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Abstract

In this paper, we present some new fixed point theorems for probabilistic contractions with a gauge function ¢
in generalized probabilistic metric spaces proposed by Zhou et al. Our theorems not only are generalizations
of the corresponding results of Ciri¢ [L. Ciri¢, Nonlinear Anal., 72 (2010), 2009-2018] and Jachymski [J.
Jachymski, Nonlinear Anal., 73 (2010), 2199-2203], but also improve and extend the recent results given by
Zhou et al. [C. Zhou, S. Wang, L. Ciri¢, S. M. Alsulami, Fixed Point Theory Appl. 2014 (2014), 15 pages|.
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1. Introduction and Preliminaries

Suppose that R = (—00, +00), Rt = [0, +00), R = RU {—00, +00}, and let ZT be the set of all positive
integers. A function F: R — [0,1] is called a distribution function if it is nondecreasing and left-continuous
with F'(—oo) = 0 and F(4+00) = 1. The set of all probability distribution functions is denoted by Du.
Suppose that D = {F € Dy : infier F(t) = 0,sup;er F'(t) = 1}, DL = {F € Dy : F(0) = 0}, and
Dt =DnNDL.

Definition 1.1 ([I5]). A mapping T": [0,1] x [0,1] — [0, 1] is a continuous t-norm if 7" satisfies the following
conditions:
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(1) T is commutative and associative, i.e., T'(a,b) = T(b,a) and T'(a,T(b,c)) = T(T(a,b),c), for all
a,b,c € [0,1];

(2) T is continuous;

(3) T(a,1) =a for all a € [0,1];

(4) T(a,b) < T(c,d) whenever a < ¢ and b < d for all a,b,c,d € [0, 1].

From the definition of T" it follows that T'(a,b) < min{a, b} for all a,b € [0, 1].
Two typical examples of continuous ¢-norms are T (a, b) = min{a, b} and T,(a,b) = ab for all a,b € [0, 1].

Definition 1.2 ([6]). A t-norm T is said to be of H-type (Hadzi¢ type) if the family of functions {77 ()}
is equicontinuous at ¢ = 1, that is, for any € € (0, 1), there exists § € (0,1) such that

n= 1

t>1-6=T"(t)>1—¢, Vn>1,
where T™ : [0, 1] — [0, 1] is defined as follows:
THt) = T(t, 1), T%(t) = T(t, T (t)),-- -, T"(t) = T(t, T" (1)), - .
Obviously, T(t) < t for all n € Z* and t € [0, 1].
Ty is a trivial example of t-norm of Hadzié¢-type [7].

Definition 1.3. If ¢ : RT — RT is a function such that ¢(0) = 0, then ¢ is called a gauge function. If
t € RY, then ¢"(t) denotes the nth iteration of ¢(¢) and ¢~ 1({0}) = {t € RT : (t) = 0}.

In 1942, Menger [11] introduced the concept of Menger probabilistic metric space (abbreviated, Menger
PM-space) as follows.

Definition 1.4 ([I1]). A Menger PM-space is a triple (X, F, T'), where X is a nonempty set, 7" is a continuous
t-norm and F is a mapping from X x X to DX (F;, denotes the value of F' at the pair (z,y)) satisfying the
following conditions:

(PM-1) Fyy4(t) =1 for all t > 0 if and only if x = y;
(PM-2) Fy4(t) = Fy,(t) for all z,y € X and t > 0;
(PM-3) Fy.(t+s)>T(Fyy(t),Fy:(s)) for all x,y,z € X and all s,¢ > 0.

It is well known that Menger PM-spaces are a very important generalization of metric spaces, and
are considered to be of interest in the investigation of physical quantities and physiological thresholds.
They are also of fundamental importance in probabilistic functional analysis [14]. Many results regarding
generalizations of the notion of Menger PM-space or the existence and uniqueness of fixed points under
various types of conditions in Menger PM-spaces have been obtained (see [1], [2], [3], [5], [9], [10], [14]).

In 2006, Mustafa and Sims [I2] established the following interesting result.

Definition 1.5 ([12]). Let X be a nonempty set and G : X x X x X — R be a function satisfying the
following properties:

(G1) G(z,y,z) =0 if and only if z = y = z,

(G2) 0 < G(x,x,y) for all z,y € X with x # y,

(G3) G(z,z,y) < G(z,y, 2) for all z,y,z € X with y # z,

(G4) G(z,y,2) =G(z,2,y) = Gy, z,x) = ... for all z,y,z € X (symmetry in all three variables),

(G5) G(z,y,2) < G(x,a,a) + G(a,y, z) for all x,y,z,a € X (rectangle inequality).
Then the function G is called a generalized metric or, more specifically, a G-metric on X, and the pair
(X, Q) is called a G-metric space.
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In 2014, Zhou et al. [16] presented a probabilistic version of G-metric spaces, called Menger probabilistic
G-metric spaces (briefly, Menger PGM-spaces). The authors discussed the topological properties of these
spaces and proved two important fixed point theorems under a probabilistic A-contractive condition in this
setting. Now we recall some definitions and results on Menger PGM-spaces which are used later on in the
paper. For more details, we refer the reader to [16].

Definition 1.6 ([16]). A Menger PGM-space is a triple (X,G*,T), where X is a nonempty set, T is a
continuous t-norm and G* is a mapping from X x X x X into D} (G} 4.» denotes the value of G* at the
point (x,y, z)) satisfying the following conditions:

(PGM-1) G, ,(t) =1 for all t > 0 if and only if x =y = z;

I7y?z

(PGM-2) G . ,(t) > G5, .(t) for all 7,y,2 € X with 2z # y and ¢ > 0;
(PGM-3) G, .(t) = G}, (1) = G}, .(t) = ... (symmetry in all three variables);
(PGM-4) G, .(t +5) > T(G} , 4(5), Gy, (1)) for all z,y,2,a € X and all s,¢ > 0.

Definition 1.7 ([I6]). Let (X, G*,T) be a Menger PGM-space and z( be a point in X. For any € > 0 and
§ with 0 < 6 < 1, an (g, d)-neighborhood of z¢ is the set of all points y in X for which G (¢) >1—4¢
and Gy, ;0 4, (€) > 1 —6. We write

Nyo(e,0)={ye X :G; ,,(6)>1-0G () >1—4}.

z0,Y,Y Y,20,%0

Definition 1.8 ([16]). (1) A sequence {z,} in a Menger PGM-space (X, G*,T) is said to be convergent
to a point z € X (written z, — z) if, for any € > 0 and 0 < ¢ < 1, there exists a positive integer M, s
such that z, € N;(e,d) whenever n > M, .
(2) A sequence {z,} in a Menger PGM-space (X, G*,T) is called a Cauchy sequence if, for any € > 0 and
0 < § < 1, there exists a positive integer M, s such that G . . (¢) >1— 0 whenever m,n,l > M. ;.
(3) A Menger PGM-space (X, G*,T) is said to be complete if every Cauchy sequence in X converges to a
point in X.

Theorem 1.9 ([16]). Let (X,G*,T) be a Menger PGM-space. Let {xy},{yn} and {z,} be sequences in X

and r,y,2 € X. If zn — x,yn — y and z, — 2 as n — oo, then, for any t > 0,G; . (t) = G;, .(t) as
n — 00.

Lemma 1.10 ([8]). Suppose that F € Dt. For each n € Z*, let F,, : R — [0,1] be nondecreasing, and
gn : (0,400) = (0,+00) satisfy lim, 00 gn(t) =0 for any t > 0. If

Fo(gn(t)) = F(t)
for any t > 0, then lim,_,o F,(t) =1 for any t > 0.

Although probabilistic ¢-contractions are a natural generalization of probabilistic A-contractions, the
techniques used in the proofs of fixed point results for probabilistic A-contractions are no longer usable
for probabilistic ¢-contractions [4]. In 2009, Cirié [4] presented a fixed point theorem for probabilistic -
contractions. Jachymski [§] found a counterexample to the key lemma in [4], and established a corrected
version of Ciri¢’s theorem. Inspired by the works in [4] and [g], in this paper, we try to obtain some new
fixed point theorems under probabilistic p-contractive conditions in Menger PGM-spaces. Our theorems
not only are generalizations of the corresponding results of Ciri¢ [4], Jachymski [8] and other authors, but
also improve and generalize the recent results given by Zhou et al. [16].

2. Fixed point results for probabilistic ¢-contractions in generalized probabilistic metric spaces

Lemma 2.1. Let (X,G*,T) be a complete Menger PGM-space with T of H-type. Let ¢ : Rt — R be a
gauge function such that o1 ({0}) = {0}, ¢(t) < t, and lim,, oo ©"(t) = 0 for any t > 0. If

Gry s (0(1) = Goy o (1) (2.1)
for allt >0, then z =y = z.
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Proof. On the one hand, from G} , .(¢(t)) = G, .(t), we have

T,Y,2

Gy (P (1) = Gy (1)

for all n € Z* and ¢ > 0. Due to the fact that limy ., G3., ,
such that G, .(to) > 1 — €.

On the other hand, by lim,,_,« ¢"(t) = 0, for any § > 0, there exists N(§) € Z" such that ¢"(ty) < ¢
for all n > N ().

Thus

(t) =1, for any € € (0,1), there exists tg > 0

C;*,y7 (5) > G;yz( (t())) = G;,y,z(to) >1-—e¢,

which implies that G}, .(¢) =1 for all t > 0.
Therefore, z = y = z. O

Following the proof of Lemma we can similarly obtain the next result.

Lemma 2.2. Let (X,G*,T) be a complete Menger PGM-space with T of H-type. Let ¢ : RT — R* be a
gauge function such that ¢=1({0}) = {0}, ¢(t) > t, and lim,_,o0 ©"(t) = +00 for any t > 0. If

Grys(t) = Goy 2 ((1)) (2.2)
for allt >0, then z =y = z.

Lemma 2.3. Let (X,G*,T) be a complete Menger PGM-space with T of H-type. Let ¢ : Rt — R be a
gauge function such that o~ *({0}) = {0}, o(t) < t, and lim,, oo " (t) = 0 for any t > 0. If g1,G2,...,9n :
R — [0,1], and
Gy, (0(t) = min{gi1(t), g2(t), .., gn(t), G, . (1)} (2.3)
for allt > 0, then
G y2(0(t) > min{gi(t), g2(t), ..., gn(t)},

for allt > 0.

Proof. When min{g1(t), g2(t), ..., 9n(t), G3, .(t)} < G} ,.-(t), Lemma [2.3| obviously holds.
Suppose now that min{gi(t), g2(t), ..., gn(t), G5, (1)} = G5, .(t). From (2.3) we have

Gy, (P(1) = Gy (1)

However, since and ¢(t) < t,
Gry,e() = Gy (9(2))-
Therefore G, , .(p(t)) = G}, .(t) for all £ > 0. Then from Lemma we obtain that

Y,z
Goys(t) =1

for all + > 0. Thus g1(t) = ga2(t) = ... = gu(t) = 1 for all ¢ > 0. Consequently, G;  .(¢(t)) >

min{gi(t), g2(t),...,gn(t)} for all t > 0, and the proof of Lemma [2.3|is completed. O

In the same way as stated above, we can prove that the following lemma holds.

Lemma 2.4. Let (X,G*,T) be a complete Menger PGM-space with T of H-type. Let ¢ : Rt — RT
be a gauge function such that = 1({0}) = {0}, ©(t) > t, and lim, ,oo " (t) = +oo for any t > 0. If
91,92y, 9gn : R —[0,1], and

Goy,=(t) 2 min{g1 (o)), g2(2(t)), - - gn(0(t)), G5y - (0 (1))} (2.4)

for allt > 0, then
Goy,2(t) = min{gi(o(t)), g2(0(t)), - -, gn(0(t))}
for allt > 0.
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Theorem 2.5. Let (X,G*,T) be a complete Menger PGM-space with T of H-type. Let ¢ : Rt — RT be a
gauge function such that p~1({0}) = {0}, () < t, and lim,_,o @™ (t) = 0 for anyt > 0. Let f: X — X be
a given mapping satisfying

G}x,fy,fz((p(t)) > min{G;,y,zu)v Gz,fy,fy(t)a Gz,fz,fz(t)} (25)
forallx,y,z € X andt > 0. Then f has a unique fized point in X.

Proof. Let g € X. We define a sequence {z,} in the following way:
Tpni1 = frn, neN.
From the assumption (2.5)), for any ¢ > 0, we find that

GZnJrl Tn42,Ln42 ((t) = G?xn:f$n+1 WfTnp1 ((2))

> min{G;man Tl (t), G;,LH fTn1,fTnp1 (t)’ G;nﬂ Jfxnt1, feni1 (t)}
= min{G;n7ﬂ?n+171‘n+1 (t)’ G;n+1axn+27$n+2 (t)’ G;n+1,$n+2,$€n+2 (t)}
= min{G;n,wn+17fEn+1 (t)’ G;n+1:xn+27xn+2 (t)} (26)

From Lemma [2.3] for any ¢ > 0, we have

G;n+1,$n+2,(£n+2 (g@(t)) Z G;n,wn+1,mn+1(t)' (27)
Denote P,(t) = G 5.\ 2., (t). From (2.7), we have

Pota(p(t)) = Pu(t),

which implies that
Prp1(9"7H(1) 2 Pal(¢™(1) 2 ... 2 Pi(p(1) = Pol(t). (2.8)

Since lim;, o0 ¢"(t) = 0 for each ¢ > 0, using Lemma , we have
lim P,(t) =1,
n—oo

that is
lim G* (t)=1 (2.9)

n—o00 Tn,,Tn+1,Tn+1

for any t > 0.
For any k € Z* and t > 0, we shall show the following inequality by mathematical induction:

a; (t) > TH(C; (t = o(t))): (2.10)

Tn, Tn+ksTn+k Tn,,Tn+1,Tnt1

If k=1,
NN () =X AN (S0 ())
=T (G o (= 0(D),1)
> T(Ghris (U= 90, Gy s (E— 2(1)))
=T (Gl s (= (1)),

Thus (2.10) holds in this case.
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Now we assume ([2.10]) holds for 1 < k < p. When k = p+ 1, by (PGM-4) we have

G;n,mn+p+1,zn+p+1 (t) = G;n,l‘n+p+1,$n+p+1 (t - gO(t) + @(t))
S (N (™ () RN 2 ()) § (2.11)

Following (2.5)), it is easy to find that

* *
Tn+1,Tn+2,Tn+2 (t) — Tn yTn+1,Tn+1 (t)
for all n. In fact, if we suppose
* *
Gxn+1,mn+2,xn+2 (t) < G(En,fﬂn+1,$n+1 (t)’

then from ¢(t) < t, we have
G;n+1’xn+27xn+2 (t) 2 G;n+17xn+2»xn+2 (Sp(t))

Therefore, by (2.7) we obtain that
G*

*
Tn41,Tn+2,Tn+2 (t) = Gfﬂn,mn+1,$n+1 (t)7
which is a contradiction. So, for all n we have

G*

Tn+1,Tn+2,Tn+2 (t)

Z G;n,zn+lyxn+1 (t)
Thus
G* (t) > G

Tn+psTn+p+1:Tn+p+1 Tn Tn4+1,Tn+1 (t)

From (2.5, (2.12)), the induction hypothesis and the monotony of G*, we obtain that

(2.12)

G;n+1,xn+p+1,xn+p+1 (So(t)) = G;l‘n,f$n+p7fl’n+p ((p(t))

>min{Gy oo (8, Ga e Fonen B G i fmsy (D}
- min{G;n,xn+p,$n+p (t)7 G;n+p,zn+p+1 s3Tn4p+1 (t)}
Z min{G;n7In+p7In+p (t)7 G;n7$n+1 s3Tn+1 (t)}

Z min{Tp(G::n,a:n+1,xn+1 (t - Sp(t)))? G;n,xn+1,xn+1 (t - (P(t))}
=T%(G; (t— (1)) (2.13)

T,y In+1,Tn+1

Then from (2.11]) and (2.13)), for £ = p + 1 we have

c; O A (AN (R O) N L (RN (SC )

Tn,Tn+p4+1,Tntp+1
= TP oy s (E— 2(1)))

Thus
* k *
G:(;n,arn+k,xn+k (t) > T (Gxn,xn+1,a:n+1 (t - (P(t)))
for all £ > 1.
Next, we shall prove that {z,} is a Cauchy sequence, i.e., lim, 5100 G, 2, 2, (t) = 1 for any ¢ > 0.
To this end, first we show that lim, 00 G, 4. 4, (t) = 1 for any ¢ > 0. Suppose that ¢ € (0,1] is given.

Since T is a t-norm of H-type, there exists § > 0, such that
T"(s) >1—¢e,Vnezt, (2.14)

when 1 -0 <s<1.
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On the other hand, by (2.9)), we have

lim G (t— o) =1,

n—00 Tn, Tn+4+1,Tn+1

which 1mphes that there exists ng € N such that G . . (t—¢(t)) > 1—0 for all n > ng. Hence,
from and 1 , we get G oo o (t) > 1 —¢for k€ Z* and n > ng. This shows that
limy, p— o0 G* =1 for any ¢t > 0.

Tn,Tm,Tm

From (PGM-4) 1t follows that, for all ¢ > 0,

t t
G;nymmvml( ) > T(Gxn:xn:xm <§) ’ G;n:xn:xl (2)) )
t t t
G;nyxnyxm <2) > T<Gxn:xmzxm (Z) ’ G;n:xm:xm <4))

t t ¢
G;n,xn,xl (2> > T<Gxn,xm:l (4) G;mxz,xz (4)) )

Therefore, by the continuity of 7', we have

and

lim G; (t)=1

T, Tom,,T
m,n,l—o00 notmyt

for any ¢ > 0. This implies that {x,} is a Cauchy sequence.

Since X is complete, there exists some T € X such that lim,, s T, = T.

Now we show that T is a fixed point of X. Since ¢(t) < t, by the monotony of G* and from ([2.5) we
have

}E,fxn,fmn( ) > G}E fTn,fon (@(t))
> mln{Gz Ty, Ty (t) a:n,fzrn fxn (t)7 G;ksn,fxn,fa:n (t)}
= min{G% (t),G :vn,wnﬂ,xnﬂ (t)}. (2.15)

Since {x,+1} is a subsequence of {x,}, fz, = z,+1 — T as n — oo. Letting n — oo on both sides of
inequality (2.15)), we get

T,Tn,Tn

for all ¢ > 0, hence, by (PGM-1),

T = fT.
Thus we have proved that f has a fixed point. Now, we shall show that T is the unique fixed point of f.
Suppose that y is another fixed point of f. We define a sequence {y,} in the following way:

Y=y, neN
From (2.5)), we have

Gy, (P(1) = Gz z,4(0(1) = Gz sz 5, (0(1))
> min{Gzz,(t), Gz 1z rz(1); Gy py 1, (1)}
G (=G (1), (2.16)

x x?y x z?yn 1

Denote Qn(t) = G5z, (t) (t > 0). By (2.16)), we have Qn(¢(t)) > @n-1(t), and hence for all ¢ > 0,

Qu(¢"(1)) = Qu-1(¢"71(1) > ... > Qule(1)) = Qo(t).
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Since lim,, o ¢"(t) = 0, by Lemma we have

lim Q,(t) =1,
n—o0
that is
nh—>120 G%,E,yn (t) =L
It follows that Ggf’y(t) =1 for any t > 0, which implies that T = y. Therefore, f has a unique fixed point
in X. This completes the proof. O

If we take p(t) = At, A € (0,1), then from Theorem we obtain the following consequence.

Corollary 2.6. Let (X,G*,T) be a complete Menger PGM-space with T of H-type and A € (0,1). Let
f: X — X be a given mapping satisfying

Gla pu.p= (M) 2 min{ G (), Gy gy 1y (1), G g (8)} (2.17)
forallx,y,z € X, t>0. Then f has a unique fixed point in X.

Theorem 2.7. Let (X,G*,T) be a complete Menger PGM-space with T of H-type. Let ¢ : RT — RT be a
gauge function such that ~1({0}) = {0}, p(t) < t, and lim,,_, @™ (t) = 0 for anyt > 0. Let f: X — X be
a given mapping satisfying

Glapy.p=(2(1) = Goy o (2) (2.18)

forall x,y,z € X andt > 0. Then f has a unique fized point in X.

Proof. Due to
Gy r=(0(1) 2 Gy (1) =2 min{ G5 (), Gy 1y 1y (1), GF fe po (D)}

we obtain the conclusion from Theorem 2.5 O
Taking y = z in Theorem we obtain the following result.

Corollary 2.8. Let (X,G*,T) be a complete Menger PGM-space with T of H-type. Let ¢ : RT — R* be a
gauge function such that p=1(0) = {0}, p(t) < t, and lim,, o @™ (t) =0 for anyt > 0. Let f : X — X be a
given mapping satisfying

Gl pypy(2() = Gry (1) (2.19)
forall z,y € X andt > 0. Then f has a unique fized point in X.

Moreover, if we take p(t) = At, A € (0,1), then from Theorem [2.7| we obtain the following corollary.

Corollary 2.9 ([16]). Let (X,G*,T) be a complete Menger PGM-space with T of H-type and A € (0,1).
Let f: X — X be a given mapping satisfying

Gl gy (M) 2 GLy () (2.20)
forallx,y,z € X, t>0. Then f has a unique fixed point in X.

Theorem 2.10. Let (X,G*,T) be a complete Menger PGM-space with T of H-type. Let o : RT — R™ be a
gauge function such that ¢~ 1({0}) = {0}, ¢(t) > t, and lim,,_,o0 ¢"(t) = +00 for anyt > 0. Let f: X — X
be a given mapping satisfying

Gy, () =2 min{ G5, (0(8)), Gy 5y 1, (0(0)), G712 (0() (2.21)

forallx,y,z € X, t>0. Then f has a unique fixed point in X.
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Proof. Let xg € X be arbitrary. Put z,4+1 = fx,, n € N. From the assumption (2.21f), for any ¢ > 0, we
have

;n+1 s Tn42,Tn+2 (t) = G?xnyfxn+1 7f$n+1 (t)

> mln{Gw sy Tn+1,Tn+1 (QO(t)) G;n+1,f:cn+1,f:cn+1(90(t))7 ;n+1,fl‘n+1,f:l‘n+1(go(t))}

- mln{Gxn »Tn4+1,Tn+1 (Sp(t)) G;n+1,zn+2,xn+2 (@(t))} (222)
Hence from Lemma [2.4] for any ¢ > 0, we obtain
G;n+l,$n+27xn+2 (t) Z G;nyxn+17xn+1 (@(t)) (223)
Denote Ey(t) = G} 4. 2, (). From (2.23), we have

E,1(t) > En(e(t)),

which implies that
Euit(t) 2 Balo(t) 2 Eac1($3(0) > ... 2 Ey(6" (1)) (2.24)

Since limy— 100 B1(t) = limyy00 G, 4y 0, (1) = 1 and limy, o0 9" (t) = +oo for each t > 0, we have
limy, 00 E1(¢™(t)) = 1. Moreover, by (2.24), we have E,+1(t) > E1(¢™(t)). Hence,

lim E,(t) =1,

n—oo

that is
lim G; t)=1, t>o0. (2.25)

n—00 Tn,,Tn4+1,Tn+1

In the next step we shall show by induction that for any k € Z™,

Gronirianss (P(0) 2 THGE 4 s (0(8) = 1), (2.26)
For k = 1, from the monotony of G* and the property (3) of T in Definition we have
G imiramd (P0) =G (p(t) = 1)
=T (Gl s o ((8) = ), 1)
> TG rins (P = 0. G s (9(0) = 1))
=T (Gl s (P = 1))

This means that (2.26]) holds for k& = 1.
Now we assume ([2.26]) holds for k =p (p > 1). When k = p + 1, by (PGM-4) we have

G;n,mn+p+1,zn+p+1 ((P(t)) = G;n,zn+p+1,xn+p+1 (So(t) - t + t)
> (G (P = DG ) (2.27)
Since ¢(t) > t, by the monotony of G* and from (2.23)) we have

G;n+1’zn+27$n+2 (So(t)) Z G::n,xn+1,xn+1 ((p(t))

for all n. Thus
G;n+p,xn+p+1,zn+p+1 (SD( )) G;n7xn+1,xn+1 (So(t)) ° (228)
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Hence, from (2.21)), (2.28) and the induction hypothesis, we obtain

tnst@ntpttstntprs () = Claon fonip, fon, ()
>min{Gy o e, (0(1), G xnﬂ,, N (2 () BN €A S e (2 ()
=min{G;, .00, (0(0), G xn+p,xn+p+1,xn+p+1 ((t))}
>min{Gy e, (0(0)), G s (0(0)) )

> min{T"(Gy, 40y (P = 1) Gy (P(E) — 1)}
= TGy o1 ,0ms: (2(E) = 1)) (2.29)

From (2.27)) and (2.29), we have

PRI (-(5) I o (RN (1O BN (N O R)))
= TG ((t) = 1)).

Tn,,Tn+4+1,Tn+1

Thus, by induction we obtain

* k
G:vn,acn+k,xn+k (50( )) > T (Gmn7xn+1,xn+1 (So(t) - t))

for all k € Z7.
By the same method as in Theorem we can infer that {z,} is a Cauchy sequence. Since X is
complete, there exists T € X such that z, — T as n — co. By (2.21)), it follows that

G?E,fxn,fxn( ) > mln{Gw Y\, T, ((P(t)), G;,n,fxn,fxn (‘p(t))} (230)

As {11} is a subsequence of {z,}, fr, = xny1 — T as n — oo. Letting n — oo on both sides of inequality

(2.30]), we obtain that

for any t > 0. Hence T = 7.
Now we shall prove that x is the unique fixed point of f. Suppose that y is another fixed point of f. We
define a sequence {y,} in the following way:

yn =y, neN.
From (2.21)), we have

G:: z,yn( ) G; T y( ) = G;E,ff,fy(t)

> min{Gz 7, (¢(1)), G 1z, 1z ((1), Gy 1y 1 (P (1) }

= min{Gz 7, (1)), Gz z7(0(1)), Gy, (1))}

= Gozy(p(1))

= GEay,_. (p(1)). (2.31)
Suppose that Qy(t) = G; 7, (1) (t >0). By , we have Qn(t) > Qn_1(¢(t)), and then

@n(t) 2 Qn-1(p(t)) = ... = Qo(p" (1)) (2.32)

Since lim, o0 ¢"(t) = +00, we have

lim Qo("(t)) = hm Gwmyo( "(t)) = 1. (2.33)

n—oo
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From (2.33) and (12.32)), we obtain

lim Qu(t) = lim Giz,, (1) > 1,
which implies

Gray(t) =1
for any t > 0. Hence we conclude that T = y. Therefore, f has a unique fixed point in X. The proof of
Theorem is completed. O

Theorem 2.11. Let (X,G*,T) be a complete Menger PGM-space with T of H-type. Let o : Rt — R™ be a
gauge function such that ¢~ 1({0}) = {0}, () > t, and lim,_,o ¢"(t) = +oo for anyt > 0. Let f: X — X
be a given mapping satisfying

G}x,fy,fz(t) > G;,y,z((p(t)) (234)

for all x,y,z € X and t > 0. Then the operator f has a unique fixed point in X.

Proof. Similarly as in the proof of Theorem [2.7, but using Theorem in place of Theorem we
immediately obtain that Theorem holds. O

Theorem 2.12. Let (X,G*,T) be a complete Menger PGM-space with T of H-type. Let ¢ : RT — R™T be a
gauge function such that =1({0}) = {0}, () < t, and lim,_,o0 @™ (t) = 0 for anyt > 0. Let f: X — X be
a given mapping satisfying

Gla gy, (1) =2 a1G (1) + a2Gy gy 12 (8) + a3Gy gy 1y (1)
4G po 52 (8) + a5Gy g p2(8) + a6GZ gy 1y (1) (2.35)

for all z,y,z € X and t > 0, where a; > 0 (i = 1,2,...,6), a1 + a2 > 0 and Z?:lai =1. Then f has a
unique fixed point in X.

Proof. Let zp in X be an arbitrary point. We define a sequence {x,} in the following way:
Tpi1 = frn, neN.
Due to (2.35)), for any ¢ > 0, we have

G onirani (P0) = Glay pan fa, ((1))
> a1Gy e () F02G | e e (0) Fa3GL pe fa, (F)
+a1Gy, fan fan (O T a5G ro 2, (0) + a6GL, pe, fa, (F)
= (a1 +a2)Gy, | wpwn(t) + (a3 +as+ a5+ as)Gy fa, fa, (F)
> (a1 +a2)Gy, | 2 2, () + (a3 + a4 + a5 + a6) G, (p(t)), (2.36)

In, Tn+1,Tn+1

which implies

Grpensran (P0) = Gy o, () (2.37)
for all n. Thus, for any k € Z™, we have
G;n+k7xn+k+1,xn+k+1 ((p(t)) Z G;mﬂ?n+1»1n+1 (t) (2'38)
Denote P,(t) = G, 4.\ 2., (t). From the inequality (2.37), we have

Po(p(t) > Po-a(t),

which implies that
Pa(¢™(t)) = Poca (9" (1) = ... > Pi(p(t)) > Po(t). (2-39)
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Since lim,, o ¢"™(t) = 0 for all ¢ > 0, we obtain using Lemma that
lim P,(t) =1,
n—oQ
that is
nh_)rglo Gy, xn+1,xn+1(t) =1, (2.40)
for all t > 0. Next we shall prove by induction that for all k € ZT and ¢ > 0,
G aninanin ) 2 THGE o (= 0(1)))- (2.41)

In fact, as k = 1, from the monotony of G* and the property (3) of 7" in Definition we have

s ) 2 G (E = (1)
=T (Gl s s (E = 2(),1)
> (G s (U= 9(0): Gy s (E = 2(1)))
=T (G s (= 9(0))

Therefore, ) holds for k = 1.

Suppose now that Gw ng’ka( ) > Tk(G;man oni1 (E—¢(t))) holds for some fixed k > 1. From 1 ,

the monotony of G*, (|2 and the induction hypothesis we have

G;n+17xn+k+lawn+k+1 (90( ) = G?xnvfxn+k7fxn+k( (t))

2 alGl’n ST ko5 T +k( ) + a2Gwn fn, f:tn( )+ a3Gmn+kvfxn+k7fxn+k( )+ a4G$n+kafxn+k7fxn+k (t)

+a5G
alG*

T, T g k> Trtk

xn+k7fxn+k7fxn+k (t)

(t) + (a3 + aq + a5 + ag) G,

xn+k7fxn+k7fﬁ7n+k( ) + a’6G
( ) + CLQG*

Tn,yIn41,Tnt1

Tn+ksTnt+k+1:Tnt+k+1 (t)

2 aleEnvxn+k7mn+k( ) + QQGIn Tn+1,Tn+1 (t> + (a3 + aq + as + a6)G$n+k,$n+k+1,1n+k+1 (so(t))
Z alG;n:$n+k7xn+k (t) + (CLQ + as + o + a6)G;nywn+lyrn+1 (t)

> alTk(G:;n,anrl,anrl (t - (p(t))) + (a2 +az+ ...+ QG)Gxn JTnt1,Tnt1 (t)

Z alTk(G;n,xn+1,xn+1 (t - gO(t))) + (CLQ + a3 + R + aG)G;n,xn+1,xn+1 (t - Sp(t))

Z a‘lTk(G:,‘n,xn+17xn+1 (t - gO(t))) + (GQ + a’3 + st + a6)Tk(G::n,xn+17xn+1 (t - gD(t)))

f A (C — (t —¢(t)))-
Hence, by (PGM-4) and (| , we obtain

Zn7$n+k+17$n+k+1 (t) - ;n7$n+k+1axn+k+1( C,D(t) ( ))
> T(G;n,xn+1,zn+1 ( sp(t)) :pn+1,mn+k+1,xn+k+1 (@(t)))
> T(Gh 1 o (= 00, TGS, 1 (E— 2(1)))

= Tk+1(Gxn,mn+1,xn+1 (t - So(t)))

(2.42)

Thus we have proved that if inequality (2.41]) holds for some k£ > 1, then it must also hold for k£ + 1. By

mathematical induction we conclude that inequality (2.41]) holds for all ¥ € Z* and ¢ > 0.
As in the proof of the Theorem it follows that the sequence {x,} is Cauchy.

Since X is complete, there exists T € X such that x, — T as n — co. Next we show that T is a fixed

point of f.

By (12.35)) we have
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G gz, p2(0(1) = Gla, 752 (0(1))
> a1Gy z5(t) + a2Gy po g (0) +a3GE z m () + aaGE gz 2 (t) + a5GE gz 52 (t) + a6Gx pz p2(t)
= a1Gy, 3:(0) +a2Gy o0 o0 (D) + (a3 + as + a5 + a6) G 57 12 (1)
> wmGy, 55( )+ a2Gy oo e () + (a3 + as + a5 + a) Gy gz z(0(1)). (2.43)

Now, since x,, — T and fx, = z,+1 — T as n — oo, letting n — oo on both sides of inequality (2.43)),
we get, for any t > 0,

Gz pz,52(P(1) = (a1 + a2)GZ 7 7(8) + (a3 + aa + a5 + a6)G3, 1z 1z (2(1)),
which implies
Gz 2. p3(p(t) > G 7(t) = 1.
Therefore = = fz.

Finally, we shall show that T is the unique fixed point of f. Suppose that, contrary to our claim, there
exists another fixed point y € X. From (2.35), we have, for any ¢ > 0,

Gy (P(1) = Gz gy 1y (1)
> a1Gry () + a2Gy gz () + azGy gy py () + aaGy gy 5, (0) + as5Gy py 5 (8) + a6Gly gy py ()
> a1G5,,(p(t) + a2GE 7 5(t) + (a3 + ... +as)Gy (1)
= a1G5 ., (p(t) + a2 + ... + as.

This implies that
Gryy(e(t) =1

,Y,Y

for all ¢ > 0, so * = y. Therefore, f has a unique fixed point in X. The proof of Theorem [2.12)] is
completed. O

Taking a5 = ag = 0 in Theorem [2.12] we obtain the following result.
Corollary 2.13. Let (X,G*,T) be a complete Menger PGM-space with T of H-type. Let ¢ : RT — R be

a gauge function such that ~1(0) = {0}, ¢(t) < t, and lim, oo ©"(t) = 0 for anyt > 0. Let f : X — X be
a given mapping satisfying

Glopyp=(8) 2 a1Ghy (0(8) + a2Gy 10 (0(1)) + 3Gy gy 1, (0(8) + aaGT p pa(0(2)) (2.44)

forallx,y,z € X andt > 0, where a; >0 (i =1,2,3,4), a; +az > 0 and Z?:l a; =1. Then f has a unique
fixed point in X.

If we set a1 = 0 in Corollary then we obtain:
Corollary 2.14. Let (X,G*,T) be a complete Menger PGM-space with T of H-type. Let ¢ : RT — R be

a gauge function such that p=1(0) = {0}, ¢(t) < t, and lim,,_,oo " (t) = 0 for any t > 0. Let f : X — X be
a given mapping satisfying

Gy fyp2(t) = a1Gy g0 12 (0(1) + a2 Gy 1y 1, (0(1) + a3y g, 1. (0()) (2.45)

forallz,y,z € X andt > 0, where a; > 0,a2,a3 > 0 and a1 +as +as = 1. Then f has a unique fixed point
m X.

In particular, if we set p(t) = Adt, A € (0,1), and a1 = ay = az = %, then Corollary becomes:
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Corollary 2.15 ([16]). Let (X,G*,T) be a complete Menger PGM-space with T' of H-type. Let f: X — X
be a given mapping satisfying

G}x,fy,fz()‘t) > [G:},fx,fx(t) + G;,fy,fy(t) + G;,fz,fz(t)] (246)

1
3
for all z,y,z € X and t >0, where A € (0,1). Then f has a unique fixed point in X.

Following the proof of Theorem [2.12] we can show that the next result also holds.

Theorem 2.16. Let (X,G*,T) be a complete Menger PGM-space with T of H-type. Let o : RT — R™ be a
gauge function such that ¢=1({0}) = {0}, () > t, and lim,_,o ¢"(t) = +oo for anyt > 0. Let f: X — X
be a given mapping satisfying

Glopyp-(t) 2 a1Gyy, (0(1) + a2Gy 12 (0(1) + asGy 1y 1, (0(2))
+asG7 1, 1. (p(1) + a5Gy 1, 1.(0() + a6GY fy 1, (P(2)) (2.47)

for all z,y,z € X and t > 0, where a; >0 (i = 1,2,...,6), a1 + a2 > 0 and Z?Zlai = 1. Then f has a
unique fixed point in X.

Taking a5 = ag = 0 in Theorem [2.16] we obtain

Corollary 2.17. Let (X,G*,T) be a complete Menger PGM-space with T of H-type. Let p : Rt — RT be a
gauge function such that ¢~ 1({0}) = {0}, ©(t) > t, and lim,, oo ©"(t) = +00 for anyt >0. Let f : X — X
be a given mapping satisfying

G}x,fy,fz(t) > alG;,y,z((p(t)) + a2G;k:,f:r,fx(90(t)) + a3GZ,fy,fy((p(t)) + a4Gz,fz,fz(90(t)) (248)

forallx,y,z € X andt > 0, where a; >0 (i =1,2,3,4), ay+az > 0 and Z?:l a; =1. Then [ has a unique
fixed point in X.

In particular, if we set a; = 0 in Corollary 2.17] then we have

Corollary 2.18. Let (X,G*,T) be a complete Menger PGM-space with T of H-type. Let p : Rt — RT be a
gauge function such that ¢~ 1({0}) = {0}, ¢(t) > t, and lim, 00 ¢"(t) = +o00 for anyt > 0. Let f: X — X
be a given mapping satisfying

Gy fyp2(t) = a1Gy g 12 (0(1) + a2 Gy 1y 1, (0(1) + a3GY g, 1. (0(2)) (2.49)

forallz,y,z € X, t >0, where a; >0, as,a3 >0 and a1 +ao+asz = 1. Then f has a unique fized point in
X.

Finally, we give the following example to illustrate Theorem [2.12]

Example 2.19. Let X = [0,00), T(a,b) = min{a,b} for all a,b € [0,1] and define the mappings H :
[0,00) — [0,00) and G* : X3 x [0,00) — [0, 00) by

0, t=0,
H(t) = { 1, t>0.
and 0
* H t 5 xr = y =z,
Gry.(t) = { m, otherwise. (2.50)

for all z,y,z € X, where « > 0, G(z,y,2) = | —y| + |y — 2| + |z — z|. Then G is a G-metric
(see [13]). It is easy to check that G* satisfies (PGM-1)-(PGM-3). Next we show G*(z,y,2)(s +t) >
T(G*(z,a,a)(s),G*(a,y,y)(t)) for all z,y,z,a € X and all s,t > 0. When z = y = z, it is easy
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to see that G* satisfies (PGM-4). When at least one of z,y,z is not equal to the other two, since
G(x,y,2) < G(z,a,a) + G(a,y, z) for all z,y,z,a € X, we have

at + as > at + as
as+at+G(z,y,2) — as+at+G(z,a,a) + G(a,y, z)

> mi as ot
min :
- as+ G(z,a,a)” at + G(a,y, z)

This shows that G* satisfies (PGM-4). Hence (X, G*, Tys) is a Menger PGM-space. Let ¢(t) = At, A € (0,1).
Define a mapping f : X — X by f(z) = 1 for all z € X, and let a; > 0 (¢ = 1,2,...,6) be such that
ay +az >0 and Z?Zl a; = 1. For all z,y,z € X and t > 0, since

Gla py.p=(0(1) = G111 (M) =1

and

-

Gy () + a2Gy gy g0 (8) + a3Gy gy g (0) + s G g (8) + asGy o g (8) + a6GE gy gy (8) < )i =1,

=1

we obtain that

Gl fy.r2(0(1) = a1GZ (1) + 02Gy gy (1) + 3Gy gy 1y (1) + aaGE 5o 1. (8) + asGY g, 12 (8) + a6GE gy (1)

Thus all conditions of Theorem [2.12] are satisfied. Therefore, we conclude that f has a fixed point in X. In
fact, the fixed point is z = 1.
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