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Abstract

In the paper, the authors introduce a new concept “geometrically quasi-convex function on co-ordinates”
and establish some new Hermite-Hadamard type inequalities for geometrically quasi-convex functions on
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1. Introduction
The following definitions are well known in the literature.
Definition 1.1. A function f: 1 CR = (—o0,00) — R is said to be convez if
fOx+ (1= Ny) <Af(x) + (1= Nf(y)
is valid for all x,y € I and X € [0, 1].

Definition 1.2 ([6]). A function f: I CR — R is said to be quasi-convex if

fOz+ (1= Ny) < max{f(z), f(y)}
holds for all z,y € I and X € [0,1].
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Definition 1.3 ([4,5]). A function f : A = [a,b] x [c,d] € R? — R is said to be conver on the co-ordinates
on A with a < b and ¢ < d if the partial mappings

fy : [a7b] — R, fy(u):fy(uvy) and f:v : [C7d] — R, f:v(v) :fas(xvv)
are convex for all z € (a,b) and y € (c,d).
A formal definition for co-ordinated convex functions may be restated as follows.

Definition 1.4 ([4,5]). A function f : A = [a,b] x [c,d] € R? — R is said to be conver on the co-ordinates
on A with a < b and ¢ < d if

flx+ (1 —t)z, y + (1 = Nw) <tAf(z,y) +t(1 = N)f(z,w)+ (1 = O)Af(z,y) + (1 —=t)(1 = N) f(z,w)
holds for all t,\ € [0,1] and (x,y), (z,w) € A.

Definition 1.5 ([9]). A function f : A = [a,b] x [c,d] € R? — R is said to be a quasi-convexr on the
co-ordinates on A with a < b and ¢ < d if

fAz+ (1 =Xz, Ay + (1 = Nw) < max{f(z,y), f(z,w)}
holds for all X € [0,1] and (x,y), (z,w) € A.
A formal definition for co-ordinated quasi-convex functions may be stated as follows.

Definition 1.6 ([10]). A function f : A = [a,b] x [c,d] € R? — R is said to be quasi-conver on the
co-ordinates on A with a < b and ¢ < d if

f()\l’ + (1 - )‘)Z7 )‘y + (1 - )\)’LU) < max{f(:v, y)a f(l',’(U), f(zay), f(sz)}
holds for all X € [0,1] and (x,y), (z,w) € A.
For convex functions on the co-ordinates, there exist the following conclusions.

Theorem 1.7 ([4, B, Theorem 2.2]). Let f : A = [a,b] x [c,d] C R? = R be convex on the co-ordinates on
A with a <b and c < d. Then

(525 =i [ e g [ (550
1 d b
SGag ) [ fena
gle[b_la</abf(:x,c)dx+/abf(ﬂc,d)dx)—|—dic</cdf(a,y)dy+/Cdf(l%y)dy)]
1

1 f(ac) + f(b,¢) + fla,d) + f(b, d)].

Theorem 1.8 ([10, Theorem 2.1]). Let f : A = [a,b] x [¢,d] C R? — R be a partial differentiable function
on A with a < b and ¢ < d. If ‘%| 18 quasi-convex on the co-ordinates on A, then

fla,c) + f(a,d) + f(b,c) + f(b,d) ) o )
! Jr(b—a)(al—c)/c/af(l’,y)dxdy A

C0=0=0 ] 0f(a,0) a?f(a,co‘ 0f(b, 0 a?f(b,cw‘}
- 16 Oxdy Oxdy Oxdy Oxdy ’
where
1 b 1 d
A= s | V@0 + f@a)de+ s [y + o) an
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For more information on this topic, please refer to the papers [1}, 2} [3] [7, 8, 111, 12} 13}, 14 [15] and related
references therein.

In this paper, we will introduce a new concept “geometrically quasi-convex function on co-ordinates”
and establish some new Hermite-Hadamard type inequalities for geometrically quasi-convex functions on
the co-ordinates.

2. Definition and Lemmas

Now we introduce the definition of the geometrically quasi-convex functions.

Definition 2.1. Let Ry = (0,00). A function f: A = [a,b] X [c,d] C R% — R is said to be geometrically
quasi-convex on the co-ordinates on A with a < b and ¢ < d if

fl@'= 7y ™) < max{f(z,y), f(z,w), f(2,9), f(z,w)}
holds for all t, X € [0,1] and (x,y), (z,w) € A.

Remark 2.2. If f : A C Ri — R is increasing and convex on the co-ordinates on A, then it is geometrically
quasi-convex on the co-ordinates on A. If f: A C R%r — R is decreasing and geometrically quasi-convex on
the co-ordinates on A, then it is quasi-convex on the co-ordinates on A.

Proof. By Definitions and we have

f(xtzl_t,yAwl_’\) <fltz+ (1 -z, \y+ (1 - MNw)
<tAf(zy) (1= N f(z,w) + (1 =OA(2,y) + (1= 1)1 = A) f(z w)
< max{f(z,y), f(z,w), f(2,9), f(z,w)}

and

FOz 4+ (1 =Nz, y+ (1= Nw) < f(2*2"7A y ' ™) <max{f(z,y), f(z,w), f(2,9), f(z,w)}.
This completes the required proof. O
In order to prove our main results, we need the following integral identity.

Lemma 2.3. Let f:A=la,b] x[c,d CR2 — R have partial derivatives of the second order with a < b
and ¢ < d. If 2 axay € Li(A), then

R 16 1 b f(z,Ved)
SU) = (Inb— Inc) [f(m’\/&)_lnb—lna/a x dx

Ina)(Ind —

b d b
/ f(Vab.y) 1 //f(w)dmdy
lnd Inc Y (Inb—1Ina)(Ind — Inc) o Ty

/ / 1-H(1 - Na ?bﬁcl‘z“d“z*ai;yf< EN ey *d#)dtcu
//1 1- 01— Na'T b3 5T & f(a%b¥ c%d%)dtdx
0o Jo dxdy 7

1 1
/0/0 (1 — 1) )alz“blztclfd“faj;yf(alztblzt,c?d”z*)dtdA
+/1/1 1-H(1 - Na b T 5T » f(a%b% c¥d?)dtdx
o Jo Oxdy ’ '
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Proof. Integrating by parts gives

! ! 1—t 14t 1— A M ; 1+
/0/0(1—t)(1—)\)a262 5 &an ( : )dtd)\
2 1 1-A 142 0 1=t 14t  1-X 14X
_lnb—hrla/o(l_)\)czd2 [(1 )8 f( 2b2762d2)’0
1
/f( “,cl‘z*dlz*)dt]dx
0

1
-2 U (lfA)c%d#a (\/%,c%d%)cu
0

Ina—1Inb 37/
/1 1(1 )\) 12>\d142—)\ 8f( 12t 1+t %d%)dtd)\
0o Jo ¢ Oy “ ¢
4 ! 1-X 14X
N - b, d ) da
(Inb—1Ina)(lnd —1 )[f(\/@v\/a) /0 f(ﬁ,c 2 2 )

Choosing in the above identity t = a2 b2

Liﬂuaz 1ot 14t 1A 14
//l—tl— a7 b 2d28xayf(a2b2,c2d2)dtd)\

B 4 2 b f(ac
~ (Inb—1Ina)(Ind — Ine¢) [f(\/%’@) ; lnb—lna/
I \F y) f
~Ind— lnc/ (lnb lna (Ind — lnc/ / rdy

Similarly, we obtain
14X 1-—X

2
// (111 - Na'2 b5 e ?dlz*ajayf( %bi,chT)dtdA

_ 4 b f(a;,\/@)
__(lnb_lna)(lnd—lnc [f(\/%’\/a) o / 7dx

)
_2/@10(@)(1+ //f
Ind —1Inc Y (lnb—lna )(Ind — Inc) ’
2
// (1—0)(1—Na' b7 ad”z*aaa f(alfb%,c%d )dtd)\
20y

4 2 Vab f(x,\/a)
:_(lnb—lna)(lnd—lnc)[f(\/%’\/a) Inb— lna/ dz

ffy) rf
" Ind— lnc/ dy (lnb lna (Ind — lnc/ / dy},

Inb—Ina

an

~ (Inb—1Ina)(Ind — In
2 Ved f(\/ab,y) 4 rf
[ [ e

" Ind—1Inc J, (lnb Ina)(Ind —Inc)
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This completes the proof of Lemma [2.3 O

Lemma 2.4. Let u,v >0, h € R, and h #0. Then

uzps~h [Uh — L(uh, vh)]

1 ) u v?
Q(h;u,v) = / (1- t)u%J“htv%_ht dt = 1 h(lnv —Inw) 7 (2.1)
0 —u, u=v,
2
where L(u,v) is the logarithmic mean
v—u
L(u,v) = { Inv —1Inu’ u o,
u, u=v.
Proof. This follows from integration by parts. O

3. Main Results

Now we start out to prove some new inequalities of Hermite-Hadamard type for geometrically quasi-
convex functions on the co-ordinates.

Theorem 3.1. Let f : A = [a,b] x [c,d] C R%2 — R be a partial differentiable function on A with a < b,
c<d, and % € Li(A). If g;afy‘q is a geometrically quasi-convex function on the co-ordinates on A for
q>1, then
1 1 1 1
2 2 2 2
1 1 1 1 (3.1)
where Q(h;u,v) is defined by and
0 f(a,c)| |0*f(a,d)| |0*f(b,c)| |0°f(b,d)
M = . 3.2
(£) max{ 0zxdy 0x0y 0x0y 0xdy } (3:2)
Proof. By Lemma [2.3] we have
Lol 1t 10t 1oa 1| 92 1—t 14+t  1-XA 14A
1S(f)] g/o AR VR axayf<a2b2,c2d2>’dtd>\
L orl 1—¢ 14t 14x 1-a| O? 1—t 14t 142 1=
+/0 R e 8x6yf(aTbT,CTdT) dtdA
1,1 ~ 52 - '
+/0 REEDIER ST axayf(a%b%,c¥d¥) drdy B3
L el 14t 1-¢ 14x 1-a| O? 14t 1=t 14X _1-X
+/O R axayf(a7b?,c?dT) dtdx

Eh+ L+ I3+ 14

q
Using Holder’s integral inequality, from the co-ordinated geometrically quasi-convexity of ‘%‘ on A, and
by Lemma we have
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Al
<(f
|
([
Q(—;;a, >Q<—;;c,d>M(f).

Using simple techniques of integration shows

b= Q(-giab)a(yed)arn. n=Q(gier)Q(-gied)ui)

L < Q(;;a,b>Q<;;c,d)M(f). (3.5)

Substituting the inequalities (3.4)) to into the inequality . yields (3.1). Theorem is proved. O

—t_ 14t 1-—X _14X

/ 1-t)(1-Nazbsczds
0
1
0

1ot 14t 1A 14 1=1/4
1-t(1-Nazbzczd? dtdr
0
1 B B ar p1 pl 1/q
)(1—A)a12tb2tclz*d1¥dtdA] U Mq(f)dtd)\]
0 0

1—t 14t 1—

1—t)(1— /\)aTbTCTd% dtd)\)M(f)

>

(

1
(1-t
b

and

Theorem 3.2. Let f: A =

c<d, (mdaaanyLl( ). If

q>1, then

1S(f)] < 22(1/q_1){ [Q<—1‘aq bq)Q(—l'cq dq>]1/q+ {Q(-l'aq bq>Q<1'cq dq>]1/q
> 9% 9" 57 @ 51 Ch
1 1 1/a 1 1 1/q
o) ol el o

where Q(h;u,v) is defined by (2.1) and M(f) is defined by (3.2)).
Proof. Using the inequality (3.3]), by Holder’s integral inequality, and from the co-ordinated geometrically

X [c,d] CR2 — R be a partial differentiable function on A with a < b,

’ 18 a geometrically quasi-convex function on the co-ordinates on A for

(3.6)

. . 25 |4
quasi-convexity of ‘m on A, we have

1,1 1-1/q
11§<//(1—t)(1—)\)dtd)\>
[/ / (I—-t)(1 =X aq T T g 7]”( Sy c%d%)

1/q
< 2-20-1/9) [// (1= )1 = N)a?2 b7 2" dqmdtd)\] M(f)

1/
9—2(1-1/q) [Q<_;; al, bq) Q <—;; c, dq>] qM(f)-

q 1/q
dtd)\]
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Similarly, we have

and
1 1 Y
I, < 272(1=1/q) [Q( cal, bq>Q<, Cq’dqﬂ M(f)
This completes the proof of Theorem O

Theorem 3.3. Let f : A =
92 f

¢ <d, and 55, € Li(A). If

g>1andq>r>0, then

X [c,d] CR2 — R be a partial differentiable function on A with a < b,

’ s a geometrically quasi-convex function on the co-ordinates on A for

ar 1-1/ 1/
L) ol e )]
[ ¢=r g-r g—r 1-1/q 1, 1 1/q

] T o)

[ 9= q—r q—r 11/ 1/
ol ]l )]

[ (1 a—r ar 1 e 1-1/q 1 1/q
e ] o

where Q(h;u,v) is defined by and M(f) is defined by (3.2).

Proof. Using the mequahty . by Hélder’s integral inequality, and from the co-ordinated geometrically

axg on A, then

@
=
IN
—N
| — |
Q
/|\
N —
Q
v
O
VRS

quasi-convexity of

0? 1t 14t 1-A 14X
axayf(“bQ’”dQ)

1 1 it 1 M/ (a—1 1-1/q
/ (1—t)(1—A)<a%b%c%d%)(q i )dtd/\>

x [/1 1(1 —t)(1—)) (aEbzc?dlz*)rdtdA} 1/qM(f)

1 g-r _g-r 1 a—r q—r 1-1/q 1 1 1/q
okt o et )] (b Yo he)] i

1 ar g 1 ar ar\]'7V0 1 1 1/q

< oLt o Yo bet.at Y] o Lo Yo b )] s
1 ar g-r 1 ar g—r\]1" V4 1 1 1/q

I3 < |:Q<2;aq—17bq—1>Q(_2;Cq—1,dq—l):| |:Q<2;ar7br>Q<_2;crvdr>:| M(f)7
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1 a¢r gq-r 1 ar _ga—r 1-1/q 1 1 1/q
Iy < [Q(Q;GH>5H>Q<2;C‘J‘1,dq‘1>] [Q<2;ar7br>Q<2;Cr7dr)] M(f).

This completes the required proof. O

and

Remark 3.4. Under the conditions of Theorem if » = g, then (3.6 holds.
Corollary 3.5. Under the conditions of Theorem[3.3, when r =0, we have

1-1/
s ool )]
1 49 49 1 1_1/(1 1 _q q 1 q g 1_1/(]
ol )] o)
1 ¢«  _a 1 ¢« _a 1-1/q
+ |:Q<2;aq17bq1>Q<2;0q17dq1>:| }M(f)7

where Q(h;u,v) is defined by (2.1) and M(f) is defined by (3.2)).
Theorem 3.6. Let [ : A = [a, b] [c,d] CR2 — R be a partial differentiable function on A with a < b,

\V)

c<d, and % € Li(A). If ’ ’ is a geometrically quasi-convex function on the co-ordinates on A for
q>1, then

‘ | < <2q _11>2(1—1/Q) [(ac)

where L(u,v) is the logarithmic mean and M (f) is defined by (3.2]).

NI
NI
[SIES

+ (ad)? + (be)2 + (bd)2 ] [L(a?,b%)L(c?,d%)] " M(f),

Proof. Using the inequality . ), by Holder’s integral inequality, and from the co-ordinated geometrically

quasi-convexity of ‘ ‘ on A, we have

1,1 1-1/q
I < </ / [(1—t)(1—)\)]‘1/(q‘1)dtd)\>
[/ / QT pEt T gt o2 f(a%b%,c% %) !

0xdy

2(1-1/q) e i 1/q
1) [/ / AT b T gy dtd)\} M(f)
-1

and

The proof of Theorem [3.6] is complete. O
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Theorem 3.7. Let f : A = [a,b] X [c,d] C R — R be integrable on A with a < b and ¢ < d. If f is a
geometrically quasi-convex function on the co-ordinates on A, then

d rb T
(lnb—lna)l(lnd— o) / / ﬂ?;y)dxdy < max{f(a,c), f(a,d), f(b,c), f(b,d)}.

X

Proof. Letting z = a'b' "t and y = M~ for t, \ € [0, 1]. By the co-ordinated geometrically quasi-convexity
of f on A, we have

1 T fay)
(lnb—lna)(lnd—lnc)/c /a xy

1 1
dmdy:/ / f(a®' ™t Ad ) ded A
0 0

1 pl
< [ [ waxtfa.o). fa.d). 50,0, 70 ard
o Jo
— max{f(a,c), f(a,d), f(b.c), f(b,d)}.
This completes the proof of Theorem [3.7] O

Theorem 3.8. Let f : A = [a,b] x [¢,d] C R%2 — R be integrable on A with a < b and ¢ < d. If f is a
geometrically quasi-convex function on the co-ordinates on A, then

1 d rb
(lnb—lna)(lnd—lnc)/ / fz,y)dedy < L(a, b)L(c, d) max{f(a, c), f(a,d), f (b, c), f(b,d)},

where L(u,v) is the logarithmic mean.

Proof. Similarly as in Theorem [3.7] by the co-ordinated geometrically quasi-convexity of f on A, we have

1 d b 1 r1
dedy = tblft )\dlfz\ tblft )\dlf)\ ditd )
(lnb—lna)(lnd—lnc)/c /a fwy)dzdy /O/Oa Cd 7 f (@b e d )

1 1
< max{f(a,c), f(a,d), f(b,c), f(b, d)}/o /0 a'brtAdt A ded A
= L(a,b)L(c,d) max{f(a,c), f(a,d), f(b,c), f(b,d)}.

The proof of Theorem [3.8]is complete. O

We proceed similarly as in the proof of Theorems and we can obtain the following theorem.

Theorem 3.9. Let f,g: A = [a,b] X [c,d] CRZ — Ry = [0,00) be integrable on A with a <b and ¢ < d. If
f, g are geometrically quasi-convex functions on the co-ordinates on A, then

1 A ICRIICN')
(lnb—lna)(lnd—lnc)/C /a xy dzdy

< max{f(a,c), f(a,d), f(b,c), f(b,d)} max{g(a,c),g(a,d), g(b,c),g(b,d)}

and

1 d rb
(1nb—lna)(lmd_1110)/C /a flz,y)g(z,y)dxdy
< [L(a,b)L(c,d)]* max{ f(a,c), f(a,d), f(b, ), f(b,d)} max{g(a,c), g(a,d), g(b,c),g(b,d)},

where L(u,v) is the logarithmic mean.
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