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Abstract

By using R-weak commutativity of type (Ag) and non-compatible conditions of self-mapping pairs in b-metric
space, without the conditions for the completeness of space and the continuity of mappings, we establish
some new common fixed point theorems for two self-mappings. Our results differ from other already known
results. An example is provided to support our new result. c©2015 All rights reserved.
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1. Introduction and Preliminaries

Czerwik in [10] introduced the concept of b−metric spaces. Since then, several papers deal with fixed
point theory for single-valued and multivalued operators in b−metric spaces (see also [2, 4, 5, 6, 7, 8, 9, 10,
11, 14, 16, 19, 21, 24]). Pacurar [21] proved results on sequences of almost contractions and fixed points
in b−metric spaces. Recently, Hussain and Shah [14] obtained results on KKM mappings in cone b−metric
spaces. Khamsi ([16]) also showed that each cone metric space has a b−metric structure.

The aim of this paper is to present some common fixed point results for two mappings under generalized
contractive condition in b−metric space, where the b−metric function is not necessarily continuous. Because
many of the authors in their works have used the b−metric spaces in which the b−metric functions are
continuous, the techniques used in this paper can be used for many of the results in the context of b−metric
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space. From this point of view the results obtained in this paper generalize and extend several earlier results
obtained in a lot of papers concerning b−metric spaces.

Consistent with [10] and [24, p. 264], the following definition and results will be needed in the sequel.

Definition 1.1 ([10]). Let X be a (nonempty) set and b ≥ 1 be a given real number. A function
d : X ×X → R+ is a b−metric iff, for all x, y, z ∈ X, the following conditions are satisfied:

(b1) d(x, y) = 0 iff x = y,

(b2) d(x, y) = d(y, x),

(b3) d(x, z) ≤ b[d(x, y) + d(y, z)].

The pair (X, d) is called a b−metric space.

It should be noted that the class of b−metric spaces is effectively larger than that of metric spaces since
a b−metric is a metric when b = 1.

We present an example which shows that a b−metric on X need not be a metric on X. (see also [24, p.
264] ):

Example 1.2. Let (X, d) be a metric space, and ρ(x, y) = (d(x, y))p, where p > 1 is a real number. We
show that ρ is a b−metric with b = 2p−1.

Obviously conditions (b1) and (b2) of Definition 1.1 are satisfied.
If 1 < p <∞, then the convexity of the function f(x) = xp (x > 0) implies(

a+ c

2

)p

≤ 1

2
(ap + cp) ,

and hence, (a+ c)p ≤ 2p−1(ap + cp) holds.
Thus for each x, y, z ∈ X we obtain

ρ(x, y) = (d(x, y))p ≤ (d(x, z) + d(z, y))p

≤ 2p−1 ((d(x, z))p + (d(z, y))p) = 2p−1(ρ(x, z) + ρ(z, y)).

So condition (b3) of Definition 1.1 holds and ρ is a b−metric.

It should be noted that in the preceding example, if (X, d) is a metric space, then (X, ρ) is not necessarily
a metric space.

For example, let X = R be the set of real numbers and d(x, y) = |x− y| be the usual Euclidean metric,
then ρ(x, y) = (x − y)2 is a b−metric on R with b = 2, but is not a metric on R, because the triangle
inequality does not hold.

Before stating and proving our results, we present some definitions and a proposition in b−metric space.
We recall first the notions of convergence, closedness and completeness in a b−metric space.

Definition 1.3 ([7]). Let (X, d) be a b−metric space. Then a sequence {xn} in X is called:

(a) convergent if and only if there exists x ∈ X such that d(xn, x)→ 0 as n→ +∞. In this case, we write
limn→∞ xn = x.

(b) Cauchy if and only if d(xn, xm)→ 0 as n,m→ +∞.

Proposition 1.4 (see remark 2.1 in [7]). In a b−metric space (X, d) the following assertions hold:

(i) a convergent sequence has a unique limit,

(ii) each convergent sequence is Cauchy,

(iii) in general, a b−metric is not continuous.
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Definition 1.5 ([7]). The b−metric space (X, d) is complete if every Cauchy sequence in X converges.
It should be noted that, in general a b−metric function d(x, y) for b > 1 is not jointly continuous in all

two of its variables. Now we present an example of a b−metric which is not continuous.

Example 1.6 (see example 3 in [14]). Let X = N ∪ {∞} and let D : X ×X → R be defined by

D(m,n) =


0, if m = n,∣∣ 1

m −
1
n

∣∣ , if m,n are even or mn =∞,
5, if m and n are odd and m 6= n,
2, otherwise.

Then it is easy to see that for all m,n, p ∈ X, we have

D(m, p) ≤ 5

2
(D(m,n) +D(n, p)).

Thus, (X,D) is b−metric space with b = 5
2 . Let xn = 2n for each n ∈ N. Then

D(2n,∞) =
1

2n
→ 0 as n→∞,

that is, xn →∞, but D(x2n, 1) = 2 6= D(∞, 1) as n→∞.

Since in general a b−metric is not continuous, we need the following simple lemmas about the b-convergent
sequences.

Lemma 1.7 ([1]). Let (X, d) be a b−metric space with b ≥ 1 , and suppose that {xn} and {yn} are b-
convergent to x, y respectively, then we have

1

b2
d(x, y) ≤ lim inf

n−→∞
d(xn, yn) ≤ lim sup

n−→∞
d(xn, yn) ≤ b2d(x, y).

In particular, if x = y, then we have lim
n−→∞

d(xn, yn) = 0. Moreover for each z ∈ X we have

1

b
d(x, z) ≤ lim inf

n−→∞
d(xn, z) ≤ lim sup

n−→∞
d(xn, z) ≤ bd(x, z),

Proof. Using the triangle inequality in a b−metric space it is easy to see that

d(x, y) ≤ bd(x, xn) + b2d(xn, yn) + b2d(yn, y),

and
d(xn, yn) ≤ bd(xn, x) + b2d(x, y) + b2d(y, yn).

Taking the lower limit as n → ∞ in the first inequality and the upper limit as n → ∞ in the second
inequality we obtain the first desired result. Similarly, again using the triangle inequality we have:

d(x, z) ≤ bd(x, xn) + bd(xn, z),

and
d(xn, z) ≤ bd(xn, x) + bd(x, z).

Taking the lower limit as n → ∞ in the first inequality and the upper limit as n → ∞ in the second
inequality we obtain the second desired result.

In 2010, Vats et al. [26] introduced the concept of weakly compatible. Also, in 2010, Manro et al. [17]
introduced the concepts of weakly commuting, R-weakly commuting mappings, and R-weakly commuting
mappings of type (P ), (Af ), and (Ag) in G-metric space.

We will introduce these concepts in b-metric space.
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Definition 1.8. The self-mappings f and g of a b−metric space (X, d) are said to be compatible if
limn→∞ d(fgxn, gfxn) = 0, whenever {xn} is a sequence in X such that limn→∞ fxn = limn→∞ gxn = z,
for some z ∈ X.

Definition 1.9. A pair of self-mappings (f, g) of a b−metric space (X, d) are said to be

(a) R-weakly commuting mappings of type (Af ) if there exists some positive real number R such that
d(fgx, ggx) ≤ Rd(fx, gx), for all x in X.

(b) R-weakly commuting mappings of type (Ag) if there exists some positive real number R such that
d(gfx, ffx) ≤ Rd(gx, fx), for all x in X.

Definition 1.10. The self-mapping f of a b−metric space (X, d) is said to be b-continuous at x ∈ X if
and only if it is b-sequentially continuous at x, that is, whenever {xn} is b-convergent to x, {f(xn)} is
b-convergent to f(x).

Example 1.11. Let d(x, y) = (x− y)2, fx = 1 and gx =

{
1, x ∈ Q
−1, otherwise.

Thus for each x, y ∈ R it is easy to see that the pair of self-mappings (f, g) of a b−metric space are R-weakly
commuting mappings of type (Af ) and (Ag).

In this section, we recall some definitions of partial metric space and some of their properties. See
[3, 13, 18, 20, 22, 25] for details.

A partial metric on a nonempty set X is a function p : X ×X → R+ such that for all x, y, z ∈ X :

(p1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X. It is
clear that, if p(x, y) = 0, then from (p1) and (p2) x = y, but if x = y, p(x, y) may not be 0. A basic example
of a partial metric space is the pair (R+, p), where p(x, y) = max{x, y} for all x, y ∈ R+. Other examples
of the partial metric spaces which are interesting from a computational point of view may be found in [12],
[18].

Lemma 1.12. Let (X, d) and (X, p) be a metric space and partial metric space respectively. Then

(i) The function ρ : X ×X −→ R+ defined by ρ(x, y) = d(x, y) + p(x, y), is a partial metric.

(ii) Let ρ : X ×X −→ R+ defined by ρ(x, y) = d(x, y) + max{ω(x), ω(y)}, then ρ is a partial metric on X,
where ω : X −→ R+ is an arbitrary function.

(iii) Let ρ : R× R −→ R defined by ρ(x, y) = max{2x, 2y}, then ρ is a partial metric on R.

(iv) Let ρ : X ×X −→ R+ defined by ρ(x, y) = d(x, y) + a, then ρ is a partial metric on X, where a ≥ 0.
Moreover, ρ(x, x) = ρ(y, y) for all x, y ∈ X.

Each partial metric p on X generates a T0 topology τp on X which has, as a base, the family of open
p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

Let (X, p) be a partial metric space. Then:

A sequence {xn} in a partial metric space (X, p) converges to a point x ∈ X if and only if
p(x, x) = limn→∞ p(x, xn).
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A sequence {xn} in a partial metric space (X, p) is called a Cauchy sequence if there exists (and is finite)
limn,m→∞ p(xn, xm).

A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn} in X converges, with
respect to τp, to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

Suppose that {xn} is a sequence in the partial metric space (X, p), then we define L(xn) = {x|xn −→ x}.

The following example shows that every convergent sequence {xn} in a partial metric space (X, p) may
not be a Cauchy sequence. In particular, it shows that the limit is not unique.

Example 1.13. Let X = [0,∞) and p(x, y) = max{x, y}. Let

xn =


0 , n = 2k

1 , n = 2k + 1.

Then clearly it is convergent sequence and for every x ≥ 1 we have limn→∞ p(xn, x) = p(x, x), hence
L(xn) = [1,∞). But limn,m→∞ p(xn, xm) does not exist, that is it is not a Cauchy sequence.

The following Lemma shows that under certain conditions the limit is unique.

Lemma 1.14 ([23]). Let {xn} be a convergent sequence in partial metric space (X, p), xn −→ x and
xn −→ y. If

lim
n→∞

p(xn, xn) = p(x, x) = p(y, y),

then x = y.

Lemma 1.15 ([23, 15]). Let {xn} and {yn} be two sequences in partial metric space (X, p) such that

lim
n→∞

p(xn, x) = lim
n→∞

p(xn, xn) = p(x, x),

and
lim
n→∞

p(yn, y) = lim
n→∞

p(yn, yn) = p(y, y),

then limn→∞ p(xn, yn) = p(x, y). In particular, limn→∞ p(xn, z) = p(x, z), for every z ∈ X.

Lemma 1.16. If p is a partial metric on X, then the functions ps, pm : X ×X → R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

and
pm(x, y) = max

{
p(x, y)− p(x, x), p(x, y)− p(y, y)

}
for every x, y ∈ X, are equivalent metrics on X.

Lemma 1.17 ([18], [20]). Let (X, p) be a partial metric space.

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, ps).

(b) A partial metric space (X, p) is complete if and only if the metric space (X, ps) is complete. Further-
more, limn→∞ p

s(xn, x) = 0 if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

Definition 1.18. The self-mappings f and g of a partial metric space (X, p) are said to be compatible if
limn→∞ p(fgxn, gfxn) = p(u, u) for some u ∈ X , whenever {xn} is a sequence in X such that limn→∞ fxn =
limn→∞ gxn = z, for some z ∈ X.

Definition 1.19. A pair of self-mappings (f, g) of a partial metric space (X, p) are said to be

(a) R-weakly commuting mappings of type (Ag) if there exists some positive real number R such that
p(gfx, ffx) ≤ Rp(gx, fx), for all x in X.

(b) weakly commuting mappings of type (Ag) if p(gfx, ffx) ≤ p(gx, fx), for all x in X.
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2. Main results

The following is the main result of this section.

Theorem 2.1. Let (X, d) be a b-metric space and (f, g) be a pair of non-compatible selfmappings with
fX ⊆ gX (here fX denotes the closure of fX). Assume the following conditions are satisfied

d(fx, fy) ≤ k

b2
max{d(gx, gy), d(fx, gx), d(fy, gy)} (2.1)

for all x, y ∈ X and 0 < k < 1. If (f, g) are a pair of R-weakly commuting mappings of type (Ag), then f
and g have a unique common fixed point (say z) and both f and g are not b-continuous at z.

Proof. Since f and g are non-compatible mappings, there exists a sequence {xn} ⊂ X, such that

lim
n→∞

fxn = lim
n→∞

gxn = z, z ∈ X,

but either limn→∞ d(fgxn, gfxn) or limn→∞ d(gfxn, fgxn) does not exist or exists and is different from 0.
Since z ∈ fX ⊂ gX, there must exist a u ∈ X satisfying z = gu. We can assert that fu = gu. From
condition (2.1) and Lemma 1.7, we get

1

b
d(fu, gu) ≤ lim sup

n−→∞
d(fu, fxn)

≤ lim sup
n−→∞

k

b2
max{d(gu, gxn), d(fu, gxn), d(fxn, gu)}

≤ k

b
max{d(gu, gu), d(fu, gu), d(gu, gu)}

=
k

b
d(fu, gu).

That is, d(fu, gu) ≤ kd(fu, gu), hence we get fu = gu. Since (f, g) are a pair of R-weakly commuting
mappings of type (Ag), we have d(gfu, ffu) ≤ Rd(gu, fu) = 0. It means ffu = gfu. Next, we prove
ffu = fu. From condition (2.1), fu = gu and ffu = gfu, we have

d(fu, ffu) ≤ k

b2
max{d(gu, gfu), d(fu, gfu), d(gu, ffu)}

=
k

b2
d(fu, ffu)

≤ kd(fu, ffu).

Hence, we have fu = ffu, which implies that fu = ffu = gfu, and so z = fu is a common fixed point
of f and g. Next we prove that the common fixed point z is unique. Actually, suppose w is also a common
fixed point of f and g, then using the condition (2.1), we have

d(z, w) = d(fz, fw)

≤ k

b2
max{d(gz, gw), d(fz, gw), d(fw, gz)}

=
k

b2
d(z, w)

≤ kd(z, w),
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which implies that z = w, so uniqueness is proved. Now, we prove that f and g are not b-continuous at
z. In fact, if f is b-continuous at z, we consider the sequence {xn}; then we have limn→∞ ffxn = fz = z,
limn→∞ fgxn = fz = z. Since f and g are R-weakly commuting mappings of type Lemma 1.7 we have

1

b2
d( lim

n→∞
gfxn, z) ≤ lim sup

n−→∞
d(gfxn, ffxn)

≤ lim sup
n−→∞

Rd(gxn, fxn)

≤ Rb2d(z, z) = 0,

it follows that limn→∞ gfxn = z. Hence, by Lemma 1.7 we can get

lim sup
n−→∞

d(fgxn, gfxn) ≤ b2d(z, z) = 0

therefore,
lim
n→∞

d(fgxn, gfxn) = 0.

This contradicts with f and g being non-compatible, so f is not b-continuous at z. If g is b-continuous at z,
then we have

lim
n→∞

gfxn = gz = z, lim
n→∞

ggxn = gz = z.

Since f and g are R-weakly commuting mappings of type (Ag), we get

d(gfxn, ffxn) ≤ Rd(gxn, fxn),

so by Lemma 1.7 we have

1

b2
d(z, lim

n→∞
ffxn) ≤ lim sup

n−→∞
d(gfxn, ffxn)

≤ lim sup
n−→∞

Rd(gxn, fxn)

≤ Rb2d(z, z) = 0,

and it follows that
lim
n→∞

ffxn = z = fz.

This contradicts with f being not b-continuous at z, which implies that g is not b-continuous at z. This
completes the proof.

Corollary 2.2. Let (X, d) be a metric space and (f, g) be a pair of non-compatible selfmappings with
fX ⊆ gX (here fX denotes the closure of fX). Assume the following conditions are satisfied

d(fx, fy) ≤ k max{d(gx, gy), d(fx, gx), d(fy, gy)} (2.2)

for all x, y ∈ X and 0 < k < 1. If (f, g) are a pair of R-weakly commuting mappings of type (Ag), then f
and g have a unique common fixed point (say z) and both f and g are not continuous at z.

Proof. It is enough to set b = 1 in Theorem 2.1.

Corollary 2.3. Let (X, p) be a partial metric space and (f, g) be a pair of non-compatible selfmappings with
fX ⊆ gX (here fX denotes the closure of fX). Assume the following conditions are satisfied

p(fx, fy) ≤ k max{p(gx, gy), p(fx, gx), p(fy, gy)} (2.3)

for all x, y ∈ X and 0 < k < 1. If p(gx, gx) = p(fy, fy) for all x, y ∈ X and (f, g) are a pair of weakly
commuting mappings of type (Ag), then f and g have a unique common fixed point (say z) and both f and
g are not continuous at z.
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Proof. From condition (2.3) we have

2p(fx, fy) ≤ k max{2p(gx, gy), 2p(fx, gx), 2p(fy, gy)},

hence
2p(fx, fy)− p(fx, fx)− p(fy, fy) + p(fx, fx) + p(fy, fy)

≤ k max


2p(gx, gy)− p(gx, gx)− p(gy, gy) + p(gx, gx) + p(gy, gy),

2p(fx, gx)− p(fx, fx)− p(gx, gx) + p(fx, fx) + p(gx, gx),
2p(fy, gy)− p(fy, fy)− p(gy, gy) + p(fy, fy) + p(gy, gy)

 .

Therefore,

ps(fx, fy) + p(fx, fx) + p(fy, fy) ≤ k max


ps(gx, gy) + p(gx, gx) + p(gy, gy),
ps(fx, fy) + p(fx, fx) + p(gx, gx),
ps(fy, gy) + p(fy, fy) + p(gy, gy)

 .

Let

max


ps(gx, gy) + p(gx, gx) + p(gy, gy),
ps(fx, fy) + p(fx, fx) + p(gx, gx),
ps(fy, gy) + p(fy, fy) + p(gy, gy)

 = ps(gx, gy) + p(gx, gx) + p(gy, gy).

In this case we have

ps(fx, fy) + p(fx, fx) + p(fy, fy) ≤ kps(gx, gy) + kp(gx, gx) + kp(gy, gy).

Since, p(fx, fx) = p(gy, gy) and p(fy, fy) = p(gx, gx) it follows that

ps(fx, fy) ≤ kps(gx, gy) + p(gx, gx)(k − 1) + p(gy, gy)(k − 1) ≤ kps(gx, gy).

Since,

kp(gx, gx) + kp(gy, gy)− p(fx, fx)− p(fy, fy)

= kp(gx, gx) + kp(gy, gy)− p(gy, gy)− p(gx, gx)

= p(gx, gx)(k − 1) + p(gy, gy)(k − 1) ≤ 0.

Hence we have

ps(fx, fy) ≤ k max{ps(gx, gy), ps(fx, gx), ps(fy, gy)}.

Moreover, since (f, g) are a pair of weakly commuting mappings of type (Ag) in partial metric space (X, p),
we have p(gfx, ffx) ≤ p(gx, fx). Hence 2p(gfx, ffx) ≤ 2p(gx, fx), therefore

ps(gfx, ffx) + p(gfx, gfx) + p(ffx, ffx) ≤ ps(gx, fx) + p(gx, gx) + p(fx, fx).

Since, p(gfx, gfx) = p(gx, gx) and p(ffx, ffx) = p(fx, fx) it follows that

ps(gfx, ffx) ≤ ps(gx, fx).

That is (f, g) are a pair of R-weakly commuting mappings of type (Ag) in metric space (X, ps) for R = 1.
Therefore, all conditions of Corollary 2.2 are satisfied, hence f and g have a unique common fixed point
(say z) and both f and g are not continuous at z.

Next, we give an example to support Theorem 2.1.
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Example 2.4. Let X = [2, 20] and let d be metric on X ×X −→ (0,+∞) defined as d(x, y) = (x− y)2. We
define mappings f and g on X by

fx =

{
2, x = 2 or x ∈ (5, 20]
6, x ∈ (2, 5],

and gx =


2, x = 2
18, x ∈ (2, 5]
x+1
3 , x ∈ (5, 20].

Clearly, from the above functions we know that f(X) ⊆ g(X), and the pair (f, g) are noncompati-
ble self-maps. To see that f and g are non-compatible, consider a sequence {xn = 5 + 1

n}. We have
fxn −→ 2, gxn −→ 2, fgxn −→ 6 and gfxn −→ 2. Thus

lim
n→∞

d(gfxn, fgxn) = 16 6= 0.

On the other hand, there exists R = 1 such that

d(gfx, ffx) =


(2− 2)2, x = 2
(73 − 2)2, x ∈ (2, 5]
(2− 2)2 = 0, x ∈ (5, 20]

,

and

d(fx, gx) =


(2− 2)2 = 0, x = 2
(18− 6)2, x ∈ (2, 5]
(x+1

3 − 2)2, x ∈ (5, 20]
,

for all x ∈ X, hence it is easy to see that in every case we have

d(gfx, ffx) ≤ d(gx, fx).

That is, the pair (f, g) are R-weakly commuting mappings of type (Ag). Now we prove that the mappings
f and g satisfy the condition (2.1) of Theorem 2.1 with k = 1

2 . For this, we consider the following cases:
Case (1) If x, y ∈ {2} ∪ (5, 20], then we have

d(fx, fy) = d(2, 2) = 0

≤ k max{d(gx, gy), d(fx, gx), d(fy, gy)},

and hence (2.1) is obviously satisfied.
Case (2) If x, y ∈ (2, 5], then we have

d(fx, fy) = d(6, 6) = 0

≤ k max{d(gx, gy), d(fx, gx), d(fy, gy)}

for all x, y in X, and hence (2.1) is obviously satisfied.
Case (3) If x ∈ {2} ∪ (5, 20] and y ∈ (2, 5], then we have

d(fx, fy) = d(2, 6) = 16 and

d(gx, gy) =

{
(2− 18)2, x = 2
(x+1

3 − 18)2, x ∈ (5, 20]
.

Thus we obtain [d(fx, fy) ≤ k max{d(gx, gy), d(fx, gx), d(fy, gy)}] for all x, y in X. Thus all the conditions
of Theorem 2.1 are satisfied and 2 is a unique point in X such that f2 = g2 = 2.
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