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Abstract

By using R-weak commutativity of type (Ag) and non-compatible conditions of self-mapping pairs in b-metric
space, without the conditions for the completeness of space and the continuity of mappings, we establish
some new common fixed point theorems for two self-mappings. Our results differ from other already known
results. An example is provided to support our new result. (©2015 All rights reserved.
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1. Introduction and Preliminaries

Czerwik in [I0] introduced the concept of b—metric spaces. Since then, several papers deal with fixed
point theory for single-valued and multivalued operators in b—metric spaces (see also [2], 4] 5] [6, [7, [8 9] 10,
111, 14, 16, 19, 21, 24]). Pacurar [2I] proved results on sequences of almost contractions and fixed points
in b—metric spaces. Recently, Hussain and Shah [14] obtained results on KKM mappings in cone b—metric
spaces. Khamsi ([16]) also showed that each cone metric space has a b—metric structure.

The aim of this paper is to present some common fixed point results for two mappings under generalized
contractive condition in b—metric space, where the b—metric function is not necessarily continuous. Because
many of the authors in their works have used the b—metric spaces in which the b—metric functions are
continuous, the techniques used in this paper can be used for many of the results in the context of b—metric
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space. From this point of view the results obtained in this paper generalize and extend several earlier results
obtained in a lot of papers concerning b—metric spaces.
Consistent with [10] and [24, p. 264], the following definition and results will be needed in the sequel.

Definition 1.1 ([10]). Let X be a (nonempty) set and b > 1 be a given real number. A function
d: X x X — RT is a b—metric iff, for all z,y, z € X, the following conditions are satisfied:

(bl) d(z,y) =0iff z =y,
(b2) d(z,y) = d(y,x),
(b3) d(z,z) < bld(z,y) + d(y, 2)].

The pair (X, d) is called a b—metric space.

It should be noted that the class of b—metric spaces is effectively larger than that of metric spaces since
a b—metric is a metric when b = 1.

We present an example which shows that a b—metric on X need not be a metric on X. (see also [24] p.
264] ):

Example 1.2. Let (X,d) be a metric space, and p(z,y) = (d(x,y))P, where p > 1 is a real number. We
show that p is a b—metric with b = 2P~1,

Obviously conditions (bl) and (b2) of Definition are satisfied.

If 1 < p < oo, then the convexity of the function f(x) = 2P (z > 0) implies

a+c\’ 1
< Z(gP 4 P
and hence, (a + ¢)? < 2P~1(aP + ¢P) holds.
Thus for each z,y, 2z € X we obtain
pz,y) = (d(z,y))" < (d(z, 2) + d(z,9))"
< 2771 ((d(w, 2))P + (d(z,9)P) = 207 (pl, 2) + p(z,9)).

So condition (b3) of Definition |1.1{ holds and p is a b—metric.

It should be noted that in the preceding example, if (X, d) is a metric space, then (X, p) is not necessarily
a metric space.

For example, let X = R be the set of real numbers and d(x,y) = |z — y| be the usual Euclidean metric,
then p(z,y) = (z — y)? is a b—metric on R with b = 2, but is not a metric on R, because the triangle
inequality does not hold.

Before stating and proving our results, we present some definitions and a proposition in b—metric space.
We recall first the notions of convergence, closedness and completeness in a b—metric space.

Definition 1.3 ([7]). Let (X, d) be a b—metric space. Then a sequence {z,} in X is called:

(a) convergent if and only if there exists x € X such that d(z,,x) — 0 as n — +o00. In this case, we write
lim,,— o0 Tn, = .

(b) Cauchy if and only if d(zy, zy) — 0 as n,m — +oc.

Proposition 1.4 (see remark 2.1 in [7]). In a b—metric space (X,d) the following assertions hold:
(i) a convergent sequence has a unique limit,
(ii) each convergent sequence is Cauchy,

(iii) in general, a b—metric is not continuous.
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Definition 1.5 ([7]). The b—metric space (X, d) is complete if every Cauchy sequence in X converges.
It should be noted that, in general a b—metric function d(x,y) for b > 1 is not jointly continuous in all
two of its variables. Now we present an example of a b—metric which is not continuous.

Example 1.6 (see example 3 in [I4]). Let X = N U {oo} and let D : X x X — R be defined by

0, if m =n,
11 .
= — = if r n or =
D(m,n) = m " wl> ifm,n are even or mn = oo,
5, if m and n are odd and m # n,
2, otherwise.

Then it is easy to see that for all m,n,p € X, we have

D(m,p) < 2(D(m,n) + D(n,p)).

Thus, (X, D) is b—metric space with b = 3. Let z,, = 2n for each n € N. Then

1
D(2n,00) = — — 0 as n — o0,
2n
that is, z, — oo, but D(zay,1) =2 # D(oc0,1) as n — oco.

Since in general a b—metric is not continuous, we need the following simple lemmas about the b-convergent
sequences.

Lemma 1.7 ([1]). Let (X,d) be a b—metric space with b > 1 , and suppose that {x,} and {y,} are b-
convergent to x,y respectively, then we have

1
Sd(z,y) < liminf d(z,,y,) < limsup d(zn,yn) < v d(z,y).
b n—7m=o0 n—>o0

In particular, if © =y, then we have lim d(xy,,y,) = 0. Moreover for each z € X we have
n—=o0

1
gd(w,z) < liminf d(z,,2) < limsup d(z,,z) <bd(z,z),

n—>00 n—soo
Proof. Using the triangle inequality in a b—metric space it is easy to see that
d(z,y) < bd(w,z0) + bd(@n, yn) + b*d(yn, ),
and
A(Tn, Yn) < bd(wp, ) + 02d(z,y) + b%d(y, yn).

Taking the lower limit as n — oo in the first inequality and the upper limit as n — oo in the second
inequality we obtain the first desired result. Similarly, again using the triangle inequality we have:

d(z,z) < bd(x,xy) + bd(n, 2),
and
d(xn, z) < bd(zp,x) + bd(z, 2).

Taking the lower limit as n — oo in the first inequality and the upper limit as n — oo in the second
inequality we obtain the second desired result. O

In 2010, Vats et al. [26] introduced the concept of weakly compatible. Also, in 2010, Manro et al. [17]
introduced the concepts of weakly commuting, R-weakly commuting mappings, and R-weakly commuting
mappings of type (P), (A¢), and (Ay) in G-metric space.

We will introduce these concepts in b-metric space.
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Definition 1.8. The self-mappings f and g of a b—metric space (X,d) are said to be compatible if
limy, 00 d(fgxn, gfxn) = 0, whenever {z,} is a sequence in X such that lim, o fz, = lim, o0 gz, = 2,
for some z € X.

Definition 1.9. A pair of self-mappings (f, g) of a b—metric space (X,d) are said to be

(a) R-weakly commuting mappings of type (Ay) if there exists some positive real number R such that
d(fgzr,g9g9z) < Rd(fz,g9z), for all x in X.

(b) R-weakly commuting mappings of type (A,) if there exists some positive real number R such that
d(gfz, ffr) < Rd(gz, fx), for all x in X.

Definition 1.10. The self-mapping f of a b—metric space (X,d) is said to be b-continuous at z € X if
and only if it is b-sequentially continuous at z, that is, whenever {z,} is b-convergent to =, {f(x,)} is
b-convergent to f(x).

1, €@

—1, otherwise.

Thus for each z,y € R it is easy to see that the pair of self-mappings (f, g) of a b—metric space are R-weakly
commuting mappings of type (Af) and (Ay).

Example 1.11. Let d(z,y) = (z — y)?, fr =1 and gz = {

In this section, we recall some definitions of partial metric space and some of their properties. See
13, 13| 18], 20, 22, 25] for details.

A partial metric on a nonempty set X is a function p : X x X — R" such that for all z,y,2 € X :

r =y <= p(r,r) =p(r,y) =pY,Y),
p(w,fv) < p(z,y),

p(z,y) = p(y, ),

p( 'Y )<p(x,z)+p(z,y)—p(z,z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X. It is
clear that, if p(x,y) = 0, then from (p1) and (p2) = = y, but if x = y, p(z,y) may not be 0. A basic example
of a partial metric space is the pair (RT,p), where p(z,y) = max{z,y} for all z,y € RT. Other examples
of the partial metric spaces which are interesting from a computational point of view may be found in [12],
[18].

(p1)
(p2)
(p3)
(p4)

8

Lemma 1.12. Let (X,d) and (X,p) be a metric space and partial metric space respectively. Then
(i) The function p: X x X —s R* defined by p(x,y) = d(x,y) + p(x,y), is a partial metric.

(ii) Let p: X x X — R defined by p(x,y) = d(z,y) + max{w(z),w(y)}, then p is a partial metric on X,
where w : X — RT is an arbitrary function.

(7ii) Let p: R x R — R defined by p(z,y) = max{2*,2Y}, then p is a partial metric on R.

() Let p: X x X — R defined by p(z,y) = d(x,y) + a, then p is a partial metric on X, where a > 0.
Moreover, p(z,x) = p(y,y) for all x,y € X.

Each partial metric p on X generates a T topology 7, on X which has, as a base, the family of open
p-balls {By(z,¢) : v € X, e > 0}, where By(z,¢) ={y € X : p(x,y) < p(z,z) + ¢} for all z € X and € > 0.

Let (X, p) be a partial metric space. Then:

A sequence {z,} in a partial metric space (X,p) converges to a point z € X if and only if
p(z,x) = limy, o0 p(z, Tp).
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A sequence {z,} in a partial metric space (X, p) is called a Cauchy sequence if there exists (and is finite)
liInn,m—)oo p(ﬁn, JUm)

A partial metric space (X, p) is said to be complete if every Cauchy sequence {x,} in X converges, with
respect to 7p, to a point x € X such that p(z, ) = limp m—eo D(Tn, Tm).

Suppose that {x,} is a sequence in the partial metric space (X, p), then we define L(x,,) = {z|z, — z}.

The following example shows that every convergent sequence {x,} in a partial metric space (X, p) may
not be a Cauchy sequence. In particular, it shows that the limit is not unique.

Example 1.13. Let X = [0,00) and p(z,y) = max{z,y}. Let

0 , n =2k
Ty =
1, n=2k+1.
Then clearly it is convergent sequence and for every x > 1 we have lim, oo p(2n,z) = p(z,x), hence
L(z,) = [1,00). But limy, ;00 p(Zp, ) does not exist, that is it is not a Cauchy sequence.
The following Lemma shows that under certain conditions the limit is unique.
Lemma 1.14 ([23]). Let {x,} be a convergent sequence in partial metric space (X,p), x, — x and
Ty —y. If
lim p(zn, zn) = p(z,z) = p(y,y),
n—oo

then © = y.
Lemma 1.15 ([23, [15]). Let {x,} and {y,} be two sequences in partial metric space (X,p) such that

Jim p(zp, ) = lim p(zn, z,) = p(z, ),

and
lim p(yn,y) = 1im p(yn, yn) = p(y,y);
then limy, o0 p(Tn, yn) = p(z,y). In particular, im, o p(zn, z) = p(z, 2), for every z € X.
Lemma 1.16. If p is a partial metric on X, then the functions p*,p™ : X x X — RT given by
p*(z,y) = 2p(2,y) — p(z, =) — p(y,y)
and
p" (@, y) = max { p(e,y) - p(e,2),pla.y) — ply,y) }

for every x,y € X, are equivalent metrics on X.
Lemma 1.17 ([18], [20]). Let (X,p) be a partial metric space.

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, p®).

(b) A partial metric space (X,p) is complete if and only if the metric space (X, p®) is complete. Further-

more, limy, o0 p*(n, x) = 0 if and only if

pl,z) = lim p(z,, ) = nﬁrﬁmp(“”"’ Tm).

Definition 1.18. The self-mappings f and g of a partial metric space (X, p) are said to be compatible if
limy, 00 P(f92n, gfxn) = p(u,u) for some u € X |, whenever {x,} is a sequence in X such that lim,,_, fz,, =
limy, 00 gy, = 2, for some z € X.

Definition 1.19. A pair of self-mappings (f, g) of a partial metric space (X, p) are said to be

(a) R-weakly commuting mappings of type (A,) if there exists some positive real number R such that
p(gfz, ffx) < Rp(gx, fz), for all z in X.

(b) weakly commuting mappings of type (A4y) if p(gfx, ffx) < p(gz, fx), for all z in X.
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2. Main results
The following is the main result of this section.

Theorem 2.1. Let (X,d) be a b-metric space and (f,g) be a pair of non-compatible selfmappings with
fX C gX (here fX denotes the closure of fX ). Assume the following conditions are satisfied

A(fr, y) < g5 mar{dlgr, gy),d(fe, go), d( 7y, )} 1)

forallz,y € X and 0 < k < 1. If (f,g) are a pair of R-weakly commuting mappings of type (Ay), then f
and g have a unique common fized point (say z) and both f and g are not b-continuous at z.

Proof. Since f and g are non-compatible mappings, there exists a sequence {z,} C X, such that

lim fz, = lim gz, =2, z¢€ X,
n—oo n—oo

but either limy, o0 d(fg2n, gfxs) or lim, o0 d(gfTy, fgzn) does not exist or exists and is different from 0.

Since z € fX C gX, there must exist a u € X satisfying z = gu. We can assert that fu = gu. From

condition (2.1) and Lemma we get

%d(fu,gu) <limsup d(fu, fzn)

n——oo

lim sup E max{d(gu, gz,), d(fu, gzy),d(fr,, gu)}

IN

% max{d(gu, gu), d( fu, gu), d(gu, gu)}

k

IN

That is, d(fu,gu) < kd(fu,gu), hence we get fu = gu. Since (f,g) are a pair of R-weakly commuting
mappings of type (Ay), we have d(gfu, ffu) < Rd(gu, fu) = 0. It means ffu = gfu. Next, we prove
ffu = fu. From condition (2.1)), fu = gu and ffu = gfu, we have

A(fu, £ fu) < 35 max{d(gu,ofu), d(fu, o), d(gu, f fu)}

= d(fu, £ fu)
< Kd(fu, 1 ).

Hence, we have fu = f fu, which implies that fu = ffu = gfu, and so z = fu is a common fixed point
of f and g. Next we prove that the common fixed point z is unique. Actually, suppose w is also a common
fixed point of f and g, then using the condition ({2.1]), we have

d(z,w) = d(fz, fw)

< bﬁzmax{d(gz,gw),d(fz,gw),d(fw,QZ)}
k

= b—2d(z,w)

< kd(z,w),
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which implies that z = w, so uniqueness is proved. Now, we prove that f and g are not b-continuous at
z. In fact, if f is b-continuous at z, we consider the sequence {x,}; then we have lim,, o ffz, = fz = 2,
limy, 00 fgxn, = fz = z. Since f and g are R-weakly commuting mappings of type Lemma we have

1
d(lim gfan,2) < limsup d(gfzn, ffrn)
b n—00 n—>00
< limsup Rd(gzy, fz,)
n—aoo

< Rb?d(z,2) = 0,
it follows that lim,, .o gfx, = z. Hence, by Lemma [1.7] we can get

limsup d(fgan, gfrn) < b%d(z,2) =0

n—ao0
therefore,
nh_{glo d(fgxn,gfx,) = 0.
This contradicts with f and g being non-compatible, so f is not b-continuous at z. If g is b-continuous at z,
then we have

lim gfz, =9z=2  lim ggx, = gz = z.
n—oo n—oo

Since f and g are R-weakly commuting mappings of type (A4y), we get

so by Lemma we have

Lz, T ffw,) < limsup dlgfan. ffa)

b2 n——o0

A

limsup Rd(gzy, fr,)

n—aoo

< Rbd(z,2) =0,

and it follows that

lim ffx,=2z2= f=z.
n—oo

This contradicts with f being not b-continuous at z, which implies that g is not b-continuous at z. This
completes the proof. O

Corollary 2.2. Let (X,d) be a metric space and (f,g) be a pair of non-compatible selfmappings with
fX C gX (here fX denotes the closure of fX ). Assume the following conditions are satisfied

d(fz, fy) < k maz{d(gz,gy),d(fz,gz),d(fy, gy)} (2.2)

forallz,y € X and 0 < k < 1. If (f,g) are a pair of R-weakly commuting mappings of type (Ay), then f
and g have a unique common fized point (say z) and both f and g are not continuous at z.

Proof. 1t is enough to set b = 1 in Theorem O

Corollary 2.3. Let (X, p) be a partial metric space and (f,g) be a pair of non-compatible selfmappings with
fX C gX (here fX denotes the closure of fX ). Assume the following conditions are satisfied

p(fz, fy) < k maz{p(gx, gy), p(fz, 9x), p(fy, 9y)} (2.3)

forall z,y € X and 0 < k < 1. If p(gx,g9x) = p(fy, fy) for all z,y € X and (f,g) are a pair of weakly
commuting mappings of type (Ag), then f and g have a unique common fized point (say z) and both f and
g are not continuous at z.
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Proof. From condition (2.3 we have
2p(fx, fy) < k max{2p(gz, gy), 2p(fx, 9), 2p(fy, 9y)},

hence

2p(fz, fy) — p(fz, fx) — p(fy, fy) + o(fz, fz) + p(fy, fy)

(
2p(gz, gy) — p(9z, gx) — p(gy, gy) + p(9, gx) + p(9y, 9y),
<k maz < 2p(fr,g9x) — p(fx, fr) — plgx, gx) + p(fx, fx) + p(gz, gx),
2p(fy, gy) — v(fy, fy) — plgy, 9v) + p(fy, fy) + p(9y, 9v)

Therefore,

p*(9, gy) + p(9, 9x) + p(9y, 9y),
p’(fz, fy) + p(fz, fz) + p(fy, fy) < k mazx § p°(fz, fy) + p(fz, fz) + p(9z, 9),
p*(fy,9y) +p(fy, fy) + p(9y, gy)

Let

p°(9z, 9y) + p(9, gz) + p(9Y, 9Y),
max ¢ p°(fz, fy) +p(fz, fx) + plgz, gz), » = p°(97,9Y) + p(97, g) + P9y, 9Y)-
p*(fy, 9v) + p(fy, fy) + v(9y, 9y)

In this case we have

p’(fz, fy) + p(fz, fz) + p(fy, fy) < kp*(g9z, gy) + kp(gz, gx) + kp(9y, gy).

Since, p(fz, fz) = p(gy, gy) and p(fy, fy) = p(gz, gx) it follows that

p*(fx, fy) < kp®(gz, gy) + p(gx, gx)(k — 1) + p(gy, gy)(k — 1) < kp®(gz, gy).

Since,

kp(gz, gx) + kp(gy, gy) — p(fz, fx) — p(fy, fy)
= kp(gz, gx) + kp(9y, 9y) — p(9y, 9y) — p(gz, g)
= p(gz, gz)(k — 1) + p(gy, gy)(k — 1) < 0.

Hence we have

p’(fz, fy) < k max{p®(g9z, g9y),p°(fx,g2),p°(fy,9v)}-

Moreover, since (f, g) are a pair of weakly commuting mappings of type (A44) in partial metric space (X, p),
we have p(gfz, ffz) < p(gz, fz). Hence 2p(gfz, f fx) < 2p(g, fx), therefore

p*(gfz, ffx) +plgfz,gfx) +p(ffx, ffz) <p*(gx, fx) + plgx, gx) + p(fx, fx).
Since, p(gfx,gfx) = p(gx,gz) and p(f fz, f fx) = p(fx, fz) it follows that
p’(9fx, ffz) < p°(gz, fx).

That is (f,g) are a pair of R-weakly commuting mappings of type (A,) in metric space (X,p®) for R = 1.
Therefore, all conditions of Corollary are satisfied, hence f and g have a unique common fixed point
(say z) and both f and g are not continuous at z. O

Next, we give an example to support Theorem
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Example 2.4. Let X = [2,20] and let d be metric on X x X — (0, +0c0) defined as d(z,y) = (v —y)?. We
define mappings f and g on X by

2, T =2
fx:{ 2, x=2o0r €520 and gr = 18, x € (2,5]
6, =258 ol e (5,20,

3

Clearly, from the above functions we know that f(X) C g¢(X), and the pair (f,g) are noncompati-
ble self-maps. To see that f and g are non-compatible, consider a sequence {x, = 5+ %} We have
frn — 2,92, — 2, fgx,, — 6 and gfx, —> 2. Thus

lim d(gfwn, fgza) = 16 £ 0.

On the other hand, there exists R = 1 such that

(2 —2)2, T =2
d(gfx, ffz) =q (5—2)% x € (2,5
(2-2)2=0, € (5,20]
and
(2-22=0, z=2
d(fr,gz) = ¢ (18 —6)2, r € (2,5
(=L —2)2 2 e (5,20]

for all x € X, hence it is easy to see that in every case we have

d(gfx, ffr) < d(gz, fx).

That is, the pair (f,g) are R-weakly commuting mappings of type (A4,). Now we prove that the mappings
f and g satisfy the condition (2.1)) of Theorem with k = % For this, we consider the following cases:
Case (1) If z,y € {2} U (5,20], then we have

d(fz, fy) = d(2,2) =0
< k maz{d(gz, gy),d(fz, gz),d(fy,gy)}

and hence ({2.1]) is obviously satisfied.
Case (2) If z,y € (2, 5], then we have

d(fz, fy) = d(6,6) =0
< k maz{d(gz, gy), d(fz, gz),d(fy, gy)}
for all z,y in X, and hence (2.1)) is obviously satisfied.

Case (3) If x € {2} U (5,20] and y € (2, 5], then we have
d(fz, fy) = d(2,6) = 16 and

_ (2 - 18)27 T =2
d(gz,gy) = { (& —18)%, z € (5,20]

Thus we obtain [d(fz, fy) < k max{d(gz, gy),d(fz,gx),d(fy,gy)}] for all z,y in X. Thus all the conditions
of Theorem [2.1| are satisfied and 2 is a unique point in X such that f2 = g2 = 2.
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