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Abstract

This article studies the determination of the rate of convergence to the unit of each of three newly introduced
here multivariate fuzzy perturbed normalized neural network operators of one hidden layer. These are given
through the multivariate fuzzy modulus of continuity of the involved multivariate fuzzy number valued
function or its high order fuzzy partial derivatives and that appears in the right-hand side of the associated
fuzzy multivariate Jackson type inequalities. The multivariate activation function is very general, especially
it can derive from any sigmoid or bell-shaped function. The right hand sides of our multivariate fuzzy
convergence inequalities do not depend on the activation function. The sample multivariate fuzzy functionals
are of Stancu, Kantorovich and Quadrature types. We give applications for the first fuzzy partial derivatives
of the involved function. (©2014 All rights reserved.
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1. Introduction

The Cardaliaguet-Euvrard real neural network operators were studied extensively in [15], where the
authors among many other things proved that these operators converge uniformly on compacta, to the
unit over continuous and bounded functions. Our fuzzy ”multivariate perturbed normalized neural network
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operators” are motivated and inspired by the "multivariate bell” and ”multivariate squashing functions” of
[15]. The work in [I5] is qualitative where the used multivariate bell-shaped function is general. However, our
work, though greatly motivated by [15], is quantitative and the used multivariate activation functions are of
compact support. Here we extend to the fuzzy environment our initial real work, see [I4]. We derive a series
of multivariate fuzzy Jackson type inequalities giving close upper bounds to the errors in approximating the
unit operator by the above multivariate fuzzy perturbed neural network induced operators. All involved
constants there are well determined. These are pointwise and uniform estimates involving the multivariate
first fuzzy modulus of continuity of the engaged multivariate fuzzy function or the fuzzy partial derivatives
of the function under approximation. We give all necessary background of the multivariate fuzzy calculus
needed.

Initial work of the subject was done in [11] and [I2]. These works motivate the current work along with
[16].

2. Fuzzy Multivariate Real Analysis Background
We need the following basic background

Definition 1. (see [22]) Let p: R — [0, 1] with the following properties:

(i) is normal, i.e., 3z € R: pu (o) = 1.

(i) pAx+ 1 —=AN)y) >min{p(z),px(y)}, Vo,y e R, VA e[0,1] (uis called a convex fuzzy subset).

(iii) p is upper semicontinuous on R, i.e., V zg € Rand V& > 0, 3 neighborhood V' (x¢) : p(x) < p(x0)+e,
VaeV(xg).

(iv) the set supp (u) is compact in R (where supp(p) := {z € R: p(z) > 0}).

We call 1 a fuzzy real number. Denote the set of all y with Rx.

E.g., X{zo} € RF, for any zp € R, where x(,,) is the characteristic function at xo.

For 0 <r <1 and u € Rr define

W ={zeR:p(x) =r} (1)

and

W= To € R ple) = 0J.
Then it is well known that for each r € [0,1], [u]" is a closed and bounded interval of R ([I7]).
For u,v € Ry and A € R, we define uniquely the sum u & v and the product A ® u by
[weo]” =[u]" + ", PAou =AW, Vrel1],

where [u]" + [v]" means the usual addition of two intervals (as subsets of R) and A[u]" means the usual
product between a scalar and a subset of R (see, e.g., [22]).
Notice 1 ©® u = v and it holds
UBVv=vPu, AOu=u®A\.

If 0 <ry <ry <1 then

—

u]™ C [u]™
Actually [u]” = {u@7u$)}, where v < ug) (T) ( ) e R,V relo,1].

For A > 0 one has )\u(ir) =(AO u)g), respectively.
Define D : Rr x Rr — Rx by

O 7

o)}, (2)

D (u,v) := Tzl[:)pl] max {‘
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where
[v]" = [vg),vg)} : u,v € RE.

We have that D is a metric on Rx.
Then (R, D) is a complete metric space, see [23], [22].
Let f,g: R™ — Rr. We define the distance

D*(f,g) == sup D (f (z),9(x)).

zeR™

* o~
Here ) stands for fuzzy summation and 0 := x; € R is the neutral element with respect to @, i.e.,

ud0=0®u=u, VuecRzr.
We need
Remark 2. ([J]). Here r € [0,1], xl(r),yy) eR,i=1,..,m e N. Suppose that

sSup max (xgr),yi(r)) ER, fori=1,....m
rel0,1]

Then one sees easily that
sup max Zx(r Zyl < Z sup max< ),yl(r)> (3)
rel0,1] i—1 T€l0,1]

Definition 3. Let f € C (R™), m € N, which is bounded or uniformly continuous, we define (h > 0)

wi (f, h) = sup ’f (1, ey xm) — f (:1:’1, ,:clm)l ) (4)

all z;,x; €R, ’.ti—:v;’Sh, for i=1,....m

Definition 4. Let f : R™ — Rx, we define the fuzzy modulus of continuity of f by

P (1,8) = sup D(f(x),f(y), §>0, (5)

z,y€R™ | |x;—y;| <6, for i=1,....m

where © = (21, ..., Tm), Y = (Y1y oy Ym) -

For f: R™ — Rr, we use

= [0 A0], (6)
where fg) :R™ 5 R, Vrel0l].
We need
Proposition 5. Let f : R™ — Rr. Assume that wi (f,9), w1 (fﬁ”, 6), w1 (fJ(:), 5) are finite for any § > 0,
r e [0,1].
Then
2 (£,0) = sup max fwr (£7,8) wn (,0) ). (7)
rel0,1]
Proof. By Proposition 1 of [§]. O

We define by C% (R™) the space of fuzzy uniformly continuous functions from R™ — Rz, also Cr (R™)
is the space of fuzzy continuous functions on R™, and Cp (R™,Rx) is the fuzzy continuous and bounded
functions.

We mention
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Proposition 6. ([6]) Let f € C% (R™). Then wgf) (f,0) < oo, for any 6 > 0.

Proposition 7. ([6]) It holds

limw™ (£.8) = &) _

61_13’(1)(“)1 (f? ) Wy (f7 0) 07 (8)
iff f e CE(R™).
Proposition 8. ([6]) Let f € Cr (R™). Then fg) are equicontinuous with respect to r € [0,1] over R™,
respectively in +.

Note 9. It is clear by Propositions@ @ that if f € C’g (R™), then fj([r) € Cy (R™) (uniformly continuous
on R™ ). Clearly also if f € Cp (R™,Rx), then fir) € Cp (R™) (continuous and bounded functions on R™).

‘We need

Definition 10. Let x,y € Rr. If there exists z € Rr : x = y @ z, then we call z the H-difference on x and
y, denoted x — y.

Definition 11. ([22]) Let T := [zg,z0 + ] C R, with § > 0. A function f : T — Ryr is H-difference at
x € T if there exists an f’ (x) € Rx such that the limits (with respect to D)

@ —f@ L f@ - f =)

h—0+ h ’ h—0+ h

(9)
exist and are equal to f (z).
We call f’ the H-derivative or fuzzy derivative of f at .

Above is assumed that the H-differences f (x + h)— f (x), f (z)— f (z — h) exist in Rx in a neighborhood
of x.

Definition 12. We denote by C’}_-V (R™), N € N, the space of all N-times fuzzy continuously differentiable
functions from R™ into Rr.

Here fuzzy partial derivatives are defined via Definition in the obvious way as in the ordinary real
case.
We mention

Theorem 13. ([18]) Let f : [a,b] C R — R be H-fuzzy differentiable. Let t € [a,b], 0 <1 < 1. Clearly
For=[ro? roP] cr

Then (f (t))s_p are differentiable and

(f/)(i) = ( j(:))/, Vrelo1]. (10)
>

Remark 14. (see also [5]) Let f € CX (R), N
0] = [(r0) " (r00)"],

fori=20,1,2,.... N, and in particular we have that

(f(i)>(r) _ (fj(cr))(i) 7 (11)

+
for any r € [0,1].
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Let f € CY (R™), denote f5 := gié{f, where & := (a7, ..., ), a; € ZT,i=1,...,m and

m
O<lal:=) a<N, N>L
i=1
Then by Theorem [13| we get that
(£7) =P, vrel, (12)
and any a : |a| < N. Here fj(:’") e N (R™).
For the definition of general fuzzy integral we follow [19] next.

Definition 15. Let (2,3, 1) be a complete o-finite measure space. We call F' : Q@ — Rz measurable iff V
closed B C R the function F~!(B) : Q — [0, 1] defined by

F1(B) (w):= gsclelgF (w) (z), allwe Q

is measurable, see [19].

Theorem 16. ([19]) For F : Q) — Ry,
F(w) = {(F" (w), F{"” (w))j0 < r < 1},

the following are equivalent
(1) F is measurable,

(2) ¥ rel0,1], FET), Ff) are measurable.

Following [19], given that for each r € [0,1], F @), FJ(:) are integrable we have that the parametrized

representation

{(/ F(T)du,/ Fi”d,u) 0<r< 1}
A A

is a fuzzy real number for each A € X.
The last fact leads to

Definition 17. ([I9]) A measurable function F': Q@ — Rz,
F(w) = {(F? (w),F (w))j0 < r < 1}

is called integrable if for each r € [0, 1], Fj(:) are integrable, or equivalently, if Fio) are integrable.

In this case, the fuzzy integral of F over A € ¥ is defined by
/ Fdu = {(/ F(T)d,u,/ Ff)du> 0<r< 1}. (13)
A A A
By [19] F is integrable iff w — ||F' (w)]|  is real-valued integrable. Here
lull - := D (u6> , VueRs.

We need also
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Theorem 18. ([19]) Let F,G : Q@ — R be integrable. Then
(1) Let a,b € R, then aF + bG is integrable and for each A € 3,

/(aF—i—bG)d,u:a/qu—i-b/Gd,u;
A A A

(2) D (F,QG) is a real-valued integrable function and for each A € X,

D</,4qu,/AGdu) S/AD(FvG)d/L »
HA”“HFS/AHFHW.

Above i could be the Lebesgue measure, with all the basic properties valid here too.

Basically here we have
U qu] = U F@du,/ Ff)du], (15)
A A A

(r)
< / Fd,u) — [ Fdn (16)
A + A
V r € ]0,1], respectively.

In this article we use the fuzzy integral with respect to Lebesgue measure on R™. See also Fubini’s
theorem from [19].
We also need

In particular,

l.e.

Notation 19. We denote

(ZD (aiﬁ))f (2) = (17)

D (82f($1’$2),5> +D (82““’“),6) +2D <an (xl’xQ),6> .

3:6% 83:% O0x10x9

In general we denote (j=1,...,N)

jiljelegm! T\ B2l 0ud? 0l

(ju--wjm)eZTlZ;Zl Ji=J

3. Real Neural Networks Multivariate Approximation Basics (see [14])

d
Here the activation function b : R? — Ry, d € N, is of compact support B := [] [(—T1;,T;], T; > 0,
j=1

j=1,....,d. That is b(x) > 0 for any = € B, and clearly b may have jump discontinuities. Also the shape of
the graph of b is immaterial.

Typically in neural networks approximation we take b to be a d-dimensional bell-shaped function (i.e.
per coordinate is a centered bell-shaped function), or a product of univariate centered bell-shaped functions,
or a product of sigmoid functions, in our case all of them are of compact support B.
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Example 20. Take b(z) = [ (z1) 5 (22)...0 (xq), where B is any of the following functions, j = 1,...,d :
(1) B (z;) is the characteristic function on [—1,1],
(1) B (x;) is the hat function over [—1,1], that is,

1+£Cj, —1§33j§0,
B(a:j): 1—.lej, 0<$j§1,

0, elsewhere,

(#i7) the truncated sigmoids

14e %

5 (z) L or tanhz; or erf(z;), forx; € [=T;,T}], with large T > 0,
xj) =
’ 0, zj € R—[-T}Tj],

(iv) the truncated Gompertz function

B(x;) = e_aeiﬁzj, zj € [-T15,T5]; o, B> 0; large Tj > 0,
! 0, zj € R—[-T}T],

The Gompertz functions are also sigmoid functions, with wide applications to many applied fields, e.g.
demography and tumor growth modeling, etc.

Thus the general activation function b we will be using here includes all kinds of activation functions in
neural network approximations.

Here we consider functions f : R* — R that either continuous and bounded, or uniformly continuous.

Let here the parameters: 0 < a < 1, = (21,...,29) € R, n € N; 7 = (11, ...,7q) € N, i = (iy,...,1q) €

1 2 Td
N4, with i; = 1,2,...,7j, 7 = 1,...,d; also let w; = wy, _;, > 0, such that > > ... > w;, ., =1, in brief
i1=112=1 t1g=1

?

written as > w; = 1. We further consider the parameters k = (ki1,...,kq) € Z% p; = (iiys -y fhiy) € Ri,
i=1

vi = (Viy, .., Viy) € R?: and \; = Nivooosigs Pi = Pir,ig = 05 pv > 0. Call ™™ = minf{y;,, ..., v, }.

We use here the first modulus of continuity, with § > 0,

wi (f,0) := sup [f(x) = f W)l (19)
z,y € RY
[z =yl <0

where ||z||,, = max (|z1], ..., |zq]) . Notice is equivalent to (4)).
Given that f is uniformly continuous we get %irr(l)wl (f,6)=0.
—

Here we mention from [I4] about the pointwise convergence with rates over R?, to the unit operator, of
the following one hidden layer multivariate normalized neural network perturbed operators,
(i) the Stancu type (see [20])

(Hn (f)) () = (Hn (f)) (21, -, 2a) = (20)
S e (£ wif (52) ) p(toe o - )
Sie b (n1e (r = £))
2212:7”2 EZ;ZWQ (i g: Wiy ik (knl:lljll . k,f:f?)) )

i1=1 iq=1

n2 n2 _ k _ k
e kd:_nQb(nl a(xl_ﬁ)mnl a(md_#))
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b (nlo‘ (azl — kl) ,...,nlf"‘ <:1:d — kd)) ,
n n

(ii) the Kantorovich type
S (z wi n+ ) 7 f (145 dt) b(n1e (e - £))
Zi_n2 b(n'= (v =)

n? n? 1 rd
S Y XY whia (0 i)™

ki=—n2  kg=—n2?2 \i1=1 i4=1

,,,,,

b <n1_°‘ <x1 — kl) ,...,nl_o‘ <xd — kd)) ,
n n

(22)

and
(iii) the quadrature type

S (S s ()b @ = b))
(M, (f)) () = = p = (23)

i b (nie (2= B))

i1=1 ig=1

n?2 _ k _ k
Zkl_inz cee dezinz b (nl @ <f1}1 — #) ,...,nl @ (wd — ﬁ))

b <’I’L1_a <{L‘1 — kl) ,...,’I’Ll_a <{L‘d — kd)> .
n n

Similar operators defined for d-dimensional bell-shaped activation functions and sample coefficients f (%) =
f (ﬁ @) were studied initially in [15], [1], 2], [3], [0, [10], etc.

n’ ’n

2 2 k
Z’Zl:_n? sz:_nz ( Z Z wzl, ,de (Wl »,:71,17 d + 73’(:(1)> °

Here we care about the multivariate generalized perturbed cases of these operators (see [13], [14]).
Operator K, in the corresponding Signal Processing context, represents the natural so called ”time-
jitter” error, where the sample information is calculated in a perturbed neighborhood of ’T%’Ij rather than

exactly at the node E
The perturbed sample coefficients f (kﬂ;) with 0 < p < v, were first used by D. Stancu [20], in a totally

different context, generalizing Bernstein operators approximation on C ([0, 1]).
The terms in the ratio of sums — can be nonzero, iff simultaneously

k;
nl= <x] — n)’ <Ty, allj=1,..,4d, (24)

< o allj=1,..d, iff

—Tin® <kj <nz; +Tjn% allj=1,..d. (25)
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To have the order
—n?< nxj —Tyn® < kj < nz;+Tin® < n?, (26)

we need n > Tj + |xj|, all j = 1,...,d. So is true when we take

n > max (T +|x4]). 27
> max (T + ) (21)
When x € B in order to have (26) it is enough to assume that n > 27, where T* := max{T, ..., Ty} > 0.

Consider N
I; == [nx; — Tjn®, nz; + Tyn®], j=1,...d, neN.

The length of 1:; is 2Tyn®. By Proposition 1 of [I], we get that the cardinality of k; € Z that belong to

I; := card (k;) > max (2T;n* — 1,0), any j € {1, ...,d}. In order to have card (k;) > 1, we need 2T;n*—-1>1
_1

iff n>T; *, any j € {1,...,d}.

Therefore, a sufficient condition in order to obtain the order along with the interval T] to contain
at least one integer for all j = 1,...,d is that

1
n > ma T + |xi|, T, > 5. 28
je{l,.-)-(,d}{ o+l 4 } 2%)
Clearly as n — 400 we get that card (k;) — 400, all j = 1,...,d. Also notice that card (k;) equals to the
cardinality of integers in [[nx; — Tjn®], [nx; + Tjn®]] for all j = 1,...,d. Here [-] denotes the integral part
of the number while [-] denotes its ceiling.
From now on, in this article we assume .
We denote by T = (T1,...,Ty), [nx+Tn% = ([nz1+ Tin%],..., [nxq+ Tyn®]), and [nx —Tn®| =
([nx1 —Tin%], ..., [nxqg — Tyn®]). Furthermore it holds
(i)
(Ho () () = (o (/) (@1, 2) = (29)

S (5w (552) )b (o' o= )

S e b (170 (2 = 1))

[na1+T1n%] [nxg+Tyn®] kitpi, ka+pi, .
Zklz[nx17T1n°‘—| Ek‘d [nzg—Tyn%] E E Wiy, ’ldf ntvg 1Y ndygy

Zdl

[nae1+T1ne] [nzq+Tgn®] 1I—a k1 o kg
Zkl "nxl Tlna . Ekd [’ﬂl’d Tdna-l b (n Tr1 — yeees T Tq o
_ k1 _ k
b<n1 O‘(azl— st (g — 24 ),
n n

(K (f)) (x) = (30)
ST e (St ) 77 1 (1 B2 ) b o (2= )

S e b (117 (= 1))

[nz1+Tin%] [nxg+Tgn®]

1 rq
Z Z Z Z Wiy ..y (M + Pz‘l,...,id)d'

ki=[nz1—Tin®]  kg=[nzq—Tyn*] \i1=1 ig=1
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(31)
nx1+T1n%] neg+Tyn®) _ k _ k
Zlﬁ 1(”@‘11 —Tin*] " de dfm’il —Tqn®] b (nl : (381 B F1) e AT <$d B Wd))

b <n1°‘ (azl — kl) ot <:cd — kd)) ,
n n

oy T (S (4 ) )00 ) "
Mn f t)= nxl_na = 32
Zk [J;jg; zlncq b(n'=o(z— 1))

[nz1+T1n%) [nzg+Tgn®] k1 kd EZR
Zm:fnml*ﬂnﬂ "'de [naxqg—Tan>| Z Z Wiy de W m”l + nrq '

11 Zdl

[n@1+T1ne] [nzg+Tym] —a h L ky
Elﬂ [nz1—Tin>] * de [naeg— Tdna]b n Tr1 — R () [Ed—

b <n1_o‘ <x1 - kl) ot <$d — kd)) )
n n

and

(iii)

So if [n'=® (xj — %)‘ <Tj,all j=1,...,d, we get that
k T*
xTr — E >~ nlfa (33)
(o)
For convinience we call
[nz+Tn%] k
V(z)= Z b(nl_a (IL‘—)) =
k=[nz—Tn"] "
[nz1+Tin%] [nzg+Tgn®]

S e (e ) e (s ), "

ki=[nz1—Tin*| kag=[nzq—Tyn*]

We make

Remark 21. (see [1]]) Here always k is as in (26).
I) We have that

k+ pi _xH < (IIWIOO 2]l + Iuilloo)
[e.9]

n+ v n + i

+ {14 Millss r (35)
(n 4 len) nl—a :

22

n—+v; 0o

[Villoo 12l 0o + 113l o (A T
, 1 oo : 36
w1 (f < n 4+ len + + (TL+ Vlmm) nl—a ( )

with dominant speed of convergence nl%a
II) We also have for

Hence we derive

0<t;j < ———, j=1,..,d, (37)
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that it holds

i i)
n+ Pit,...iq 0o
e R (R e (39)
N+ Piy,..ig N+ Piy,ig) v
and k4 \
w1 <f’Ht+w_xH > <
N+ Piy,ig 00
o Ao o411 o T+
Wy <f, <p117---71d ||xHoo + Aigyig T ) + <1 + Pit-..sia > 1a> , (39)
"t P nF Piria) T

with dominant speed nl%a
II1) We also have

k T* 1
- L,_x S 1— +77 (40)
n nr . nt—o n
and " - .
w1<f7 '4‘2—95 >§w1(fal_a+>v (41)
n n oo n n

with dominant speed nl%a
Inequalities — were essential in the proofs of the next Theorems proved and presented in
24

So we mention from [I4] to use in this article the following results.

_1
Theorem 22. Let z € R? and n € N such that n > ?axd} (TJ+|x]|7T] a)) T, > 0,0 < a< I
jell,n,

fels (Rd) or f € Cy (Rd). Then
|(Hn (f)) (z) = f (z)] <

F

1l oo |2/l oo + Hm\oo) < Villse '\ _T*
E wiw1 <f, < . + 1+ : — | = (42)
— TL-}-Vme TL-}-Vme nl «

T1 Td
[1Villoo 12l oo + llill [ T
Z Z Wiy,...yigW1 <f’ < OOn +Oyomin =)+ (1+ n -+ Vronoin nl-a )’
i i

i1=1  ig=1 : i

where i = (i1, ...,1q) -

Theorem 23. All assumptions as in Theorem[23. Then

(B () (2) = f (2)] <

T
pillﬂ?l!oo+/\i+1> < pi ) T )
wiw , + 11+ = 43
; Z 1<f< n+ p; n+p;) nt-e “3)

T1 Td
Pig,erigl®ll oo TXiq . ig+1 Pit,..ig T*
Z Z Wiy ,...iq4W1 <f7 ( n+ﬂi’j : + 1 + n+pi; : ni—«a | -

i1=1 iy=1

Theorem 24. All here as in Theorem[2d. Then

M, (£) (2) — £ (2)] < on (f, I +1>. (44)

nl-a " n
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All convergences in — are at the rate of n%a, when f € Cy (Rd) .

_1
Theorem 25. Let © € R% and n € N such that n > r{naxd} <Tj + |xj’>Tj a) , 17> 0,0 < a < 1. Let
jell, ...,

d
also f € CN (]Rd) , N €N, such that all of its partial derivatives f5 of order N, a : |a| = )" a; = N, are
j=1

uniformly continuous or continuous and bounded. Then

f(x)

'\\“H

d
7j=1
_ . -
S, [( sl o (ol ) T
— Wi n+ym1n n+ym1n nl-a
T N
N e | [ Willoo 12 lloo + llpill oo (s lvillo \ T° 17
N! — ! n+yzmm n+yzmin nl-a

17l oo 1] o + [1244]] lvill \ T7
aﬁ%?;(]vm (f&[( n_|_,jmm o | 4 1+n+ymm T a . (45)

Inequality ([45) implies the pointwise convergence with rates on (Hy (f)) (z)to f(z), as n — oo, at speed
1

N
|(Hy (f)) () Z

8;103

_l’_

nl—o-

Theorem 26. All here as in Theorem[23. Then
(K (f)) (z) = f(2)] <

N l
1 i A+ 1 i T*

s 1 Z plele + M 1Y () T

lﬂl n+ p; n+p; ) n-—¢

l

fle) ]+ (46)

d

D

J=1

ﬂyw, pillrfloe +Ai +1 (14 - N.
Nt & n+ p; n+p;) nt=o

i=

pillzly +Ai+1 pi T*
~ 1 .
SN <fa’ K n+ p; U ) e

Inequality (46) implies the pointwise convergence with rates of (Ky (f)) (z) to f(z), as n — oo, at speed
1

9
Ox;j

nl—a-

Theorem 27. All here as in Theorem [24. Then

Y (&Ko
06 (@ = £l <35 | | o) | 1@
() 3 (e o) e (s +0). "

Inequality implies the pointwise convergence with rates on (M, (f)) (x)to f(x), as n — oo, at speed
n%a-

In this article we extend Theorems to the fuzzy setting and environment. We give also important
special cases applications of these fuzzy main results.
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4. Fuzzy Multivariate Neural Network Approximations

Here we consider f € CU (Rd) or fe(Cp (Rd ]R]:) b is as in Section 3, 0 < « < 1, also the rest of the

_1
parameters are as in section 3. For x € Rd we take always that n > ?axd} (TJ + |l’j| ,Tj a) , see .
Jeil,.,

The fuzzy analogs of the operators H,, K, M,,, see , together with ﬂ, and , respectivelly,
follow, n € N.

We define the corresponding fuzzy multivariate neural network operators next:

(i)

F

S (S e s (5)) o000 (e 2)

S e b (017 (2 = 1))

ig=1

zﬁﬁ?ﬁw-zxﬁ%ﬁmb@Hﬂm—h%wmﬂ@wéﬂ)
b <n1_0‘ <x1 — kl) it <xd — kd)) ,
n n

(K7 (D) (@) =
S (S w0t 77 1 (14 528 ) @b (1= (o - )

=1
S e b (1 (@ = B))

Td*
nTi +T1n naﬁd+Tdn k1 +,u¢1 k‘d-i-p,id
Zkl [nz1 Tlna] Z =[nxq— Tdna] Z Z Wiy,...,iq © f ntviy 07 ntvgy ©

(i)

[nz1+T1n%] [nxg+Tyn™]* Tg*

Z Z Z an, vig (M4 piy ) © (49)

ki=[nz1—Tin®] kg=[nzq—Tyn>] \1=1 ig=1

[na1+T1ne] [nzq+Tyn®] —a K L T
Ekl "nxl T1’I’L0‘ . de [nxd Td’na]b n I n yeees T Tq "

b <n1_0‘ <x1 — kl) ot <xd — kd)) ,
n n

o S e (S s (E+5) ) ob (= (o ) .
M7 (f)) (z) = _ = 50
S e b (o &

[na1+T1n] [nzg+Tgn®]" T k141 kg g
Zk’lz("ﬁl_Tlnaw .“de:[nzd*Tdna—‘ ilzi:l de:1 Wi, 1d®f< n +'m"1’ Yn +n"“d) ©

[n@1+T1n?] [n2q+Tyn?] (1—a( —k—l) 1_&< —]Ld>>
Zkl [nzq—Tyn®] de {nzddena-‘b n T1— 0 )T Td—

b <n1_°‘ <x1 - kl) et <$d — kd)) )
n n

and

(iii)
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We notice that (r € [0, 1])

[nz+

-y

k=[nz—

We have proved that

respectively.

Tn®]

Tno] \i=1

[nz+Tn®]

¥

k=[nz

[nz+Tn™

2.

For convinience also we call

We observe that

[nz+Tn%]

k=[

|

We have proved that

respectively.

nz—Tn%]

[nz+Tn%]

D

k=[nz—Tn>]

[nz+Tn®]

D

k=[nz—Tn>]

[nz+Tn%]

2.

k=[nz—Tn"]

[nz+T

n®|

2.

k=[nz—

(Eefr
(oo 2229)

Tno|

Tne|

>t (

](7’

k=[nz—Tn%]

(0 (#7) @, (1 (7)) o }

Zwi [f <n+l/i

;

=1

k+u>]) b(n' = (z—1))

n—+v;

k+m>f <k+gﬂ>bwksgfﬁn

n—+ v,

k+ﬂz )b
n—+vy;
(

Ny =H (£7). vrelo),
nl=o(p — &
A@ﬂzb( V&)n»
KKfu»mﬂr=

=1

> (Zwl n+ p;)?
(Zwl n+ p;)

n+ﬂz k+ )\
f < ) dt
/0 * n+ p;

(sznﬂ)z /+pzf(r)<t+n+p

)A()=

k+ X\

7 1

d [P ) k+ N\

E i i b+ —
(i:1w(n—|—p) /0 I+ < n+ p;

/n-H)i f@ t kE+ A dt,
n+ p;

) dt> A(z),
> dt) A(z)

(51)

(55)
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Next we observe that

(M () (@] = [”f"” (Z w [f (fL n n)]) A(x)

k=[nz—Tn%]

e 7] " o (K i o [k i
i O G L CEP | RLE

k=[nz—Tn"]

{ o (Z wif? (24 n)) A@),

k=[nz—Tn|

[nz+Tn] 7 " L i
(S (i)

That is proving

respectively.
It follows are main results.

We present
Theorem 28. All as at the begining of Section 4. It holds

D ((HI () (), f (2)) <

Proof. We observe that

up mas{| (11 (127) ) () = /20 @) | (11 (7)) @

re(0,1]

-
Sl (. (Ll bl e | (il
- n+v; n+v;

T1 Td
F Vs X + 1|
5 S el (1 (L “men ) o (14 I

sup max {|(#7 (1) (2) - 12 <x>) | @ET () @) - g <x>]}

sup maX{Zwl <f(r <|V1H ATVIIHHMJ ) <_|_

T
, @ (il o 12l oo + 13l oo Lo ills
;wzwl(Jr’( n+ymm + +n+y

Z 1Vill oo 1| o + 124
> w; sup max{wl (fﬁ’"%( Z 0+ ’°°>+<1+

i—1 rel01]

m1n> nl a

(56)

(57)

(58)

(59)

(60)
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() [ 1¥ill oo 1/l o + 1124l [lvill T
w1 (f-l,- 7( oon—|-ozjzmin =)+ {1+ n+y§noin nl—o -

T *
(F) ( <HV¢||oo ]| + IIMHOO> ( lilloo \ T
wiwy /s : + 1+ . — ], (61)
; n+ Vimm n+ Virnm nl «

proving the claim. OJ

Theorem 29. All as at the beginning of Section 4. It holds
D (K7 () (2), f (@) <

T (]:) pi||$”oo+>\i+1 1 Pi T*
Z Wi (f’ ( n+ p; Ut n+p; ) nt=e (62)

=1

T1 Td
' ) i erigll o FXig . g +1 Pi,... ig T+
Z Z wll,...,ldwl f7 n+,0i1 . + 1 + n+ﬂi1 . nl—o .

=1 iy=1

Proof. Using , , similar to Theorem O
Theorem 30. All as in Theorem[28. It holds

D((7 (1) 0.1 @) <7 (Froima 7). (63)
Proof. Using , , similar to Theorem O

Remark 31. When f € C’g (]Rd), as n — o0, from Theorems we obtain the pointwise convergence
with rates of (H; (f)) (z) B f @), (K7 (f)) () 2N f (@) and (M (f)) () B f(z), at the speed of nl%a

d
In the next three corollaries we take z € [ [—7;,7;] C RY, v; > 0,7* = max {71, ..., 74} and n € N such
j=1

1
that n > max <T;+~;,T. ° ¢.
o j6{17"'7d} { J ryj ] }

We derive the following

Corollary 32. (to Theorem[28) It holds

D* (H; (£). f) <

d =
IT =575
j=1

7 . »
, (f)( (H%'HOO’Y +”/J'i”oo) ( Vil oo ™\

> wiwy | f, . 14+ _) ) = (64)

P n+ Vzmm n 4+ ymn f pl-a

r1 T4 N .
) [Villoo 7* + Il 1A T
Z Z wllv'--vzdwl (f? ( O;; + Vmin =S + 1 + n + V?noin nl—Oé .
? [

i1=1  ig=1 2 2

Proof. By . O
Corollary 33. (to Theorem[29) It holds
D* (K7 (f), <
IT [=75 5]
=
! YT+ A+ 1 i T*
Bl (g) )
— n—+ p; n+pi)n

1 Td *
(F) Piq,..., oA S VR i, +1 Piq,..., i T*
2 2 Wineiator” (S (P T ) (U Ry ) we )

=1 iy=1
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Proof. By . O
Corollary 34. (to Theorem[30]) It holds
T 1
D (M (). <wi) (f, + > . (66)
( ) ﬁ [=75:75] ! nl=® " n
j=1
Proof. By . O

Remark 35. When f € C'][{ (]Rd), as n — oo, from Corollaries we obtain the uniform convergence
with rates of HY (f) N f, K7 (f) N f and MF (f) N f, at the speed of nl%a

Next we present higher order of fuzzy approximation results based on the high order fuzzy differentiability
of the approximated function.

_1
Theorem 36. Let © € R% and n € N such that n > I{naxd} (TJ + || ,Tj a> , T >0, 0 < a < 1. Let
jell, ...,

d
also f € C¥ (RY), N € N, such that all of its fuzzy partial derivatives fz of order N, & :|a| = Y. a; = N,
j=1

are fuzzy uniformly continuous or fuzzy continuous and bounded. Then

D ((HL () (2),f (z)) <
5 [Zw (GNP |

i=1 i=1 ’

l

]z;p <aij’5> F@| +

d w [(IIVHOOIICCIIOOJFHM Hoo> . (1+ [Villoo ) } : (67)

e 1 v v
NI — n+ I/me n+ Vzmm nlfa
1=

A (o [ MPilloo N2l + M1l Lo Milles Y T7
&%?wal <fo”[< n + ymin * +n—|—1/1.min nl-a] )’

Proof. We observe that

D ((Hy (f)) (), f (2)) =
sup max {| (17 (1) (2) = 17 @) | (1 (1) (@) = 17 (@) } &

rel0,1]
sup {1, (4)) 0= 12 .| (1 (1)) 0= 10 0]} B
N 1 d o ! )
lgw Knmnm Mo;;nnmnm) . <1 . n'L”iﬁ) nflp;]l .

T N
a~ [ ( illoo 2l oo + N1l lvills ) T
wW; - + {1+ - .
N! — n + v n + v nl-o
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(r)) Vil oo 1]l o 4 [124l oo Ly il T
a}‘%?:wal <<f_ a’K n + ymin * +n—|—1/mm nl=e | )’

l

- 1 ]9 (r)

Zf Z ox; fi (x)

=1 ]:1
" ; . . x 71
[Zw[(””’” g m+m||moo>+<1+ ||V,H;Om> ?a] .
i1 n-+v n+y; n

_ . N
v < wr | (Wills 12l +Hlmilloe\ (1 il \ T _
N' i1 ¢ n_|_len n+ymln nl—a

(r) [1Villoo 1210 + [14ill o Wil \ T
a%?fjvwl <<f+ )a’ |:< n -+ len {1+ n -+ len nl—o

l (r)
f(z)

d

sup max Zu 3

re[0,1] =1

T l

S KHV@II [E1 mﬂ;llmlloo> N <1+ [ zllmm> l_a]
1 n—+v n—+v n

_ . oN

AN S vills Nl + il c(1s lvills \ T '
N! - 2 7’L—|—I/mm n+ymln nl-a

w
=1
@ [ Villoo 2]l oo + 1ill il ) T7
= : 1 3
a:r‘%?szwl <(fa) ) K n 4 i + + 01 omn o )

l (r)
fl)y] - (69)

+

_ . -
iw» lilloo l2lloo + Nlkilloe | (7 4 M¥ille \ T

g n+ymin n+ym1n nl-a
=1 ?

_ . aN

4 Wl el il (il Y T ]
N! Wi n+ym1n n+Vm1n nl—a

1

1=

17l oo 1/l =+ [1424]] lilloo \ 7™
&;ﬁ%}?f w1 <(fa) 7|:< n+ym1n = + {1+ n+ym1n nl—a

N r x 1
1 iw, illoo l2lloe + llkillo\ | (1 4 MWillss ) T
>~ l' 7 n -+ Vrrnn n+ me nlfa

=1 1=1 )
(r)
d
flx ( > 8% f(x) +

0

82Uj

_l’_

N o d
St [DSlKS

=1 j=1

_l’_

—

d
- Sup max Z
j:

TE[O,].] 1 87‘%.‘7

J=1
J’_

T N
A O 17 I 79 R PO L2 R B (70)
N! - n + v n + v nl-o

i=

+
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max sup max {wl ((fa)(_T), [("Vi““lﬂtjﬁlz“ui‘lm) + (1 + %) n?_*a:|) )

a5‘a|:]\[r6[071]
0 il 2o + llaillog Lo il ) T
w1 ((fa)+ ) {( n+ V;nin + + n4+ V;nin nl—a

by @ @ @ K1 [ [illoo 12l o + lltill o vile \ T 1
= Z n Zwl min + {1+ min l—«
— l! P n+v; n+v; n

l

jz:D((?i,a) flz)| +

dN T . . 3 T* N
" Knmuw o + r|m||oo> N (1 N ”’“”ifin) n} . (71)

- 5 .
N! 4 n + ymn n+ v}
i=1 t t

(F) Vil oo 12l o0 4 [l1ll o [Villog \ _T™
5 . 1 . :
alain ! (f"" [( n 4 pmin TUTRT ymin ) pl-o

The theorem is proved.

Similarly we find
Theorem 37. All as in Theorem[36. Then

N 7 !

1 |zl o + A+ 1 ; T*

ZT Zwi [(Pz” [ i >+ <1+ Pi ) 1a]

P l! — n+ p; n+pi)n
!

d o
;D((%j,o) fz)| +
N < pi ||l + A +1 p; T 1V
i | (M) () ] r2)

i A+ 1 ; T*
max w%f) fa pillalloe A+ +(1+ pi = .
a@:lal=N n+ p; n+p;) n-%

Proof. Similar to Theorem using , , etc.

We continue with

Theorem 38. All as in Theorem[36. Then
D (M7 (f)) (), f(z)) <
!

N d l
1 o0 _ T* 1
2| | =? <ax/°> f ) (ma +n) *

J

N * N T* 1
< ( d + 1> max wy_—) (fa, + ) . (73)

| nl—a n
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Proof. Similar to Theorem using , , ete.

Note 39. Inequalities (@), and imply the pointwise convergence with rates of (Hf (f)) (z) 2
f (@), (BT () (@) 3 f (2) and (M7 () (@) 5 f (2), asn— oo, at speed .
Note 40. In the next three corolaries additionally we assume that
fa(x) =0, forala:|al=1,..., N, (74)
for x € R? fized.
The last implies D (f5 () ,0) =0, and by (18) we obtain

d P :

D <a'> f)| =0, (75)

- 89:]-

7=1

forl=1,...,N.

So we derive the following special results.

1
Corollary 41. Let z € R? and n € N such that n > ?axd (Tj + |xj] T a> , T >0,0 < a< 1. Let
je 17'--7

d
also f € C’g (Rd) , N €N, such that all of its fuzzy partial derivatives fg of order N, & : |a| = ) a; = N,
j=1

are fuzzy uniformly continuous or fuzzy continuous and bounded. Assume also . Then

D ((H () (2). f(2)) <

aN r ) . ) T* N
N 2 Wi K”V’Hm ||x”°°m+mH“Z”°°> + <1+ Hyz”i’ﬁin> 1_,1} ' (76)
N! P n+ v, n+ v, n
max ) ( f, illog l2lloe + llkallo | (4 4 Wills " 1.
a:lal=N n + v n+ vyt ) nime
Proof. By and . O

Corollary 42. All as in Corollary[{1 Then

D (KL () (@), f(2) <

A i A+ 1 A A
s~ (Pl TN (L e —| - (77)
N! n+ p; n+p;) nl=e
% )\i 1 i T
max_ o) (fa, [(p /o + Ai + >+ <1+ P ) r D
a:lal=N n+ p; n+p;) ne
Proof. By and ((75)). O

Corollary 43. All as in Corollary[f1. Then

D ((MI () (x), f(2)) <

av oo 1Y ) ™ 1
N (nl—a + n> a:%?wal (f&a nl—a + n) . (78)
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Proof. By and . O

By , , we get fuzzy pointwise convergence with rates at high speed m
We need

Lemma 44. ([7], p. 131) Let K be a compact subset of the real normed vector space (V. ||-||) and f € Cr (K)
(space of continuous fuzzy real number valued functions on K ). Then f is a fuzzy bounded function.

d
Assumption 45. In the next three corollaries we consider x € G = [] [-v;,7] C R%, 45 > 0,7* =
j=1
_1
max {71,...,74} andn € N : n > 1{rnaxd} <Tj+'yj,Tj “), T; > 0,0 < a <1 Letalso f € C’g (Rd),
Jeil,.,

N € N, such that all of its fuzzy partials f5 of order N, a : |a| = N, are fuzzy uniformly continuous or
fuzzy continuous and bounded.

Using Lemma [44] Assumption 45| along with (18]) and subadditivity of ||-|| , we clearly obtain that
d P :
S0 (5e0) |t <. (79)
- 81‘]'
7j=1
00,G

foralll=1,...,N.
We define

D*(f,9) la = supD (f (z), g (z)),

z€G

where f,g: G — Rr.
We give

Corollary 46. We suppose Assumption[{5 Then
D*(Hy (f),f) e <

N l
1 [Villoo 7™ + ||Mz|| I z|| T
3 | S (et (1 ) T

=1 =

l

ip((;;,a) f@l o+ (80)

0,G

_ Ca
AR S Q171N 17 S 7 MU O sl
N' pat 7 n+ym1n n+ym1n nl—a

F (o [ IVillso v + 4l il \ T
|a?‘XNw1 <f0“ |:< n+ Vrnm =)+ (1+ n -+ len nl—a :
Proof. By and . O

Corollary 47. We suppose Assumption[[5. Then

D* (K7 (f),f)la <

N l
1 oY+ N+ 1 Di T*
- il AT 1

I P B e =

i=1
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0,G

a piv" + A +1 pi T 1
. 1 )
]\7!;11}Z [( n+ p; * +n+p¢ nl-o

B (e [P HAN+]T 1 Pi 1™
a7 (1 | (P555) + (1+585) 7).

Proof. By and . O
Corollary 48. We suppose Assumption[{5 Then

D* (M (f).]) e <

. jép(aij,’a) lf(a:) + (81)

Nl & 9 ™ 1\
a2 (o)) @] () +

j=1
00,G
avorore 1Y ) ™ 1
N (nl—a + n> aﬁn&?wal (fa, T a + n) . (82)
Proof. By and . O
Note 49. Inequalities , , imply the uniform convergence on G with rates of an (f) 2; 1,
K7 (f) N f and MT (f) b f, as n — oo, at speed n%a
We continue with
Corollary 50. (to Theorem[36) Case of N = 1. It holds
D ((H (f)) (), f (x)) <
S [l ol Dl | (Dl ) T s
P n -+ Vlmln n 4+ Vlmln nl—a

nl—oz

e o (2L (Ml + bl (4, Il ) T VL
je{1,...,d} Ox;j n 4 pmin n+ pmin ) pl-a

Proof. By . O

F
Vil oo 12| o =+ Il [|vi]] T
d{zwiK Oon+ozjmin =) mi '
y 1
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Corollary 51. (to Theorem Case of N =1. Then

D (K57 () (2), f (2)) <
S, [ R (RN e (34)

i=1

j=1
T ; \i + 1 ; T*
d ZwiKP 2]l + A + >+(1+ p ) 1 }
P n + p; n+p;) ne
i /\i 1 3 T*
S—2 <3f7[<p 2l + Ai + >+<1+ p ) r D}
je{l,...,d} Ox; n+ p; n+p; ) nl—@
Proof. By . ]

We finish with

Corollary 52. (to Theorem|[3§) Case N =1. Then

Proof. By .

Note 53. Inequalities , and imply the pointwise convergence with rates of H (f(f)) ()
f (@), (KT () (@) 3 f (@) and (M (f)) (@) 3 f (@), as n— oo, at speed .
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