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Abstract

In this paper, we introduce the concept of (α, β)-(ψ,ϕ)-contractive mapping in b-metric spaces. We establish
some fixed point theorems for such mappings and also give an example supporting our results. Finally, we
apply our main results to prove a fixed point theorem involving a cyclic mapping. c©2016 All rights reserved.
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1. Introduction

The Banach contraction principle is one of the most important results in mathematical analysis. It is
the most widely applied fixed point result in many branches of mathematics and it was generalized in many
different directions.

In 1993, Czerwik [5] introduced the concept of b-metric spaces as a generalization of metric spaces and
also proved the Banach contraction mapping principle in this setting. Afterwards, many mathematicians
studied fixed point theorems for single-valued and multi-valued mappings in b-metric spaces (see [3, 4, 6]).

Recently, Alizadeh et al. [2] introduced the notion of cyclic (α, β)-admissible mapping and proved some
new fixed point results for such mappings in the setting of complete metric spaces.

In this paper, we consider (α, β)-(ψ,ϕ)-contractive mappings in b-metric spaces and establish some fixed
point theorems for this class of mappings. We also provide an illustrative example. Finally, we use our
results to prove a fixed point theorem involving a cyclic mapping.
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2. Preliminaries

In this section, we recall some essential notations, definitions and primary results known in the literature.
Throughout this paper, we denote by N, R+ and R the sets of positive integers, non-negative real numbers
and real numbers, respectively.

In 1984, Khan et al. [7] introduced altering distance functions as follows:

Definition 2.1 ([7]). The function ϕ : [0,∞)→ [0,∞) is called an altering distance function if the following
properties hold:

i) ϕ is continuous and non-decreasing;

ii) ϕ(t) = 0 if and only if t = 0.

Example 2.2. Let ϕ : [0,∞)→ [0,∞) defined by ϕ(t) = sinh−1(t) for all t ∈ [0,∞). Then ϕ is an altering
distance function.

Example 2.3. Let ϕ : [0,∞)→ [0,∞) defined by

ϕ(t) =

{
t
7 , t < 3,
t2+3

t2+4t+7
, t ≥ 3.

Then ϕ is an altering distance function.

The concept of b-metric space was introduced by Czerwik in 1993 in the paper [5].

Definition 2.4 ([5]). Let X be a nonempty set and s ≥ 1 be a fixed real number. Suppose that the mapping
d : X ×X → R+ satisfies the following conditions:

i) d(x, y) = 0 if and only if x = y;

ii) d(x, y) = d(y, x) for all x, y ∈ X;

iii) d(x, y) ≤ s[d(x, z) + d(z, y)] for all x, y, z,∈ X.

Then (X, d) is called a b-metric space with coefficient s.

Every metric space is a b-metric space with s = 1, but, in general, a b-metric space need not necessarily
be a metric space. Thus, the class of b-metric spaces is larger than the class of metric spaces. Some known
examples in this respect are provided below.

Example 2.5. Let X = R and let the mapping d : X ×X → R+ be defined by

d(x, y) = |x− y|2 for all x, y ∈ X.

Then (X, d) is a b-metric space with coefficient s = 2.

Example 2.6. The set lp(R) with 0 < p < 1, where

lp(R) := {{xn} ⊆ R |
∞∑
n=1

|xn|p <∞},

together with the mapping d : lp(R)× lp(R)→ R+ defined by

d(x, y) :=

( ∞∑
n=1

|xn − yn|p
) 1

p

for each x = {xn}, y = {yn} ∈ lp(R), is a b-metric space with coefficient s = 2
1
p > 1. The above result also

holds for the general case lp(X) with 0 < p < 1, where X is a Banach space.
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Example 2.7. Let p be a given real number in the interval (0, 1). The space

Lp[0, 1] :=

{
x : [0, 1]→ R|

∫ 1

0
|x(t)|pdt < 1

}
together with the mapping d : Lp[0, 1]× Lp[0, 1]→ R+ defined by

d(x, y) :=

(∫ 1

0
|x(t)− y(t)|pdt

) 1
p

for each x, y ∈ Lp[0, 1], is a b-metric space with constant s = 2
1
p > 1.

Next, we give the concepts of convergence, Cauchy sequence, b-continuity, completeness and closedness
in b-metric spaces.

Definition 2.8 ([3]). Let (X, d) be a b-metric space. Then a sequence {xn} in X is called:

i) b-convergent if there exists x ∈ X such that d(xn, x)→ 0 as n→∞. In this case, we write lim
n→∞

xn = x.

ii) b-Cauchy if d(xn, xm)→ 0 as n,m→∞.

Proposition 2.9 ([3]). In a b-metric space (X, d), the following assertions hold:

(p1) a b-convergent sequence has a unique limit;

(p2) each b-convergent sequence is b-Cauchy;

(p3) in general, a b-metric is not continuous.

Because of (p3), we need the following lemma about b-convergent sequences in the proof of our results.

Lemma 2.10 ([1]). Let (X, d) be a b-metric space with coefficient s ≥ 1 and let {xn} and {yn} be b-
convergent to points x, y ∈ X, respectively. Then we have

1

s2
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then we have lim
n→∞

d(xn, yn) = 0. Moreover, for each z ∈ X, we have

1

s
d(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).

Definition 2.11 ([3]). Let (X, d) and (X ′, d′) be two b-metric spaces.

i) The space (X, d) is b-complete if every b-Cauchy sequence in X is b-convergent.

ii) A function f : X → X ′ is b-continuous at a point x ∈ X if it is b-sequentially continuous at x, that is,
whenever {xn} is b-convergent to x, {fxn} is b-convergent to fx.

Definition 2.12 ([3]). Let Y be a nonempty subset of a b-metric space (X, d). The closure Y of Y is the
set of limits of all b-convergent sequences of points in Y , i.e.,

Y = {x ∈ X : there exists a sequence {xn} in Y so that lim
n→∞

xn = x}.

Definition 2.13 ([3]). Let (X, d) be a b-metric space. Then a subset Y ⊆ X is called closed if and only if
for each sequence {xn} in Y which b-converges to an element x, we have x ∈ Y (i.e. Y = Y ).

Recently, Alizadeh et al. [2] introduced the notion of cyclic (α, β)-admissible mapping as follows:

Definition 2.14 ([2]). Let X be a nonempty set, f be a self-mapping on X and α, β : X → [0,∞) be two
mappings. We say that f is a cyclic (α, β)-admissible mapping if

x ∈ X with α(x) ≥ 1⇒ β(fx) ≥ 1

and
x ∈ X with β(x) ≥ 1⇒ α(fx) ≥ 1.
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3. Main results

Let (X, d) be a b-metric space with coefficient s ≥ 1 and f : X → X be a self-mapping. Throughout
this paper, unless otherwise stated, for all x, y ∈ X, let

Ms(x, y) := max

{
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)

2s

}
.

Note that Ms(x, y) = Ms(y, x). If s = 1, we write M(x, y) instead Ms(x, y), that is,

M(x, y) := max

{
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)

2

}
.

Definition 3.1. Let (X, d) be a b-metric space with coefficient s ≥ 1, and let α, β : X → [0,∞) be two
given mappings. We say that f : X → X is an (α, β)-(ψ,ϕ)-contractive mapping if the following condition
holds:

x, y ∈ X with α(x)β(y) ≥ 1 =⇒ ψ(s3d(fx, fy)) ≤ ψ(Ms(x, y))− ϕ(Ms(x, y)), (3.1)

where ψ,ϕ : [0,∞)→ [0,∞) are altering distance functions.

Theorem 3.2. Let (X, d) be a complete b-metric space with coefficient s ≥ 1, α, β : X → [0,∞) be two
mappings and f : X → X be an (α, β)-(ψ,ϕ)-contractive mapping. Suppose that

(1) one of the following condition holds:

(1.1) there exists x0 ∈ X such that α(x0) ≥ 1;

(1.2) there exists y0 ∈ X such that β(y0) ≥ 1;

(2) f is continuous;

(3) f is a cyclic (α, β)-admissible mapping.

Then f has a fixed point. Moreover, if the sequence {xn} in X defined by xn = fxn−1 for all n ∈ N is such
that x0 is an initial point in condition (1.1) and the sequence {yn} in X defined by yn = fyn−1 for all n ∈ N
is such that y0 is an initial point in condition (1.2), then {xn} and {yn} converge to a fixed point of f .

Proof. Case I: Assume that there exists x0 ∈ X such that α(x0) ≥ 1. We will construct the iterative
sequence {xn}, where xn+1 = fxn for all n ∈ N ∪ {0}. If xñ = xñ+1 for some ñ ∈ N ∪ {0}, then xñ is a
fixed point of f , and the proof is finished. Hence, we will assume that xn 6= xn+1 for all n ∈ N ∪ {0}, that
is, d(xn, xn+1) 6= 0 for all n ∈ N ∪ {0}.

We will complete the proof in three steps.
Step I. We prove that lim

n→∞
d(xn, xn+1) = 0.

Since f is a cyclic (α, β)-admissible mapping, we have

α(x0) ≥ 1⇒ β(x1) = β(fx0) ≥ 1⇒ α(x2) = α(fx1) ≥ 1.

By continuing this process, we obtain that

α(x2k) ≥ 1 and β(x2k+1) ≥ 1 (3.2)

for all k ∈ N ∪ {0}. Since α(x0)β(x1) ≥ 1, we get

ψ(d(fx0, fx1)) ≤ ψ(s3d(fx0, fx1))

≤ ψ(Ms(x0, x1))− ϕ(Ms(x0, x1)).
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Again, since α(x2)β(x1) ≥ 1, we have

ψ(d(fx1, fx2)) = ψ(d(fx2, fx1))

≤ ψ(s3d(fx2, fx1))

≤ ψ(Ms(x2, x1))− ϕ(Ms(x2, x1))

= ψ(Ms(x1, x2))− ϕ(Ms(x1, x2)).

Proceeding in the same way, we obtain

ψ(d(fxn, fxn+1)) ≤ ψ(s3d(fxn, fxn+1))

≤ ψ(Ms(xn, xn+1))− ϕ(Ms(xn, xn+1)) (3.3)

for each n ∈ N ∪ {0}, where

Ms(xn, xn+1) = max

{
d(xn, xn+1), d(xn, fxn), d(xn+1, fxn+1),

d(xn, fxn+1) + d(xn+1, fxn)

2s

}
= max

{
d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2) + d(xn+1, xn+1)

2s

}
= max {d(xn, xn+1), d(xn+1, xn+2)} .

From (3.3) and the properties of ψ and ϕ, it follows that

ψ(d(fxn, fxn+1)) ≤ ψ (max {d(xn, xn+1), d(xn+1, xn+2)})
− ϕ (max {d(xn, xn+1), d(xn+1, xn+2)})

< ψ (max {d(xn, xn+1), d(xn+1, xn+2)}) (3.4)

for all n ∈ N∪{0}. If max {d(xn, xn+1), d(xn+1, xn+2)} = d(xn+1, xn+2) for some n ∈ N∪{0}, then by (3.4)
we have,

ψ(d(fxn, fxn+1)) ≤ ψ (d(xn+1, xn+2))− ϕ (d(xn+1, xn+2))

< ψ (d(xn+1, xn+2)) ,

a contradiction. Therefore,

max {d(xn, xn+1), d(xn+1, xn+2)} = d(xn, xn+1)

for all n ∈ N ∪ {0}. By (3.4), we get

ψ(d(xn+1, xn+2)) = ψ(d(fxn, fxn+1))

≤ ψ (d(xn, xn+1))− ϕ (d(xn, xn+1))

< ψ(d(xn, xn+1)) (3.5)

for all n ∈ N ∪ {0}. Since ψ is a non-decreasing mapping, the sequence {d(xn, xn+1)} is decreasing and
bounded from below. Thus, there exists r ≥ 0 such that limn→∞ d(xn, xn+1) = r. Letting n→∞ in (3.5),
we have

ψ(r) ≤ ψ(r)− ϕ(r) ≤ ψ(r).

This implies that ϕ(r) = 0 and thus r = 0. Consequently,

lim
n→∞

d(xn, xn+1) = 0. (3.6)

This completes the first step of the proof.
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Step II. We now claim that {xn} is a b-Cauchy sequence in X, that is, for every ε > 0, there exists
k ∈ N such that d(xm, xn) < ε for all m,n ≥ k.

Assume, to the contrary, that there exists ε > 0 for which we can find subsequences {xm(k)} and {xn(k)}
of {xn} such that n(k) > m(k) ≥ k, m(k) is even and n(k) is odd,

d(xm(k), xn(k)) ≥ ε (3.7)

and n(k) is the smallest number such that (3.7) holds. From (3.7), we get

d(xm(k), xn(k)−1) < ε. (3.8)

By the triangle inequality, (3.7) and (3.8), we obtain that

ε ≤ d(xm(k), xn(k))

≤ s[d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k))]

< s[ε+ d(xn(k)−1, xn(k))]. (3.9)

Taking limit supremum as k →∞ in (3.9), by using (3.6) we get

ε ≤ lim sup
k→∞

d(xm(k), xn(k)) ≤ sε. (3.10)

From the triangle inequality, we get

d(xm(k), xn(k)) ≤ s[d(xm(k), xn(k)+1) + d(xn(k)+1, xn(k))] (3.11)

and
d(xm(k), xn(k)+1) ≤ s[d(xm(k), xn(k)) + d(xn(k), xn(k)+1)]. (3.12)

Taking limit supremum as k →∞ in (3.11) and (3.12), from (3.6) and (3.10), we obtain that

ε ≤ s
(

lim sup
k→∞

d(xm(k), xn(k)+1)

)
and

lim sup
k→∞

(.xm(k), xn(k)+1) ≤ s2ε.

This implies that
ε

s
≤ lim sup

k→∞
d(xm(k), xn(k)+1) ≤ s2ε. (3.13)

Again, using above process, we get

ε

s
≤ lim sup

k→∞
d(xn(k), xm(k)+1) ≤ s2ε. (3.14)

Finally, we obtain that

d(xm(k), xn(k)+1) ≤ s[d(xm(k), xm(k)+1) + d(xm(k)+1, xn(k)+1)]. (3.15)

Taking limit supremum as k →∞ in (3.15), from (3.6) and (3.13), we obtain that

ε

s2
≤ lim sup

k→∞
d(xm(k)+1, xn(k)+1). (3.16)

Similarly, we have
lim sup
k→∞

d(xm(k)+1, xn(k)+1) ≤ s3ε. (3.17)
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By (3.16) and (3.17) we get
ε

s2
≤ lim sup

k→∞
d(xm(k)+1, xn(k)+1) ≤ s3ε. (3.18)

Relation (3.2) implies that
α(xm(k))β(xn(k)) ≥ 1.

From (3.1), we have

ψ(s3d(xm(k)+1, xn(k)+1)) = ψ(s3d(fxm(k), fxn(k)))

≤ ψ(Ms(xm(k), xn(k)))− ϕ(Ms(xm(k), xn(k))), (3.19)

where

Ms(xm(k), xn(k)) = max

{
d(xm(k), xn(k)), d(xm(k), fxm(k)), d(xn(k), fxn(k)),

d(xm(k), fxn(k)) + d(xn(k), fxm(k))

2s

}
= max

{
d(xm(k), xn(k)), d(xm(k), xm(k)+1), d(xn(k), xn(k)+1),

d(xm(k), xn(k)+1) + d(xn(k), xm(k)+1)

2s

}
.

Taking limit supremum as k →∞ in above equation and using (3.6), (3.10), (3.13) and (3.14), we obtain

ε = max

{
ε,

ε
s + ε

s

2s

}
≤ lim sup

k→∞
Ms(xm(k), xn(k)) ≤ max

{
sε,

s2ε+ s2ε

2s

}
= sε.

Also, we can show that

ε = max

{
ε,

ε
s + ε

s

2s

}
≤ lim inf

k→∞
Ms(xm(k), xn(k)) ≤ max

{
sε,

s2ε+ s2ε

2s

}
= sε.

Taking limit supremum as k →∞ in (3.19) and using (3.18), it follows that

ψ(sε) = ψ

(
s3
(
ε

s2

))
≤ ψ

(
s3lim sup

k→∞
d(xm(k)+1, xn(k)+1)

)
≤ ψ

(
lim sup
k→∞

Ms(xm(k), xn(k))

)
− ϕ

(
lim inf
k→∞

Ms(xm(k), xn(k))

)
≤ ψ(sε)− ϕ(ε).

This implies that ϕ(ε) = 0 and then ε = 0, which is a contradiction. Therefore, {xn} is a b-Cauchy sequence.
Step III. We show that f has a fixed point. From Step II, {xn} is a b-Cauchy sequence in X. By the

completeness of the b-metric space X, there exists x ∈ X such that

lim
n→∞

d(xn, x) = 0

and hence
lim
n→∞

d(fxn, x) = lim
n→∞

d(xn+1, x) = 0. (3.20)
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By the continuity of f , we get
lim
n→∞

d(fxn, fx) = 0.

From the triangle inequality, we have

d(x, fx) ≤ s[d(x, fxn) + d(fxn, fx)] (3.21)

for all n ∈ N. Taking limit as n → ∞ in the above inequality, we obtain that d(x, fx) = 0, that is, x is a
fixed point of f .

Case II: Assume that there exists y0 ∈ X such that β(y0) ≥ 1. Proceeding in a similar manner as
above, we obtain the conclusion.

Example 3.3. Let X = [0,∞) and let d : X ×X → [0,∞) be defined by

d(x, y) = |x− y|2

for all x, y ∈ X. Then (X, d) is a complete b-metric space with s = 2.
Define mappings α, β : X → [0,∞) and f : X → X as follows:

α(x) =

{
x+5
4 , x ∈ [0, 0.5];

0, otherwise,
(3.22)

β(x) =

{
(x+ 1)2, x ∈ [0, 0.5];
0, otherwise,

(3.23)

and

fx =


x
3 , x ∈ [0, 0.5];

212x−105
6 , x ∈ (0.5, 0.51];

x+ 0.01, otherwise.

(3.24)

First, we will show that f is a cyclic (α, β)-admissible mapping.

For x ∈ X, we have

α(x) ≥ 1⇒ x ∈ [0, 0.5]⇒ β(fx) = β
(x

3

)
=
(x

3
+ 1
)2
≥ 1

and

β(x) ≥ 1⇒ x ∈ [0, 0.5]⇒ α(fx) = α
(x

3

)
=
x+ 15

12
≥ 1.

Therefore, our claim is proved.
Next, we will show that f is an (α, β)-(ψ,ϕ)-contractive mapping with altering distance functions

ψ,ϕ : [0,∞)→ [0,∞) defined by
ψ(t) = bt and ϕ(t) = (b− 1)t

for all t ∈ [0,∞), where b ∈
(
1, 98
]
.

Assume that x, y ∈ X are such that α(x)β(y) ≥ 1. Then we have x, y ∈ [0, 0.5] and hence

ψ(s3d(fx, fy)) = 8b|fx− fy|2 = 8b
∣∣∣x
3
− y

3

∣∣∣2
=

8

9
b|x− y|2 =

8

9
bd(x, y)

≤ 8

9
bMs(x, y) ≤Ms(x, y)

= ψ(Ms(x, y))− ϕ(Ms(x, y)).

Also, we note that f is continuous and there exists x0 = 0.5 ∈ X such that α(x0) = α(0.5) = 1.375 ≥ 1
and β(x0) = β(0.5) = 2.25 ≥ 1, so (3.1) is satisfied. Hence, all conditions of Theorem 3.2 hold, implying
that f has at least one fixed point. In this case, 0 and 105

206 are fixed points of f . For the initial point
x0 = 0.4, 0.5, 0.6, 0.7, results of the iteration process xn = fxn−1 for all n ∈ N are given in Table 1.
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Step x0 = 0.4 x0 = 0.5 x0 = 0.6 x0 = 0.7

1 0.133333333333 0.166666666667 0.610000000000 0.710000000000
2 0.044444444444 0.055555555556 0.620000000000 0.720000000000
3 0.014814814815 0.018518518519 0.630000000000 0.730000000000
4 0.004938271605 0.006172839506 0.640000000000 0.740000000000
5 0.001646090535 0.002057613169 0.650000000000 0.750000000000
6 0.000548696845 0.000685871056 0.660000000000 0.760000000000
7 0.000182898948 0.000228623685 0.670000000000 0.770000000000
8 0.000060966316 0.000076207895 0.680000000000 0.780000000000
9 0.000020322105 0.000025402632 0.690000000000 0.790000000000
10 0.000006774035 0.000008467544 0.700000000000 0.800000000000
11 0.000002258012 0.000002822515 0.710000000000 0.810000000000
12 0.000000752671 0.000000940838 0.720000000000 0.820000000000
13 0.000000250890 0.000000313613 0.730000000000 0.830000000000
14 0.000000083630 0.000000104538 0.740000000000 0.840000000000
15 0.000000027877 0.000000034846 0.750000000000 0.850000000000
16 0.000000009292 0.000000011615 0.760000000000 0.860000000000
17 0.000000003097 0.000000003872 0.770000000000 0.870000000000
18 0.000000001032 0.000000001291 0.780000000000 0.880000000000
19 0.000000000344 0.000000000430 0.790000000000 0.890000000000
20 0.000000000115 0.000000000143 0.800000000000 0.900000000000
21 0.000000000038 0.000000000048 0.810000000000 0.910000000000
22 0.000000000013 0.000000000016 0.820000000000 0.920000000000
23 0.000000000004 0.000000000005 0.830000000000 0.930000000000
24 0.000000000001 0.000000000002 0.840000000000 0.940000000000
25 0.000000000000 0.000000000001 0.850000000000 0.950000000000
26 0.000000000000 0.000000000000 0.860000000000 0.960000000000
27 0.000000000000 0.000000000000 0.870000000000 0.970000000000
28 0.000000000000 0.000000000000 0.880000000000 0.980000000000
29 0.000000000000 0.000000000000 0.890000000000 0.990000000000
30 0.000000000000 0.000000000000 0.900000000000 1.000000000000

Table 1: Comparative results of Example 3.3
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Figure 1: Behavior of the iteration process with initial point x0 = 0.4, 0.5, 0.6, 0.7 for the function given in Example 3.3.
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Corollary 3.4. Let (X, d) be a complete b-metric space with coefficient s ≥ 1, and let α, β : X → [0,∞)
and f : X → X be three mappings such that

x, y ∈ X with α(x)β(y) ≥ 1 =⇒ s3d(fx, fy) ≤ kMs(x, y),

where k ∈ [0, 1). Suppose that

(1) one of the following condition holds:

(1.1) there exists x0 ∈ X such that α(x0) ≥ 1;

(1.2) there exists y0 ∈ X such that β(y0) ≥ 1;

(2) f is continuous;

(3) f is a cyclic (α, β)-admissible mapping.

Then f has a fixed point. Moreover, if the sequence {xn} in X defined by xn = fxn−1 for all n ∈ N is such
that x0 is an initial point in condition (1.1) and the sequence {yn} in X defined by yn = fyn−1 for all n ∈ N
is such that y0 is an initial point in condition (1.2), then {xn} and {yn} converge to a fixed point of f .

Proof. The result follows from Theorem 3.2 by taking ψ(t) = t and ϕ(t) = (1− k)t for all t ∈ [0,∞).

Corollary 3.5. Let (X, d) be a complete b-metric space with coefficient s ≥ 1, and f : X → X be a
continuous mapping such that

ψ(s3d(fx, fy)) ≤ ψ(Ms(x, y))− ϕ(Ms(x, y))

for all x, y ∈ X, where ψ,ϕ : [0,∞) → [0,∞) are altering distance functions. Then f has a fixed point.
Moreover, if the sequence {xn} in X defined by xn = fxn−1 for all n ∈ N is such that x0 ∈ X is an initial
point, then {xn} converges to a fixed point of f .

Proof. The result follows from Theorem 3.2 by taking α(x) = 1 and β(x) = 1 for all x ∈ X.

Corollary 3.6. Let (X, d) be a complete b-metric space with coefficient s ≥ 1, and let f : X → X be a
continuous mapping such that

s3d(fx, fy) ≤ kMs(x, y)

for all x, y ∈ X, where k ∈ [0, 1). Then f has a fixed point. Moreover, if the sequence {xn} in X defined by
xn = fxn−1 for all n ∈ N is such that x0 ∈ X is an initial point, then {xn} converges to a fixed point of f .

Proof. It follows from Theorem 3.2 by taking ψ(t) = t, ϕ(t) = (1 − k)t for all t ∈ [0,∞) and α(x) = 1,
β(x) = 1 for all x ∈ X.

Taking s = 1 we obtain the following fixed point results in the framework of classical metric spaces:

Corollary 3.7. Let (X, d) be a complete metric space, and α, β : X → [0,∞) and f : X → X be three
mappings such that

x, y ∈ X with α(x)β(y) ≥ 1 =⇒ ψ(d(fx, fy)) ≤ ψ(M(x, y))− ϕ(M(x, y)),

where ψ,ϕ : [0,∞)→ [0,∞) are altering distance functions. Suppose that

(1) one of the following condition holds:

(1.1) there exists x0 ∈ X such that α(x0) ≥ 1;

(1.2) there exists y0 ∈ X such that β(y0) ≥ 1;
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(2) f is continuous;

(3) f is a cyclic (α, β)-admissible mapping.

Then f has a fixed point. Moreover, if the sequence {xn} in X defined by xn = fxn−1 for all n ∈ N is such
that x0 is an initial point in condition (1.1) and the sequence {yn} in X defined by yn = fyn−1 for all n ∈ N
is such that y0 is an initial point in condition (1.2), then {xn} and {yn} converge to a fixed point of f .

Corollary 3.8. Let (X, d) be a complete metric space, and α, β : X → [0,∞) and f : X → X be three
mappings such that

x, y ∈ X with α(x)β(y) ≥ 1 =⇒ d(fx, fy) ≤ kM(x, y),

where k ∈ [0, 1). Suppose that

(1) one of the following condition holds:

(1.1) there exists x0 ∈ X such that α(x0) ≥ 1;

(1.2) there exists y0 ∈ X such that β(y0) ≥ 1;

(2) f is continuous;

(3) f is a cyclic (α, β)-admissible mapping.

Then f has a fixed point. Moreover, if the sequence {xn} in X defined by xn = fxn−1 for all n ∈ N is such
that x0 is an initial point in condition (1.1) and the sequence {yn} in X defined by yn = fyn−1 for all n ∈ N
is such that y0 is an initial point in condition (1.2), then {xn} and {yn} converge to a fixed point of f .

Corollary 3.9. Let (X, d) be a complete metric space and f : X → X be a continuous mapping such that

ψ(d(fx, fy)) ≤ ψ(M(x, y))− ϕ(M(x, y))

for all x, y ∈ X, where ψ,ϕ : [0,∞) → [0,∞) are altering distance functions. Then f has a fixed point.
Moreover, if the sequence {xn} in X defined by xn = fxn−1 for all n ∈ N is such that x0 ∈ X is an initial
point, then {xn} converges to a fixed point of f .

Corollary 3.10. Let (X, d) be a complete metric space and f : X → X be a continuous mapping such that

d(fx, fy) ≤ kM(x, y)

for all x, y ∈ X, where k ∈ [0, 1). Then f has a fixed point. Moreover, if the sequence {xn} in X defined by
xn = fxn−1 for all n ∈ N is such that x0 ∈ X is an initial point, then {xn} converges to a fixed point of f .

4. Applications

In this section, we apply our main results to prove a fixed point theorem involving a cyclic mapping.

Definition 4.1 ([8]). Let A and B be nonempty subsets of a set X. A mapping f : A∪B → A∪B is called
cyclic if f(A) ⊆ B and f(B) ⊆ A.

Definition 4.2. Let (X, d) be a b-metric space with coefficient s ≥ 1. We say that a mapping
f : A ∪B → A ∪B is a (A,B)-(ψ,ϕ)-contractive mapping if

ψ(s3d(fx, fy)) ≤ ψ(Ms(x, y))− ϕ(Ms(x, y)) (4.1)

for all x ∈ A and y ∈ B, where ψ,ϕ : [0,∞)→ [0,∞) are altering distance functions.
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Theorem 4.3. Let A and B be two nonempty subsets of the complete b-metric space (X, d) with coefficient
s ≥ 1 and f : A ∪ B → A ∪ B be a b-continuous cyclic mapping which is an (A,B)-(ψ,ϕ)-contractive
mapping. Then f has a fixed point in A ∩B.

Proof. Define mappings α, β : A ∪B → [0,∞) by

α(x) =

{
1, x ∈ A;
0, otherwise,

and β(x) =

{
1, x ∈ B;
0, otherwise.

For x, y ∈ A ∪B such that α(x)β(y) ≥ 1, we get x ∈ A and y ∈ B. Then we have

ψ(s3d(fx, fy)) ≤ ψ(Ms(x, y))− ϕ(Ms(x, y))

and thus the condition (3.1) holds. Therefore, f is an (α, β)-(ψ,ϕ)-contractive mapping. It is easy to see
that f is a cyclic (α, β)-admissible mapping. Since A and B are nonempty subsets, there exists x0 ∈ A such
that α(x0) ≥ 1 and there exists y0 ∈ B such that β(y0) ≥ 1. Now, all conditions of Theorem 3.2 hold, so
f has a fixed point in A ∪ B, say z. If z ∈ A, then z = fz ∈ B. Similarly, if z ∈ B, then we have z ∈ A.
Hence, z ∈ A ∩B. This completes the proof.

Corollary 4.4. Let A and B be two nonempty subsets of the complete b-metric space (X, d) with coefficient
s ≥ 1 and f : A ∪B → A ∪B be a b-continuous cyclic mapping. Assume that

s3d(fx, fy) ≤ kMs(x, y)

for all x ∈ A and y ∈ B, where k ∈ [0, 1). Then f has a fixed point in A ∩B.

Proof. It follows from Theorem 4.3 by taking ψ(t) = t and ϕ(t) = (1− k)t for all t ∈ [0,∞).
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