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Abstract

A novel reduced-order adaptive controller is extended and developed to synchronize two different frac-
tional order chaotic systems with different dimensions. Based upon the parameters modulation and the
adaptive control techniques, we show that dynamical evolution of third–order fractional order chaotic sys-
tem can be synchronized with the projection of a fourth–order fractional order chaotic system even though
their parameters are unknown. The techniques are successfully applied to fractional order hyperchaotic
Chen (4th-order) and fractional order chaotic Liu (3rd-order) systems. Theoretical analysis and numerical
simulations are shown to verify the results. c©2016 All rights reserved.
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1. Introduction

Fractional calculus, once treated only as a pure theoretical field has fully developed into an applied field
of mathematics with applications in a variety of areas such as the theory of control of dynamical systems
which is the subject of this paper. The chaotic behavior of fractional order systems is demonstrated by many
researchers such as [13, 25, 30, 33]. Synchronization of chaos in fractional order differential systems has
applications in several fields such as secure communications, population models and financial systems. Due
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to its importance in wide ranging application areas a number of synchronization schemes and methods have
been developed. These include, adaptive control [7, 15, 22, 24, 26, 29, 35], sliding mode control [12, 17, 31,
34, 36], linear active control technique [3, 6, 10, 23], projective synchronization [2, 11, 19, 28] and nonlinear
active control [4, 5]. Synchronization between different order chaotic oscillators can be found frequently
in nature. For example, synchronization between heart and lung, both systems behave in synchronous
ways in the cardiorespiratory system. Another example occurs in the case of thalamic neurons, which is
reasonable if their order is different from the one of the hippocampal neurons. Similarly, such synchronization
phenomenon can be found in the human brain, in chaotic laser communications and synchronization in the
cells of paddlefish, etc. There are few very interesting results in the scientific literature dealing with the
synchronization of chaotic systems with different orders [8, 9, 14, 16, 18, 27]. Recently, Agrawal and Das
[1] introduced a modification on the adaptive synchronization and parameter identification method with
unknown parameters for using in fractional order chaotic systems based on Lyapunov stability method.
This work is to further develop the scheme for reduced-order synchronization of chaotic systems with fully
unknown parameters. The rest of the paper is organized as follows. In section 2 we briefly describe the
problem. In section 3 we describe adaptive reduced- order synchronization strategies with parameter update
law for fourth order fractional-order hyperchaotic Chen system and third order fractional-order Liu system
to perform the reduced-order synchronization. The results of numerical simulations are given in section 4.
Conclusions are given in section 5.

2. Problem formulation and systems description

2.1. Preliminaries of fractional-order calculus

Fractional calculus is a generalization of integration and differentiation to a non-integer order integro
differential operator aD

q
t , which is defined by

aD
q
t =


dq

dtq , R (q) > 0,
1, R (q) = 0,
t∫
a

(dτ)−q , R (q) < 0,

(2.1)

where a < t. Fractional derivatives is defined as follows.

aD
q
tx (t) =

dn

dtn
jn−qt x (t) , q > 0, (2.2)

where n = dqe, and

jαt ϕ (t) =
1

Γ (α)

t∫
0

ϕ (τ)

(t− τ)1−α
dτ, (2.3)

where 0 < α ≤ 1 and Γ(.) is the gamma function. The Caputo differential operator of fractional order q is
defined as

cDq
tx (t) = jn−qt xn (t) , q > 0, (2.4)

where n = dqe.

Lemma 2.1 ([1, 25]). In Riemann–Liouville derivatives if p > q ≥ 0,m and n are integers such that
0 ≤ m− 1 ≤ p < m, 0 ≤ n− 1 < n, then we obtain

aD
q
t

(
aD
−q
t f (t)

)
= aD

p−q
t f (t) . (2.5)
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Lemma 2.2 ([1, 25]). In Riemann–Liouville derivatives if p > q ≥ 0,m and n are integers such that
0 ≤ m− 1 ≤ p < m, 0 ≤ n− 1 ≤ q < n, then we obtain

aD
p
t ( aD

q
t f (t)) = aD

p+q
t f (t)−

n∑
j=1

[
aD

q−j
t f (t)

]
t=a
× (t− a)−p−j

Γ (1− p− j)
. (2.6)

2.2. Modified adaptive reduced-order synchronization

Consider the chaotic master system described by

Dq
tx = f(x) + F (x)α, (2.7)

where x ∈ <m is the state vector of the system (2.7), f : <m → <m is a continuous vector function including
nonlinear terms, F : <m → <m×k, and α ∈ <k are the parameter vectors of the system. Similarly,

Dq
t y = g(y) +G(y)β + U (2.8)

is the slave system; where y ∈ <n is the state vector, g : <n → <n is a continuous vector function,
G : <n → <n×` , and β ∈ <` is the parameter vector.

In a situation when f 6= g, F 6= G and n < m then the reduced-order synchronization is the only possible
type of synchronization. Consider the projection of the master system to be

Dq
txı = fı(x) + Fı(x)α, (2.9)

where xı ∈ <n, fı : <m → <n, and Fı : <m → <n×k . The rest:

Dq
tx = f(x) + F(x)α, (2.10)

where x ∈ <u, f : <m → <u, F : <m → <u×k and orders n, u satisfy u+ n = m. Define the error vector as

e(t) = y(t)− xı(t).

Then by suitable choice of controller it can be shown that lim
t→∞
‖y(t)− xı(t)‖ = 0.

Theorem 2.3. If the nonlinear control function is selected as

U =fı(x) + Fı(x)α− g(y)−G(y)β

+Dq−1
t

[
Fı(x)(α̃− α)−G(y)(β̃ − β)−

(
Dq−1
t e (t)

) (t)−(q−1)−1

Γ (− (q − 1))
− ke

]
(2.11)

and adaptive laws of parameters are taken as

˙̃α = −[Fı(x)]T e,
˙̃
β = [G(y)]T e, (2.12)

where α̂ = α̃− α, β̂ = β̃ − β, k > 0 is a constant and q ∈ [0, 1] is the order of the derivative and α̃, β̃ are the
estimated parameters of α and β respectively.

Proof. From Eqs. (2.8) and (2.9) we get the error dynamical system as follows:

Dq
t e (t) = g (y) +G(y)β − f(x)− F (x)α+ U. (2.13)

Inserting (2.11) into (2.13) yields the following:

Dq
t e(t) = Dq−1

t

[
Fı(x)(α̃− α)−G(y)(β̃ − β)− (Dq−1

t e(t))
(t)−(q−1)−1

Γ(−(q − 1))
− ke

]
. (2.14)
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If a Lyapunov function candidate is chosen as

V (e, α̂, β̂) =
1

2

[
eT e+ (α̃− α)T (α̃− α) + (β̃ − β)T

(
β̃ − β)

)]
, (2.15)

the time derivative of V (e, α̂, β̂) along the trajectory of the error dynamical system (2.14) is as follows

V̇ (e, α̂, β̂) =

[
ėT e+ (α̃− α)T ˙̃α+

(
β̃ − β

)T ˙̃
β

]
(2.16)

Using Lemma 2.2 in Eq. (2.16) we get

V̇ (e, α̂, β̂) =

([
Dq−1
t (Dq

t e (t)) +
(
Dq−1
t e (t)

) (t)−(q−1)−1

Γ (− (q − 1))

]

+ (α̃− α)T ˙̃α+
(
β̃ − β

)T ˙̃
β

)
.

(2.17)

From Eqs. (2.12) and (2.16), we get

V̇ (e, α̂, β̂) =
[
Dq−1
t

(
Dq−1
t [Fı(x) (α̃− α)−G(y)

(
β̃ − β

)
−
(
Dq−1
t e (t)

) (t)−(q−1)−1

Γ (− (q − 1))
−ke]

+
(
Dq−1
t e (t)

) (t)−(q−1)−1

Γ (− (q − 1))

]T
+ (α̃− α)T ˙̃α+

(
β̃ − β

)T ˙̃
β.

(2.18)

Since ∀q ∈ [0, 1], (1− q) > 0 and (q − 1) < 0. Now using Lemma 2.1 and Eq. (2.12), Eq. (2.18) reduces to

V̇ (e, α̂, β̂) =
[(
Fı (x) (α̃− α)−G(y)

(
β̃ − β

)
−
(
Dq−1
t e (t)

) (t)−(q−1)−1

Γ (− (q − 1))
−ek]

+
(
Dq−1
t e (t)

) (t)−(q−1)−1

Γ (− (q − 1))

]T
e− (α̃− α)T

(
[Fı(x)]T e

)
+
(
β̃ − β

)T (
[G(y)]T e

)
=

[
(α̃− α)T Fı(x)T −

(
β̃ − β

)T
G(y)T − keT

]
e− (α̃− α)T [Fı(x)]T e

+
(
β̃ − β

)T
[G(y)]T e

=− keT e ≤ 0.

(2.19)

Since V and V̇ are positive and negative semi-definite respectively, therefore according to the Lyapunov
stability theory [20] the response system (2.8) is both globally and asymptotically synchronized to the drive
system (2.9). This completes the proof.

2.3. Systems description

The fractional-order hyperchaotic Chen system [32] is given by

dαx

dαt
=w + ay − ax, dαy

dαt
= x(d− z) + cy,

dαz

dαt
=xy − bz, dαw

dαt
= yz + rw.

(2.20)
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where r, a, b, c, d, are positive parameters and x, y, z, and w are state variables. The system (2.20) exhibits
hyperchaotic attractor for a = 35, b = 3, c = 12, d = 7, r = 0.5 and 0 < α ≤ 1.

The fractional-order chaotic Liu system [10, 21] is described by

dαx2
dαt

=− a2x2 − g2y22,

dαy2
dαt

=b2y2 − k2x2z2,

dαz2
dαt

=− c2z2 +m2x2y2, (2.21)

where a2 = 1, b2 = 2.5, c2 = 5, k2 = 4,m2 = 4, g2 = 1 and 0 < α ≤ 1.

3. Modified adaptive reduced-order synchronization between the projection x − y − z of the
fractional-order hyperchaotic Chen system and the fractional-order Liu system

In order to achieve the behavior of the reduced-order synchronization between the fractional-order hyper-
chaotic Chen system and fractional-order chaotic Liu system, we take system (2.20) to be the drive system
and system (2.21) to be the response system. The variables of the drive system are represented by subscript
1 and the response system by subscript 2. Both the systems are:

dαx1
dαt

=a1y1 − a1x1 + w1,
dαy1
dαt

= d1x1 − x1z1 + c1y1,

dαz1
dαt

=x1y1 − b1z1,
dαw1

dαt
= y1z1 + r1w1.

(3.1)

and

dαx2
dαt

=− a2x2 − g2y22 + u1,

dαy2
dαt

=b2y2 − k2x2z2 + u2,

dαz2
dαt

=− c2z2 +m2x2y2 + u3.

(3.2)

Here the controller is defined as U = (u1, u2, u3)
T which is one of our main objectives. To achieve the

intended synchronization between the two systems with unknown parameters we need to design an adaptive
controller. The difference of (3.2) and (3.1) gives error dynamical system as below.

Dq1
t e1(t) =− a2x2 − g2y22 − a1(y1 − x1)− w1 + u1,

Dq2
t e2(t) =b2y2 − k2x2z2 − d1x1 + x1z1 − c1y1 + u2,

Dq3
t e3(t) =− c2z2 +m2x2y2 − x1y1 + b1z1 + u3,

(3.3)

where e1 = x2 − x1, e2 = y2 − y1 and e3 = z2 − z1.

Theorem 3.1. The fractional-order chaotic Liu system (3.1) can be synchronized globally and asymptotically
for any different initial condition with the projection (x − y − z) of the fractional-order hyperchaotic Chen
system with the following adaptive controller:

u1 =a2x2 + y22 + a1(y1 − x1) + w1 +Dq1−1
t [x2 ã2 + y22 g̃2 + (y1 − x1) ã1

−
(
Dq1−1
t e1 (t)

)
× (t)−(q1−1)−1

Γ (− (q1 − 1))
− e1

]
,

u2 =− b2y2 + k2x2z2 + d1x1 − x1z1 + c1y1 +Dq2−1
t [−y2 b̃2 + x2z2k̃2

+ x1d̃1 + y1c̃1 −
(
Dq2−1
t e2 (t)

)
× (t)−(q2−1)−1

Γ (− (q2 − 1))
− e2

]
,

(3.4)
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u3 =c2z2 −m2x2y2 + x1y1 − b1z1 +Dq3−1
t [z2c̃2 − x2y2m̃2 − z1b̃1

−
(
Dq3−1
t e3 (t)

)
× (t)−(q3−1)−1

Γ (− (q3 − 1))
− e3

]
,

and parameter update rules

˙̂a1 = −(y1 − x1)e1, ˙̂
b1 = z1e3, ˙̂c1 = −y1e2,

˙̂
d1 = −x1e2, ˙̂a2 = −x2e1, ˙̂

b2 = y2e2,
˙̂c2 = −z2e3, ˙̂m2 = x2y2e3, ˙̂g2 = −y22e2,
˙̂
k2 = −x2z2e2.

(3.5)

where â1, b̂1, ĉ1, d̂1, â2, b̂2, ĉ2, m̂2, ĝ2, k̂2 are estimates of a1, b1, c1, d1, a2, b2, c2,m2, g2, k2, respectively.

Proof. Applying control law equation (3.4) to Eq. (3.3) yields the resulting closed-loop error dynamical
system as follows:

Dq1
t e1(t) = Dq1−1

t [x2 â2 + y22 ĝ2 + (y1 − x1) â1 −
(
Dq1−1
t e1 (t)

)
× (t)−(q1−1)−1

Γ (− (q1 − 1))
− e1

]
,

Dq2
t e2(t) = Dq2−1

t [−y2 b̂2 + x2z2k̂2 + x1d̂1 + y1ĉ1 −
(
Dq2−1
t e2 (t)

)
× (t)−(q2−1)−1

Γ (− (q2 − 1))
− e2

]
,

Dq3
t e3(t) = Dq3−1

t [z2ĉ2 − x2y2m̂2 − z1b̂1 −
(
Dq3−1
t e3 (t)

)
× (t)−(q3−1)−1

Γ (− (q3 − 1))
− e3

]
,

(3.6)

where â1 = ã1 − a1, b̂1 = b̃1 − b1, ĉ1 = c̃1 − c1, d̂1 = d̃1 − d1, â2 = ã2 − a2, b̂2 = b̃2 − a2, ĉ2 = c̃2 − c2, m̂2 =
m̃2 −m2, ĝ2 = g̃2 − g2 and k̂2 = k̃2 − k2.

Consider the following Lyapunov function candidate

V =
1

2

(
eT e+ â1 + b̂1 + ĉ1 + d̂1 + â2 + b̂2 + ĉ2 + m̂2 + ĝ2 + k̂2

)
, (3.7)

then the time derivative of V along the solution of error dynamical system equation (3.6) gives

V̇ = (eT e+ â1 ˙̂a1 + b̂1
˙̂
b1 + ĉ1 ˙̂c1 + d̂1

˙̂
d1 + â2 ˙̂a2 + b̂2

˙̂
b2 + ĉ2 ˙̂c2 + m̂2

˙̂m2 + ĝ2 ˙̂g2 + k̂2
˙̂
k2). (3.8)

Using Lemma 2.2 in Eq. (3.7) we get

V̇ =
([
D1−q1
t (Dq1

t e1(t)) + (Dq1
t e1(t))×

(t)−(q1−1)−1

Γ (− (q1 − 1))

]
e1 (3.9)

+
([
D1−q2
t (Dq2

t e2(t)) + (Dq2
t e2(t))×

(t)−(q2−1)−1

Γ (− (q2 − 1))

]
e2

+
([
D1−q3
t (Dq3

t e3(t)) + (Dq3
t e3(t))×

(t)−(q3−1)−1

Γ (− (q3 − 1))

]
e3

+â1 ˙̂a1 + b̂1
˙̂
b1 + ĉ1 ˙̂c1 + d̂1

˙̂
d1 + â2 ˙̂a2 + b̂2

˙̂
b2 + ĉ2 ˙̂c2 + m̂2

˙̂m2

+ĝ2 ˙̂g2 + k̂2
˙̂
k2

=
([
D1−q1
t

(
Dq1−1
t [x2 â2 + y22 ĝ2 + (y1 − x1) â1 −

(
Dq1−1
t e1 (t)

)
× (t)−(q1−1)−1

Γ (− (q1 − 1))
− e1

])

+ (Dq1
t e1(t))×

(t)−(q1−1)−1

Γ (− (q1 − 1))

]
e1
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+
([
D1−q2
t

(
Dq2−1
t [−y2 b̂2 + x2z2k̂2 + x1d̂1 + y1ĉ1 −

(
Dq2−1
t e2 (t)

)
× (t)−(q2−1)−1

Γ (− (q2 − 1))
− e2

])

+ (Dq2
t e2(t))×

(t)−(q2−1)−1

Γ (− (q2 − 1))

]
e2

+
([
D1−q3
t

(
Dq3−1
t [z2ĉ2 − x2y2m̂2 − z1b̂1 −

(
Dq3−1
t e3 (t)

)
× (t)−(q3−1)−1

Γ (− (q3 − 1))
− e3

])

+ (Dq3
t e3(t))×

(t)−(q3−1)−1

Γ (− (q3 − 1))

]
e3 + â1 ˙̂a1 + b̂1

˙̂
b1 + ĉ1 ˙̂c1 + d̂1

˙̂
d1 + â2 ˙̂a2 + b̂2

˙̂
b2 + ĉ2 ˙̂c2

+m̂2
˙̂m2 + ĝ2 ˙̂g2 + k̂2

˙̂
k2.

Since ∀q ∈ [0, 1], (1− q) > 0 and (q − 1) < 0. Now using Lemma 2.1 Eq. (3.9) reduces to

V̇ =[x2â2 + y22 ĝ2 + (y1 − x1)â1 − e1]e1 + [−y2b̂2 + x2z2k̂2 + x1d̂1 + y1ĉ1 − e2]e2
+ [z2ĉ2 − x2y2m̂2 − z1b̂1 − e3]e3 + â1(−(y1 − x1)e1) + b̂1(z1e3) + ĉ1(−y1e2)
+ d̂1(x1e2) + â2(−x2e1) + b̂2(y2e2) + ĉ2(−z2e3) + m̂2(x2y2e3) + ĝ2(−y22e2)
+ k̂2(−x2z2e2),

=− eT e ≤ 0.

(3.10)

Since V is positive definite and V̇ is negative definite in the neighborhood of zero solution of system equation
(3.6), it follows lim

t→∞
‖e (t)‖ = 0. Therefore system (3.2) can synchronize system (3.1) asymptotically. This

completes the proof.
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Figure 1: State trajectories of drive system (3.1) and response system (3.1): (a) Signals x1 and x2; (b)
signals y1 and y2; and (c) signals z1 and z2.
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Figure 2: The error signals e1; e2; e3 of the hyperchaotic Chen and Liu systems under the controller (3.4)
and the parameters update law (3.5).
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Figure 3: Changing parameters a1; b1; c1; d1 and a2; b2; c2; k2;m2; g2 of the hyperchaotic Chen and Liu sys-
tems with time t.
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Figure 4: Hyperchaotic Chen system (solid line) and the controlled Liu system (dotted line).

4. Numerical simulations

To verify and demonstrate the effectiveness of the proposed method, we discuss the simulation results
for the reduced–order synchronization problem between the (x − y − z) projective of the hyperchaotic
Chen and the Liu systems. In the numerical simulations, the fourth-order Runge-Kutta method is used to
solve both systems with time step size 0.001. Assume that the initial conditions, (x1(0) = −0.1, y1(0) =
0.2, z1(0) = −0.6, w1(0) = 0.4) and (x2(0) = 0.2, y2(0) = 0, z2(0) = 0.5) are employed. Hence the error
system has the initial values (e1(0) = 0.3, e2(0) = −0.2, e3(0) = 1.1). The unknown parameters are chosen
as a1 = 35, b1 = 3, c1 = 12, d1 = 7, r1 = 0.5 and a2 = 1, b2 = 2.5, c2 = 5, k2 = 4,m2 = 4, g2 = 1, the
fractional order is chosen as α = 0.95, in simulations so that the both systems exhibits a chaotic behavior.
Reduced-order synchronization of the systems (3.1) and (3.2) via adaptive control law (3.4) and (3.5) with
the initial estimated parameters â1(0) = 10, b̂1(0) = 10, ĉ1(0) = 10, d̂1(0) = 10 and â2(0) = 10, b̂2(0) =
10, ĉ2(0) = 10, m̂2(0) = 10, ĝ2(0) = 10, k̂2(0) = 10 are shown in Figs. (1)–(2). Figs. (1) and (2) display
the state response and the reduced-order synchronization errors of systems (3.1) and (3.2). Fig. (3) shows
that the estimates â1(t), b̂1(t), ĉ1(t), d̂1(t) and â2(t), b̂2(t), ĉ2(t), m̂2(t), ĝ2(t), k̂2(t) of the unknown parameters
converge to a1 = 35, b1 = 3, c1 = 12, d1 = 7, r1 = 0.5 and a2 = 1, b2 = 2.5, c2 = 5, k2 = 4,m2 = 4, g2 = 1 as
t→∞. Fig. (4) shows that the Liu system is control to the (x− y− z) projective of the hyperchaotic Chen
system.

5. Conclusion

In this paper we study the reduced-order synchronization of fractional-order chaotic systems with un-
certain parameters. The reduced-order synchronization problem is demonstrated and proved using rigorous
analytical and numerical procedures. The synchronization of the dynamical evolution of a 3rd-order frac-
tional chaotic system was realized with the canonical projection of a 4th-order fractional chaotic system
even though their parameters were unknown. This was based upon the parameters modulation and the
adaptive control techniques. The proven techniques was applied to the fractional order hyperchaotic Chen
system (4th-order) with fractional order Liu system (3rd order). The theoretical analysis and numerical
simulations have verified and supported our assumptions.
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