there exists another point of coincidence z∗ of these four mappings. That is,
Sv∗ = Fv∗ = Tu∗ = Gu∗ = z∗ (say). From (2.3), we acquire that

d(z, z∗) = d(Sv, Tu∗) � λu(v, u∗),

where

u(v, u∗) ∈
{
d(Fv,Gu∗), d(Fv, Sv), d(Gu∗, Tu∗),

d(Fv, Tu∗) + d(Gu∗, Sv)

2

}
= {d(z, z∗), θ}.

Again by Lemma 2.1, we deduce that z = z∗.

Finally, if {S, F} and {T,G} are weakly compatible pairs, then by Lemma 1.14, we claim that F,G, S,
and T have a unique common fixed point.

Similarly, we can prove the statement in the case when FX, GX or TX is complete.

Corollary 2.4. Let (X, d) be a cone b-metric space over Banach algebra A with the coefficient K ≥ 1 and
P be a solid cone in A. Suppose that self-mappings F, S, T : X → X satisfy SX ∪ TX ⊆ FX, and that for
some vector λ ∈ P with ρ(λ) ∈

(
0, 2

K2+K

)
, for all x, y ∈ X there exists

u (x, y) ∈
{
d (Fx, Fy) , d (Fx, Sx) , d (Fy, Ty) ,

d (Fx, Ty) + d (Fy, Sx)

2

}
,

such that the following inequality
d (Sx, Ty) � λu (x, y)

holds. If one of SX, TX or FX is a complete subspace of X, then {S, F} and {T, F} have a unique point
of coincidence in X. Moreover, if {S, F} and {T, F} are weakly compatible pairs, then F, S, and T have a
unique common fixed point.
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Corollary 2.5. Let (X, d) be a cone b-metric space over Banach algebra A with the coefficient K ≥ 1 and
P be a solid cone in A. Suppose that self-mappings S, T : X → X satisfy that for some vector λ ∈ P with
ρ(λ) ∈

(
0, 2

K2+K

)
, for all x, y ∈ X there exists

u (x, y) ∈
{
d (x, y) , d (x, Sx) , d (y, Ty) ,

d (x, Ty) + d (y, Sx)

2

}
,

such that the following inequality
d (Sx, Ty) � λu (x, y)

holds. If one of SX or TX is a complete subspace of X, then S and T have a unique common fixed point.

Corollary 2.6. Let (X, d) be a cone b-metric space over Banach algebra A with the coefficient K ≥ 1 and P
be a solid cone in A. Suppose that self-mappings F, S : X → X satisfy SX ⊆ FX, and that for some vector
λ ∈ P with ρ(λ) ∈

(
0, 2

K2+K

)
, for all x, y ∈ X there exists

u (x, y) ∈
{
d (Fx, Fy) , d (Fx, Sx) , d (Fy, Sy) ,

d (Fx, Sy) + d (Fy, Sx)

2

}
,

such that the following inequality
d (Sx, Sy) � λu (x, y)

holds. If one of SX or FX is a complete subspace of X, then S and F have a unique point of coincidence
in X. Moreover, if {S, F} is a weakly compatible pair, then S and F have a unique common fixed point.

Corollary 2.7. Let (X, d) be a cone b-metric space over Banach algebra A with the coefficient K ≥ 1 and
P be a solid cone in A. Suppose that self-mapping S : X → X satisfies that for some vector λ ∈ P with
ρ(λ) ∈

(
0, 2

K2+K

)
, for all x, y ∈ X there exists

u (x, y) ∈
{
d (x, y) , d (x, Sx) , d (y, Sy) ,

d (x, Sy) + d (y, Sx)

2

}
,

such that the following inequality
d (Sx, Sy) � λu (x, y)

holds. If SX is a complete subspace of X, then S has a unique fixed point.

Corollary 2.8. Let (X, d) be a cone b-metric space with the coefficient K ≥ 1. Suppose that self-mappings
F,G, S, T : X → X satisfy SX ⊆ GX, TX ⊆ FX, and that for some real constant λ with λ ∈

(
0, 2

K2+K

)
,

for all x, y ∈ X there exists

u (x, y) ∈
{
d (Fx,Gy) , d (Fx, Sx) , d (Gy, Ty) ,

d (Fx, Ty) + d (Gy, Sx)

2

}
, (2.8)

such that the following inequality
d (Sx, Ty) � λu (x, y) (2.9)

holds. If one of SX, TX,FX or GX is a complete subspace of X, then {S, F} and {T,G} have a unique
point of coincidence in X. Moreover, if {S, F} and {T,G} are weakly compatible pairs, then F,G, S, and T
have a unique common fixed point.

Remark 2.9. Our conclusions never consider the normality of cones, which may bring us more convenience
in applications. Moreover, they greatly generalize the previous results from several references. For instance,
Corollary 2.6 generalizes Theorem 2.1 and Theorem 2.4 from [1]. Corollary 2.7 generalizes Theorem 1 and
Theorem 4 from [15], Theorem 2.1 and Theorem 2.2 from [22], and Theorem 3.1 and Theorem 3.2 from [30].
Corollary 2.8 generalizes Theorem 2.2 from [2].



H. Huang, S. Hu, B. Z. Popović, S. Radenović, J. Nonlinear Sci. Appl. 9 (2016), 3655–3671 3664

Remark 2.10. Corollary 2.8 extend, unite and improve Theorem 3.1 and Theorem 3.3 from [6] in several
sides. Firstly, Corollary 2.8 contains these two theorems. This is because our condition K ≥ 1 includes
1 ≤ K ≤ 2 of Theorem 3.1 and K ≥ 2 of Theorem 3.3. Secondly, our conditions (2.8) and (2.9) are much
simpler than (3.1) and (3.2), respectively, from Theorem 3.1. Thirdly, we correct some mistakes in the proof
of Theorem 3.1. Indeed, (3.3) of Theorem 3.1 should satisfy 0 < α < 1

K , otherwise, (3.9) of Theorem 3.1 is
incorrect since 1−Kα is not necessarily greater than 0.

Example 2.11. Under the hypotheses of Example 1.7, define two mappings S, F : X → X as follows:

S1 = S2 = 2, S3 = 1; F1 = 1, F2 = 2, F3 = 3.

Put λ = 1
8 t+

1
2 ∈ A. Simple calculations show that

d(Sx, Sy) � λd(Fx, Fy)

for all x, y ∈ X. As a result, the conditions of Corollary 2.6 are satisfied. Therefore, S and F have a unique
common fixed point x = 2.

Theorem 2.12. Let (X, d) be a cone b-metric space over Banach algebra A with the coefficient K ≥ 1 and
P be a solid cone in A. Suppose that self-mappings F,G, S, T : X → X satisfy SX ⊆ GX, TX ⊆ FX, and
that one of SX, TX,FX or GX is a complete subspace of X. Suppose that

d(Sx, Ty) � λ1d(Fx,Gy) + λ2d(Fx, Sx) + λ3d(Gy, Ty)

+ λ4[d(Fx, Ty) + d(Gy, Sx)] (2.10)

for all x, y ∈ X, where λi ∈ P are some vectors with λiλj = λjλi (i = 1, 2, 3, 4). If ρ(λ3 +Kλ4) +Kρ(λ1 +
λ2 +Kλ4) < 1 and ρ(λ2 +Kλ4) +Kρ(λ1 + λ3 +Kλ4) < 1, then {S, F} and {T,G} have a unique point of
coincidence in X. Moreover, if {S, F} and {T,G} are weakly compatible pairs, then F,G, S, and T have a
unique common fixed point.

Proof. For arbitrary point x0 ∈ X, construct the same sequences {xn} and {zn} in X as in the proof of
Theorem 2.3. By utilizing (2.10), then on the one hand, we have that

d(z2n, z2n+1) = d(Sx2n, Tx2n+1)

� λ1d(Fx2n, Gx2n+1) + λ2d(Fx2n, Sx2n) + λ3d(Gx2n+1, Tx2n+1)

+ λ4[d(Fx2n, Tx2n+1) + d(Gx2n+1, Sx2n)]

= λ1d(z2n−1, z2n) + λ2d(z2n−1, z2n) + λ3d(z2n, z2n+1)

+ λ4d(z2n−1, z2n+1)

� (λ1 + λ2 +Kλ4)d(z2n−1, z2n) + (λ3 +Kλ4)d(z2n, z2n+1),

which means that

d(z2n, z2n+1) � (e− λ3 −Kλ4)−1(λ1 + λ2 +Kλ4)d(z2n−1, z2n). (2.11)

On the other hand, we obtain that

d(z2n+1, z2n+2) = d(Sx2n+2, Tx2n+1)

� λ1d(Fx2n+2, Gx2n+1) + λ2d(Fx2n+2, Sx2n+2) + λ3d(Gx2n+1, Tx2n+1)

+ λ4[d(Fx2n+2, Tx2n+1) + d(Gx2n+1, Sx2n+2)]

= λ1d(z2n+1, z2n) + λ2d(z2n+1, z2n+2) + λ3d(z2n, z2n+1)

+ λ4d(z2n, z2n+2)

� (λ1 + λ3 +Kλ4)d(z2n, z2n+1) + (λ2 +Kλ4)d(z2n+1, z2n+2),
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which implies that

d(z2n+1, z2n+2) � (e− λ2 −Kλ4)−1(λ1 + λ3 +Kλ4)d(z2n, z2n+1). (2.12)

Using Lemma 1.10 and Lemma 1.16, we arrive at

ρ((e− λ3 −Kλ4)−1(λ1 + λ2 +Kλ4)) ≤ ρ((e− λ3 −Kλ4)−1)ρ(λ1 + λ2 +Kλ4)

≤ ρ(λ1 + λ2 +Kλ4)

1− ρ(λ3 +Kλ4)
<

1

K
,

and

ρ((e− λ2 −Kλ4)−1(λ1 + λ3 +Kλ4)) ≤ ρ((e− λ2 −Kλ4)−1)ρ(λ1 + λ3 +Kλ4)

≤ ρ(λ1 + λ3 +Kλ4)

1− ρ(λ2 +Kλ4)
<

1

K
.

Hence, from (2.11) and (2.12), by Lemma 2.2, we demonstrate that {zn} is a Cauchy sequence.

Assume that SX is a complete subspace of X. Then there exists some point z ∈ SX ⊆ GX such that
zn → z = Gu for some u ∈ X. Of course, the subsequences {z2n} and {z2n−1} also converge to z. Let us
prove z = Tu. From (2.10) we get that

d(Tu, z) � K[d(Sx2n, Tu) + d(Sx2n, z)]

� K{λ1d(Fx2n, Gu) + λ2d(Fx2n, Sx2n) + λ3d(Gu, Tu)

+ λ4[d(Fx2n, Tu) + d(Gu, Sx2n)] + d(Sx2n, z)}
� K{λ1d(z2n−1, z) + λ2d(z2n−1, z2n) + λ3d(z, Tu) + d(z2n, z)

+ λ4[Kd(z2n−1, z) +Kd(z, Tu) + d(z, z2n)]}+Kλ1d(z, Tu),

which yields that

(e−Kλ1 −Kλ3 −K2λ4)d(Tu, z) � K{λ1d(z2n−1, z) + λ2d(z2n−1, z2n) + d(z2n, z)

+ λ4[Kd(z2n−1, z) + d(z, z2n)]}. (2.13)

Since

ρ(Kλ1 +Kλ3 +K2λ4) = Kρ(λ1 + λ3 +Kλ4) ≤ ρ(λ2 +Kλ4) +Kρ(λ1 + λ3 +Kλ4) < 1,

implies that e−Kλ1 −Kλ3 −K2λ4 is invertible, then from (2.13) we obtain that

d(Tu, z) � (e−Kλ1 −Kλ3 −K2λ4)
−1K{λ1d(z2n−1, z) + λ2d(z2n−1, z2n)

+ d(z2n, z) + λ4[Kd(z2n−1, z) + d(z, z2n)]}. (2.14)

By Lemma 1.13, it is clear that the right side of the inequality (2.14) is a c-sequence, this means z = Tu.
As a result, Tu = Gu = z. That is to say, u is a coincidence point and z is a point of coincidence of T and
G.

Since TX ⊆ FX, there exists v ∈ X such that z = Fv. Let us prove z = Sv. From (2.10), we deduce
that

d(Sv, z) � K[d(Sv, Tx2n+1) + d(Tx2n+1, z)]

� K{λ1d(Fv,Gx2n+1) + λ2d(Fv, Sv) + λ3d(Gx2n+1, Tx2n+1)

+ λ4[d(Fv, Tx2n+1) + d(Gx2n+1, Sv)] + d(Tx2n+1, z)}
� K{λ1d(z, z2n) + λ2d(z, Sv) + λ3d(z2n, z2n+1) + d(z2n+1, z)
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+ λ4[d(z, z2n+1) +Kd(z2n, z) +Kd(z, Sv)]}+Kλ1d(Sv, z),

which follows that

(e−Kλ1 −Kλ2 −K2λ4)d(Sv, z) � K{λ1d(z, z2n) + λ3d(z2n, z2n+1) + d(z2n+1, z)

+ λ4[d(z, z2n+1) +Kd(z2n, z)]}. (2.15)

Now that

ρ(Kλ1 +Kλ2 +K2λ4) = Kρ(λ1 + λ2 +Kλ4)

≤ ρ(λ3 +Kλ4) +Kρ(λ1 + λ2 +Kλ4)

< 1,

makes clear that e−Kλ1 −Kλ2 −K2λ4 is invertible, then from (2.15) we obtain that

d(Sv, z) � (e−Kλ1 −Kλ2 −K2λ4)
−1K{λ1d(z, z2n) + λ3d(z2n, z2n+1)

+ d(z2n+1, z) + λ4[d(z, z2n+1) +Kd(z2n, z)]}. (2.16)

By Lemma 1.13, we know that the right side of the inequality (2.16) is a c-sequence, this means z = Sv.
Accordingly, Sv = Fv = z. That is to say, v is a coincidence point and z is a point of coincidence of S and
F .

In the following, we prove that z is the unique point of coincidence of pairs {S, F} and {T,G}. To
this end, we assume that there exists another point of coincidence z∗ of these four mappings. That is,
Sv∗ = Fv∗ = Tu∗ = Gu∗ = z∗ (say). From (2.10), we acquire that

d(z, z∗) = d(Sv, Tu∗)

� λ1d(Fv,Gu∗) + λ2d(Fv, Sv) + λ3d(Gu
∗, Tu∗)

+ λ4[d(Fv, Tu
∗) + d(Gu∗, Sv)]

= (λ1 + 2λ4)d(z, z
∗). (2.17)

In view of K ≥ 1, it follows that

λ1 + 2λ4 � Kλ1 +Kλ4 +K2λ4

� 1

2
λ2 +

1

2
λ3 +Kλ1 +Kλ4 +

1

2
Kλ2 +

1

2
Kλ3 +K2λ4. (2.18)

Using Lemma 1.10, we arrive at

ρ(λ2 + λ3 + 2Kλ1 + 2Kλ4 +Kλ2 +Kλ3 + 2K2λ4)

= ρ{[(λ3 +Kλ4) +K(λ1 + λ2 +Kλ4)]

+ [(λ2 +Kλ4) +K(λ1 + λ3 +Kλ4)]}
≤ [ρ(λ3 +Kλ4) +Kρ(λ1 + λ2 +Kλ4)]

+ [ρ(λ2 +Kλ4) +Kρ(λ1 + λ3 +Kλ4)]

< 1 + 1 = 2,

which establishes that

ρ(
1

2
λ2 +

1

2
λ3 +Kλ1 +Kλ4 +

1

2
Kλ2 +

1

2
Kλ3 +K2λ4) < 1. (2.19)

Making full use of (2.17)–(2.19), and Lemma 2.1, we get d(z, z∗) = θ, that is, z = z∗.
Finally, if {S, F} and {T,G} are weakly compatible pairs, then by Lemma 1.14, we claim that F,G, S,

and T have a unique common fixed point.
Similarly, we can prove the case when Fx, Gx or Tx is complete.
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Corollary 2.13. Let (X, d) be a cone b-metric space over Banach algebra A with the coefficient K ≥ 1 and
P be a solid cone in A. Suppose that self-mappings F, S, T : X → X satisfy SX ∪ TX ⊆ FX, and that one
of SX, TX or FX is a complete subspace of X. Suppose that

d(Sx, Ty) � λ1d(Fx, Fy) + λ2d(Fx, Sx) + λ3d(Fy, Ty) + λ4[d(Fx, Ty) + d(Fy, Sx)]

for all x, y ∈ X, where λi ∈ P are some vectors with λiλj = λjλi (i = 1, 2, 3, 4). If ρ(λ3 +Kλ4) +Kρ(λ1 +
λ2 + Kλ4) < 1 and ρ(λ2 + Kλ4) + Kρ(λ1 + λ3 + Kλ4) < 1, then {S, F} and {T, F} have a unique point
of coincidence in X. Moreover, if {S, F} and {T, F} are weakly compatible pairs, then F, S, and T have a
unique common fixed point.

Corollary 2.14. Let (X, d) be a cone b-metric space over Banach algebra A with the coefficient K ≥ 1 and
P be a solid cone in A. Suppose that self-mappings S, T : X → X satisfy that one of SX or TX is a complete
subspace of X. Suppose that

d(Sx, Ty) � λ1d(x, y) + λ2d(x, Sx) + λ3d(y, Ty) + λ4[d(x, Ty) + d(y, Sx)]

for all x, y ∈ X, where λi ∈ P are some vectors with λiλj = λjλi (i = 1, 2, 3, 4). If ρ(λ3 +Kλ4) +Kρ(λ1 +
λ2+Kλ4) < 1 and ρ(λ2+Kλ4)+Kρ(λ1+λ3+Kλ4) < 1, then S and T have a unique common fixed point.

Corollary 2.15. Let (X, d) be a cone b-metric space over Banach algebra A with the coefficient K ≥ 1 and
P be a solid cone in A. Suppose that self-mappings F, S : X → X satisfy that SX ⊆ FX, and that one of
SX or FX is a complete subspace of X. Suppose that

d(Sx, Sy) � λ1d(Fx, Fy) + λ2d(Fx, Sx) + λ3d(Fy, Sy) + λ4[d(Fx, Sy) + d(Fy, Sx)]

for all x, y ∈ X, where λi ∈ P are some vectors with λiλj = λjλi (i = 1, 2, 3, 4). If ρ(λ3 +Kλ4) +Kρ(λ1 +
λ2+Kλ4) < 1 and ρ(λ2+Kλ4)+Kρ(λ1+λ3+Kλ4) < 1, then S and F have a unique point of coincidence
in X. Moreover, if {S, F} is a weakly compatible pair, then S and F have a unique common fixed point.

Corollary 2.16. Let (X, d) be a cone b-metric space over Banach algebra A with the coefficient K ≥ 1 and
P be a solid cone in A. Suppose that self-mapping S : X → X satisfies SX is a complete subspace of X.
Suppose that

d(Sx, Sy) � λ1d(x, y) + λ2d(x, Sx) + λ3d(y, Sy) + λ4[d(x, Sy) + d(y, Sx)]

for all x, y ∈ X, where λi ∈ P are some vectors with λiλj = λjλi (i = 1, 2, 3, 4). If ρ(λ3 +Kλ4) +Kρ(λ1 +
λ2 +Kλ4) < 1 and ρ(λ2 +Kλ4) +Kρ(λ1 + λ3 +Kλ4) < 1, then S has a unique fixed point.

Corollary 2.17. Let (X, d) be a cone b-metric space with the coefficient K ≥ 1. Suppose that self-mappings
F,G, S, T : X → X satisfy SX ⊆ GX, TX ⊆ FX, and that one of SX, TX,FX or GX is a complete
subspace of X. Suppose that

d(Sx, Ty) � λ1d(Fx,Gy) + λ2d(Fx, Sx) + λ3d(Gy, Ty) + λ4[d(Fx, Ty) + d(Gy, Sx)]

for all x, y ∈ X, where λi ≥ 0 (i = 1, 2, 3, 4) are some real constants. If Kλ1 +Kλ2 + λ3 +Kλ4 +K2λ4 < 1
and Kλ1 + λ2 +Kλ3 +Kλ4 +K2λ4 < 1, then {S, F} and {T,G} have a unique point of coincidence in X.
Moreover, if {S, F} and {T,G} are weakly compatible pairs, then F,G, S, and T have a unique common fixed
point.

Corollary 2.18. Let (X, d) be a metric space. Suppose that self-mappings F,G, S, T : X → X satisfy
SX ⊆ GX, TX ⊆ FX, and that one of SX, TX,FX or GX is a complete subspace of X. Suppose that

d(Sx, Ty) ≤ λ1d(Fx,Gy) + λ2d(Fx, Sx) + λ3d(Gy, Ty)

+ λ4[d(Fx, Ty) + d(Gy, Sx)] (2.20)

for all x, y ∈ X, where λi ≥ 0 (i = 1, 2, 3, 4) are some real constants. If λ1 + λ2 + λ3 + 2λ4 < 1, then {S, F}
and {T,G} have a unique point of coincidence in X. Moreover, if {S, F} and {T,G} are weakly compatible
pairs, then F,G, S, and T have a unique common fixed point.
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Remark 2.19. Corollary 2.17 greatly generalizes Theorem 2.8 of [2] since our cone b-metric space is much
larger than cone metric space.

Remark 2.20. In all of the above theorems and corollaries, if the coefficients of the generalized contractions
are real or complex constants, then by utilizing the similar ways, we can get the same assertions in the setting
of tvs-cone b-metric spaces over locally convex Hausdorff algebras.

Remark 2.21. The condition (2.9) of Corollary 2.8 or (2.20) of Corollary 2.18 cannot be replaced by the
following condition:

d(Sx, Ty) ≤ λmax{d(Fx,Gy), d(Fx, Sx), d(Gy, Ty), d(Fx, Ty), d(Gy, Sx)}, (2.21)

where 0 < λ < 1. The following example illustrates this assertion.

Example 2.22. Let X = {x, y, u, v} = {(0, 0, 0) , (4, 0, 0) , (2, 2, 0) , (2,−2, 1)} ⊂ R3 with usual metric. Then

d (x, u) = 2
√
2, d (x, y) = 4, d (x, v) = 3,

d (y, u) = 2
√
2, d (y, v) = 3, d (u, v) =

√
17.

Define S, T : X → X by

Sx = u, Sy = v, Su = v, Sv = u,

Tx = y, Ty = x, Tu = y, Tv = x.

We have
S (X) = {u, v} , T (X) = {x, y} .

Further, we have

d (Sx, Tx) = d (u, y) = 2
√
2 < d (x, Tx) = 4,

d (Sx, Ty) = d (u, x) = 2
√
2 < d (y, Ty) = 4,

d (Sx, Tu) = d (u, y) = 2
√
2 < d (x, Tu) = 4,

d (Sx, Tv) = d (u, x) = 2
√
2 < d (v, Sx) =

√
17.

Similarly, for all a, b ∈ X we get d (Sa, Tb) = 2
√
2 or d (Sa, Tb) = 3.

Thus we have

d (Sa, Tb) ≤ 3

4
max {d (a, b) , d (a, Sa) , d (b, T b) , d (a, T b) , d (b, Sa)}

for all a, b ∈ X, that is, (2.21) is satisfied, where F = G = I (identity mapping). But S and T have not a
common fixed point.

3. Application

In this section, we shall apply the obtained assertions to cope with the existence and uniqueness of
solution for some equations.

We consider the following nonlinear integral equations:{
φ(x) =

∫ x
0 k(x, t, φ(t))dt,

φ(x) =
∫ x
0 φ(t)dt,

(3.1)

where x ∈ [0, T ].
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Theorem 3.1. Let Lp[0, T ] = {x = x(t) :
∫ T
0 |x(t)|

pdt < ∞} (0 < p < 1). For (3.1), assume that the
following conditions hold:

(i) If k(x, t, φ(t)) = φ(t) for all 0 ≤ t ≤ x ≤ T , then

k(x, t,

∫ t

0
φ(s)ds) =

∫ t

0
k(t, s, φ(s))ds,

for all 0 ≤ t ≤ x ≤ T .

(ii) There is a constant L ∈ (0, 2
1− 1

p ) such that the partial derivative ku of k with respect to u exists and
|ku(x, t, u)| ≤ L for all 0 ≤ t ≤ x ≤ T , and −∞ < u <∞.

Then the integral equation (3.1) has a unique common solution in Lp[0, T ].

Proof. Let A = R2 with the norm ‖(u1, u2)‖ = |u1|+ |u2| and the multiplication by

uv = (u1, u2)(v1, v2) = (u1v1, u1v2 + u2v1).

Let P = {u = (u1, u2) ∈ A : u1, u2 ≥ 0}. It is clear that P is a cone and A is a Banach algebra with a
unit e = (1, 0). Let X = Lp[0, T ]. We endow X with the cone b-metric

d(φ, ϕ) =

{∫ T

0
|φ(x)− ϕ(x)|pdx

} 1
p

,

{∫ T

0
|φ(x)− ϕ(x)|pdx

} 1
p


for all x, y ∈ X. It is clear that (X, d) is a complete cone b-metric space over Banach algebra A with the
coefficient s = 2

1
p
−1. Define the mappings S, F : X → X by

Sφ(x) =

∫ x

0
k(x, t, φ(t))dt, Fφ(x) =

∫ x

0
φ(t)dt

for all x ∈ [0, T ]. Then

d(Sφ(x), Sϕ(x)) =

({∫ T

0

∣∣∣∣∫ x

0
k(x, t, φ(t))dt−

∫ x

0
k(x, t, ϕ(t))dt

∣∣∣∣p dx}
1
p

,

{∫ T

0

∣∣∣∣∫ x

0
k(x, t, φ(t))dt−

∫ x

0
k(x, t, ϕ(t))dt

∣∣∣∣p dx}
1
p

)

=

({∫ T

0

∣∣∣∣∫ x

0
[k(x, t, φ(t))− k(x, t, ϕ(t))]dt

∣∣∣∣p dx}
1
p

,

{∫ T

0

∣∣∣∣∫ x

0
[k(x, t, φ(t))− k(x, t, ϕ(t))]dt

∣∣∣∣p dx}
1
p

)

�

(
L

{∫ T

0

∣∣∣∣∫ x

0
[φ(t)− ϕ(t)]dt

∣∣∣∣p dx}
1
p

,

L

{∫ T

0

∣∣∣∣∫ x

0
[φ(t)− ϕ(t)]dt

∣∣∣∣p dx}
1
p

)

=

(
L

{∫ T

0
|Fφ(x)− Fϕ(x)|p dx

} 1
p

,
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L

{∫ T

0
|Fφ(x)− Fϕ(x)|p dx

} 1
p

)
� (L, 1)d(Fφ(x), Fϕ(x)).

Because
‖(L, 1)n‖

1
n = ‖(Ln, nLn−1)‖

1
n → L < 2

1− 1
p =

1

s
(n→∞),

which implies that ρ((L, 1)) < 1
s . Now choose λ1 = (L, 1) and λ2 = λ3 = λ4 = θ. Owing to (i), it is easy

to see that the mappings S and F are weakly compatible. Therefore, all conditions of Corollary 2.15 are
satisfied. Or, all conditions of Corollary 2.6 are satisfied, where λ = (L, 1). As a result, S and F have a
unique common fixed point x∗ ∈ X. That is, x∗ is the unique common solution of the system of integral
equation (3.1).
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