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Abstract

In this paper, we introduce the concept of α-ψ-ϕ-contractive self mapping in complete ordered partial b-
metric space, and we study the existence of fixed points for such mappings under some conditions. Presented
theorems in this paper extend and generalize the results derived by Mustafa et al., also some examples are
given to illustrate the main results. c©2014 All rights reserved.
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1. Introduction and Preliminaries

Fixed point theory is one of the most popular tool in nonlinear analysis. Most of the generalizations for
metric fixed point theorems usually start from Banach contraction principle [8]. It is not easy to point out
all the generalizations of this principle. In 1989, Bakhtin [7] introduced the concept of a b-metric space as
a generalization of metric spaces. In 1993, Czerwik [9, 10] extended many results related to the b−metric
spaces. In 1994, Matthews [15] introduced the concept of partial metric space in which the self distance of any
point of space may not be zero. In 1996, O’Neill generalized the concept of partial metric space by admitting
negative distances. In 2013, Shukla [21] generalized both the concept of b-metric and partial metric spaces
by introducing the partial b-metric spaces. For example, many authors recently studied this principle and its
generalizations in different types of metric spaces [12, 23, 1, 2, 18, 20, 5]. Close to our interest in this paper
some authors studied some fixed point theorems in the so called b−metric space [16, 22, 24]. After then,
some authors started to prove α-ψ versions of of certain fixed point theorems in different type metric spaces
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[3, 11, 4]. Mustafa in [17], gave a generalization of Banach’s contraction principles in a complete ordered
partial b-metric space by introducing a generalized (α,ψ)s-weakly contractive mapping. In this paper, we
generalize a result of Mustafa in [17], by introducing the α-ψ-ϕ-contractive mapping in a complete ordered
partial b-metric space.

Definition 1.1. [6] Let X be a nonempty set and let s ≥ 1 be a given real number. A function d : X×X →
[0,∞) is called a b-metric if for all x, y, z ∈ X the following conditions are satisfied:
(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) ≤ s[d(x, z) + d(z, y)].
The pair (X, d) is called a b-metric space. The number s ≥ 1 is called the coefficient of (X, d).

Definition 1.2. [15] Let X be a nonempty set. A function p : X ×X → [0,∞) is called a partial metric if
for all x, y, z ∈ X the following conditions are satisfied:
(i) x = y if and only if p(x, x) = p(x, y) = p(y, y);
(ii) p(x, x) ≤ p(x, y);
(iii) p(x, y) = p(y, x);
(iv) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
The pair (X, d) is called a partial metric space.

Remark 1.1. It is clear that the partial metric space need not be a b-metric spaces , since in a partial metric
space if p(x, y) = 0 implies p(x, x) = p(x, y) = p(y, y) = 0 then x = y. But in a partial metric space if x = y
then p(x, x) = p(x, y) = p(y, y) may not be equal zero. Therefore the partial metric space may not be a
b-metric space.

On the other hand, Shukla[21] introduced the notion of a partial b-metric space as follows:

Definition 1.3. [21] Let X be a nonempty set and s ≥ 1 be a given real number. A function pb : X ×X →
[0,∞) is called a partial b-metric if for all x, y, z ∈ X the following conditions are satisfied:
(i) x = y if and only if pb(x, x) = pb(x, y) = pb(y, y);
(ii) pb(x, x) ≤ pb(x, y);
(iii) pb(x, y) = pb(y, x);
(iv) pb(x, y) ≤ s[pb(x, z) + pb(z, y)]− pb(z, z).
The pair (X, pb) is called a partial b-metric space. The number s ≥ 1 is called the coefficient of (X, pb).

Remark 1.2. The class of partial b-metric space (X, pb) is effectively larger than the class of partial metric
space, since a partial metric space is a special case of a partial b-metric space (X, pb) when s = 1. Also, the
class of partial b-metric space (X, pb) is effectively larger than the class of b-metric space, since a b-metric
space is a special case of a partial b-metric space (X, pb) when the self distance p(x, x) = 0.

The following examples shows that a partial b-metric on X need not be a partial metric, nor a b-metric
on X see also [17], [21].

Example 1.1. [21] Let X = [0,∞). Define a function pb : X×X → [0,∞) such that pb(x, y) = [max{x, y}]2+
|x− y|2 For all x, y ∈ X. Then (X, pb) is a partial b-metric space on X with the coefficient s = 2 > 1. But,
pb is not a b-metric nor a partial metric on X.

Proposition 1.1. [21] Let X be a nonempty set, and let p be a partial metric and d be a b-metric with the
coefficient s ≥ 1 on X. Then the function pb : X ×X → [0,∞) defined by pb(x, y) = p(x, y) + d(x, y) For
all x, y ∈ X, is a partial b-metric on X with the coefficient s.

Proposition 1.2. [21] Let (X, p) be a partial metric space and q ≥ 1. Then (X, pb) is a partial b-metric
space with coefficient s = 2q−1, where pb is defined by pb(x, y) = [p(x, y)]q.
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Definition 1.4. [14] A function ψ : [0,∞) → [0,∞) is called an altering distance function if the following
properties are satisfied:
1. ψ is continuous and nondecreasing;
2. ψ(t) = 0 if and only if t = 0.

On the other hand, Mustafa[17] modify the Definition 1.3 in order that each partial b-metric pb generates
a b-metric dpb as follows:

Definition 1.5. [17] Let X be a nonempty set and s ≥ 1 be a given real number. A function pb : X ×X →
[0,∞) is a partial b-metric if for all x, y, z ∈ X the following conditions are satisfied:
(i) x = y if and only if pb(x, x) = pb(x, y) = pb(y, y);
(ii) pb(x, x) ≤ pb(x, y);
(iii) pb(x, y) = pb(y, x);
(iv) pb(x, y) ≤ s[pb(x, z) + pb(z, y)− pb(z, z)] + (1−s2 )(pb(x, x) + pb(y, y)).
The pair (X, pb) is called a partial b-metric space. The number s ≥ 1 is called the coefficient of (X, pb).

Example 1.2 (see also[17]). Let X = R is the set of real numbers. Consider the metric space (X, d) where
d is the Euclidean distance metric d(x, y) = |x − y| for all x, y ∈ X. Define pb(x, y) = (x − y)2 + 5 for all
x, y ∈ X. Then pb is a partial b-metric on X with s = 2, but it is not a partial metric on X. To see this,
Let x = 1,y = 4 and z = 2. Then

pb(1, 4) = (1− 4)2 + 5 = 14 � pb(1, 2) + pb(2, 4)− pb(2, 2) = 6 + 9− 5 = 10.

Also, pb is not a b-metric since pb(x, x) 6= 0 for all x ∈ X.

Proposition 1.3. [17] Every partial b-metric pb defines a b-metric dpb, where

dpb(x, y) = 2pb(x, y)− pb(x, x)− pb(y, y), for all x, y ∈ X (1.1)

Definition 1.6. [17] A sequence {xn} in a partial b-metric space (X, pb) is said to be:
(i) pb-convergent to a point x ∈ X if limn→∞ pb(x, xn) = pb(x, x);
(ii) a pb-Cauchy sequence if limn,m→∞ pb(xn, xm)exists (and is finite);
(iii) A partial b-metric space (X, pb) is said to be pb-complete if every pb-Cauchy sequence {xn} in X pb
converges to a point x ∈ X such that

lim
n,m→∞

pb(xn, xm) = lim
n→∞

pb(xn, x) = pb(x, x). (1.2)

Lemma 1.1. [17] A sequence {xn} is a pb-Cauchy sequence in a partial b−metric space (X, pb) if and only if
it is a b-Cauchy sequence in the b-metric space (X, dpb).

Lemma 1.2. [17] A partial b-metric space (X, pb) is pb-complete if and only if the b-metric space (X, dpb) is
b-complete. Moreover, limn→∞ dpb(xn, xm) = 0 if and only if

lim
n→∞

pb(x, xn) = lim
n,m→∞

pb(x, xm) = pb(x, x). (1.3)

Lemma 1.3. [17] Let (X, pb) be a partial b-metric space with the coefficient s > 1 and suppose that {xn}
and{yn} are convergent to x and y, respectively. Then we have

1

s2
pb(x, y)− 1

s
pb(x, x)− pb(y, y) ≤ lim inf

n→∞
pb(xn, yn)

≤ lim sup
n→∞

pb(xn, yn)

≤ spb(x, x) + s2pb(y, y) + s2pb(x, y).
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Definition 1.7. [13] Let (X,�) be a partially ordered set and T : X → X be a mapping. We say that T
is nondecreasing with respect to � if

x, y ∈ X, x � y ⇒ Tx � Ty.

Definition 1.8. [13] Let (X,�) be a partially ordered set. A sequence {xn} is said to be nondecreasing
with respect to � if xn � xn+1 for all n ∈ N.

Definition 1.9. [17] A triple (X,�, pb) is called an ordered partial b-metric space if (X,�) is a partially
ordered set and pb is a partial b-metric on X.

Definition 1.10. Let (X, pb) be a partial b-metric space and T : X −→ X be a given mapping. We say that
T is α-admissible if x, y ∈ X, α(x, y) ≥ 1 implies that α(Tx, Ty) ≥ 1. Also we say that T is Lα-admissible
(Rα-admissible) if x, y ∈ X, α(x, y) ≥ 1 implies that α(Tx, y) ≥ 1(α(x, Ty) ≥ 1).

Example 1.3. [19] Let X = (0,∞). Define T : X → X and α : X ×X → [0,∞) by Tx = lnx for all x ∈ X
and

α(x, y) =

{
2 if x ≥ y,
0 if x < y.

Then, T is α-admissible.

Example 1.4. [19] Let X = [0,∞). Define T : X → X and α : X ×X → [0,∞) by Tx =
√
x for all x ∈ X

and

α(x, y) =

{
ex−y if x ≥ y,
0 if x < y.

Then, T is α-admissible.

2. Main result

We now introduce the α-ψ-ϕ-contractive self mapping on partial b-metric space.

Definition 2.1. Let (X, pb) be a partial b-metric space with the coefficient s ≥ 1. We say that a mapping
T : X → X is an α-ψ-ϕ-contractive mapping if there exist two altering distance functions ψ, ϕ and
α : X ×X :→ [0,∞) such that

α(x, y)ψ(spb(Tx, Ty)) ≤ ψ(MT
s (x, y))− ϕ(MT

s (x, y)) (2.1)

for all comparable x, y ∈ X.

where

MT
s (x, y) = max{pb(x, y), pb(x, Tx), pb(y, Ty),

pb(x, Ty) + pb(y, Tx)

2s
}. (2.2)

Theorem 2.1. Let (X,�, pb) be a pb-complete ordered partial b-metric space with the coefficient s ≥ 1. Let
T : X → X be an an α-ψ-ϕ-contractive mapping. Suppose that the following conditions hold:

(1) T is α-admissible and Lα-admissible (or Rα-admissible );
(2) there exists x1 ∈ X such that x1 � Tx1 and α(x1, Tx1) ≥ 1;
(3) T is continuous, nondecreasing, with respect to � and if Tnx1 → z then α(z, z) ≥ 1 .
Then, T has a fixed point.
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Proof. Let x1 ∈ X such that x1 � Tx1 and α(x1, Tx1) ≥ 1. Define a sequence {xn} in X by xn+1 = Txn
for all n ≥ 1. We have x2 = Tx1 � Tx2 = x3 since x1 � Tx1 and T is nondecreasing. Also, x3 = Tx2 �
Tx3 = x4 since x2 � Tx2 and T is nondecreasing. By induction, we get

x1 � x2 � x3 � · · · � xn � xn+1 � · · ·.

If xn = xn+1 for some n ∈ N, then x = xn is a fixed point of T and the proof is finished. So we may assume
that xn 6= xn+1 for all n ∈ N. Since T is α-admissible, we deduce

α(x1, Tx1) = α(x1, x2) ≥ 1⇒ α(Tx1, Tx2) = α(x2, x3) ≥ 1.

By induction on n we get
α(xn, xn+1) ≥ 1 (2.3)

for all n ∈ N.
Hence, by applying the α-ψ-ϕ-contractive condition and using (2.3) for all n ∈ N we get

ψ(spb(xn+1, xn+2)) ≤ α(xn, xn+1)ψ(spb(Txn, Txn+1))

≤ ψ(MT
s (xn, xn+1))− ϕ(MT

s (xn, xn+1)) (2.4)

where

MT
s (xn, xn+1) = max{pb(xn, xn+1), pb(xn, Txn), pb(xn+1, Txx+1),

pb(xn, Txn+1) + pb(xn+1, Txn)

2s
}

= max{pb(xn, xn+1), pb(xn+1, xx+2),

pb(xn, xn+2) + pb(xn+1, xn+1)

2s
}

≤ max{pb(xn, xn+1), pb(xn+1, xx+2),

spb(xn, xn+1) + spb(xn+1, xn+2) + (1− s)pb(xn+1, xn+1)

2s
}

= max{pb(xn, xn+1), pb(xn+1, xx+2)} (2.5)

From (2.4)and (2.5) we get

ψ(pb(xn+1, xn+2)) ≤ ψ(max{pb(xn, xn+1), pb(xn+1, xx+2)})
−ϕ(max{pb(xn, xn+1), pb(xn+1, xx+2)}) (2.6)

Assume that
max{pb(xn, xn+1), pb(xn+1, xx+2)} = pb(xn+1, xx+2)

then by using properties of ϕ, we deduce

ψ(pb(xn+1, xn+2)) ≤ ψ(pb(xn+1, xn+2))− ϕ(pb(xn+1, xn+2))

< ψ(pb(xn+1, xn+2)),

which is a contradiction. Thus,

ψ(pb(xn+1, xn+2)) ≤ ψ(pb(xn, xn+1))− ϕ(pb(xn, xn+1)). (2.7)

So the sequence {pb(xn+1, xn+2)} is nonnegative and nondecreasing for all n ∈ N. Hence there exists r ≥ 0
such that

lim
n→∞

pb(xn+1, xn+2) = r.

Letting n→∞ in (2.7) , we have
ψ(r) ≤ ψ(r)− ϕ(r) ≤ ψ(r).
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Therefore, ϕ(r) = 0, and hence r = 0. Thus,

lim
n→∞

pb(xn+1, xn+2) = 0. (2.8)

Now, we show that {xn} is a Cauchy sequence in (X, pb) which is equivalent to show that {xn} is a b-Cauchy
sequence in (X, dpb). Assume not, that is, {xn} is not a b-Cauchy sequence in (X, dpb). Then there exist
ε > 0 such that, for k > 0, there exist n(k) > m(k) > k for which we can which we can find two subsequences
{xn(k)} and {xm(k)} of {xn} such that n(k) is the smallest index for which

dpb(xm(k), xn(k)) ≥ ε, (2.9)

and

dpb(xm(k), xn(k)−1) < ε. (2.10)

Then we have

ε ≤ dpb(xm(k), xn(k)) ≤ sdpb(xm(k), xn(k)−1) + sdpb(xn(k)−1, xn(k))

< sε+ sdpb(xn(k)−1, xn(k)). (2.11)

Taking the upper limit for (2.10) as k →∞, we have

ε

s
≤ lim inf

k→∞
dpb(xm(k), xn(k)−1) ≤ lim sup

k→∞
dpb(xm(k), xn(k)−1) ≤ ε. (2.12)

Also, from (2.11)and (2.12), we obtain

ε ≤ lim sup
k→∞

dpb(xm(k), xn(k)) ≤ sε.

By using the triangular inequality and we deduce,

dpb(xm(k)+1, xn(k)) ≤ sdpb(xm(k)+1, xm(k)) + sdpb(xm(k), xn(k))

≤ sdpb(xm(k)+1, xm(k)) + s2dpb(xm(k), xn(k)−1) + s2dpb(xn(k)−1, xn(k))

≤ sdpb(xm(k)+1, xm(k)) + s2ε+ s2dpb(xn(k)−1, xn(k)),

by taking the upper limit as k →∞ in the above inequality, we get

lim sup
k→∞

dpb(xm(k)+1, xn(k)) ≤ s2ε.

Finally,

dpb(xm(k)+1, xn(k)−1) ≤ sdpb(xm(k)+1, xm(k)) + sdpb(xm(k), xn(k)−1)

≤ sdpb(xm(k)+1, xm(k)) + sε.

Also, by taking the upper limit as k →∞ in the above inequality, we get

lim sup
k→∞

dpb(xm(k)+1, xn(k)−1) ≤ sε.

By using the definition of dpb and (2.8), we get

lim sup
k→∞

dpb(xm(k), xn(k)−1) = 2 lim sup
k→∞

pb(xm(k), xn(k)−1).

Hence,

ε

2s
≤ lim inf

k→∞
pb(xm(k), xn(k)−1) ≤ lim sup

k→∞
pb(xm(k), xn(k)−1) ≤

ε

2
, (2.13)
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Similarly,

lim sup
k→∞

pb(xm(k), xn(k)) ≤
sε

2
, (2.14)

ε

2s
≤ lim sup

k→∞
pb(xm(k)+1, xn(k)), (2.15)

lim sup
k→∞

pb(xm(k)+1, xn(k)−1) ≤
sε

2
. (2.16)

Since T is Lα-admissible and using (2.3), we obtain α(xm(k), xn(k)−1) ≥ 1.
By using (2.1) we get

ψ(spb(xm(k)+1, xn(k))) ≤ α(xm(k), xn(k)−1)ψ(spb(Txm(k), Txn(k)−1))

≤ ψ(MT
s (xm(k), xn(k)−1))− ϕ(MT

s (xm(k), xn(k)−1)), (2.17)

where

MT
s (xm(k), xn(k)−1) = max{pb(xm(k), xn(k)−1), pb(xm(k), Txm(k)), pb(xn(k)−1, Txn(k)−1),

pb(xm(k), Txn(k)−1) + pb(xn(k)−1, Txm(k))

2s
}

= max{pb(xm(k), xn(k)−1), pb(xm(k), xm(k)+1), pb(xn(k)−1, xn(k)),

pb(xm(k), xn(k)) + pb(xn(k)−1, xm(k)+1)

2s
} (2.18)

Taking the upper limit as k →∞ in the above inequality using (2.8),(2.13),(2.14)and (2.16) we get

lim sup
k→∞

MT
s (xm(k), xn(k)−1) = max{lim sup

k→∞
pb(xm(k), xn(k)−1), lim sup

k→∞
pb(xm(k), xm(k)+1),

lim sup
k→∞

pb(xn(k)−1, xn(k)),

lim supk→∞ pb(xm(k), xn(k)) + lim supk→∞ pb(xn(k)−1, xm(k)+1)

2s
}

= max{lim sup
k→∞

pb(xm(k), xn(k)−1), 0, 0,

lim supk→∞ pb(xm(k), xn(k)) + lim supk→∞ pb(xn(k)−1, xm(k)+1)

2s
}

≤ max{ε
2
,
ε

2
}

=
ε

2
. (2.19)

Next, by taking the upper limit in (2.17) as k →∞ and using(2.15) and (2.19) we obtain

ψ(s
ε

2s
) ≤ ψ(lim sup

k→∞
spb(xm(k)+1, xn(k)))

≤ ψ(lim sup
k→∞

MT
s (xm(k), xn(k)−1))− lim inf

k→∞
ϕ(MT

s (xm(k), xn(k)−1)),

≤ ψ(
ε

2
)− ϕ(lim inf

k→∞
MT
s (xm(k), xn(k)−1)),

which implies that
ϕ(lim inf

k→∞
MT
s (xm(k), xn(k)−1)) = 0,

so
lim inf
k→∞

MT
s (xm(k), xn(k)−1)) = 0,
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and by using (2.17) we obtain,
lim inf
k→∞

pb(xm(k), xn(k)−1) = 0.

Therefore,
lim inf
k→∞

dpb(xm(k), xn(k)−1) = 0,

which is a contradiction with (2.13). Thus, the sequence is a b-Cauchy in the b-metric space (X, dpb). Since
(X, pb) is pb-complete, then (X, dpb) is a b-complete b-metric space. So, it follows from the completeness
that there exist z ∈ X such that,

lim
n→∞

dpb(xn, z) = 0.

Therefore, by using (2.8), the condition pb(xn, xn) ≤ pb(z, xn) and limn→∞ pb(xn, xn) = 0 we get

lim
n→∞

pb(xn, z) = lim
n→∞

pb(xn, xn) = pb(z, z) = 0.

By using the triangular inequality, we obtain

pb(z, Tz) ≤ spb(z, Txn) + spb(Txn, T z).

So by taking limit as n→∞ in the above inequality and using the continuity of T we get

pb(z, Tz) ≤ s lim
n→∞

pb(z, xn+1) + s lim
n→∞

pb(Txn, T z) = spb(Tz, Tz). (2.20)

Since α(z, z) ≥ 1 and using (2.1) we get

ψ(spb(Tz, Tz)) ≤ α(z, z)ψ(spb(Tz, Tz)) ≤ ψ(MT
s (z, z))− ϕ(MT

s (z, z)).

where

MT
s (z, z) = max{pb(z, z), pb(z, Tz), pb(z, Tz),

pb(z, Tz) + pb(z, Tz)

2s
} = pb(z, Tz).

So

ψ(spb(Tz, Tz)) ≤ α(z, z)ψ(spb(Tz, Tz)) ≤ ψ(pb(z, Tz))− ϕ(pb(z, Tz)). (2.21)

Since ψ is nondecreasing spb(Tz, Tz) ≤ pb(z, Tz) and spb(Tz, Tz) = pb(z, Tz), we deduce ϕ(pb(z, Tz)) =
0., Hence we have pb(Tz, z) = pb(Tz, Tz) = pb(z, z) = 0 and Tz = z. Thus, z is a fixed point of T . This
completes the proof.

In our next theorem we omit the condition of continuity in Theorem 2.1.

Theorem 2.2. Let (X,�, pb) be a pb-complete ordered partial b-metric space with the coefficient s ≥ 1. Let
T : X → X be an an α-ψ-ϕ-contractive mapping. Suppose that the following conditions hold:

(1) T is α-admissible and Lα-admissible (or Rα-admissible );
(2) there exists x1 ∈ X such that x1 � Tx1 and α(x1, Tx1) ≥ 1;
(3) T is nondecreasing, with respect to �;
(4) If {xn} is a sequence in X such that xn � x for all n ∈ N, α(xn, xn+1) ≥ 1 and xn → x ∈ X, as n→∞,
then α(xn, x) ≥ 1 for all n ∈ N;
Then, T has a fixed point.

Proof. Following the proof of Theorem 2.1, we know that the sequence {xn} defined by xn+1 = Txn for all
n ∈ N, is an increasing pb-Cauchy sequence in the pb-complete b-metric space (X, pb). It follows from the
completeness of (X, pb) that there exists z ∈ X such that limn→∞ xn = z. Using the assumption on X, we
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deduce xn � z for all n ∈ N. So it is enough to show fz = z. Now, by using (2.1) and α(xn, x) ≥ 1 for all
n ∈ N, we have

ψ(spb(xn+1, T z)) ≤ α(xn, z)ψ(spb(Txn, T z))

≤ ψ(MT
s (xn, z))− ϕ(Mf

s (xn, z)), (2.22)

where

MT
s (xn, z) = max{pb(xn, z), pb(xn, Txn), pb(z, Tz),

pb(xn,T z)+pb(Txn,z)
2s }

≤ max{pb(xn, z), pb(xn, xn+1), pb(z, Tz),
pb(xn,T z)+pb(xn+1,z)

2s }. (2.23)

By taking the limit as n→∞ in above inequality and using Lemma 1.3, we get

pb(z, Tz)

2s2
= min{pb(z, Tz),

pb(z,Tz)
s

2s
}

≤ lim inf
n→∞

MT
s (xn, z)

≤ lim sup
n→∞

MT
s (xn, z)

≤ max{pb(z, Tz),
spb(z, Tz)

2s
} = pb(z, Tz). (2.24)

Again, by using (2.22) and taking the upper limit as n→∞

ψ(spb(xn+1, T z)) ≤ α(xn, z)ψ(spb(Txn, T z))

≤ ψ(Mf
s (xn, z))− ϕ(Mf

s (xn, z)),

and using Lemma 1.3, we get

ψ(pb(z, Tz)) = ψ(s
1

s
pb(xn+1, T z))

≤ ψ(s lim sup
n→∞

pb(xn+1, T z))

≤ ψ(lim sup
n→∞

Mf
s (xn, z))− lim inf

n→∞
ϕ(MT

s (xn, z))

≤ ψ(pb(z, Tz))− ϕ(lim inf
n→∞

MT
s (xn, z)).

Therefore, ϕ(lim infn→∞M
T
s (xn, z)) ≤ 0, it means that lim infn→∞M

T
s (xn, z)) = 0. Thus, from (2.24)we

get z = Tz, and hence z is a fixed point of T . This completes the proof.

Example 2.1. Let X = [1,∞) be equipped with the partial order � defined by

x � y ⇐⇒ x ≤ y

and with the functional pb : X × X → [0,∞) defined by pb(x, y) = |x − y|2 + 2 For all x, y ∈ X. Clearly,
(X, pb) is a partial complete b-metric space with s = 2. Define the mapping T : X → X by

Tx =

{
x+6
4 if 1 ≤ x ≤ 2,

x2

2 if x > 2,

and α : X ×X → [0,∞) by

α(x, y) =

{
1 if x, y ∈ [1, 2],
0 otherwise.
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and taking the altering distance functions ψ(t) = t and

ϕ(t) =

{
(t−1)2

2 if x, y ∈ [1, 2],
t
4 t > 2.

Then T is continuous and increasing, 1 � T1. For Checking the contraction condition (2.1) for all comparable
x, y ∈ X. Let x = 1 and y = 4, we get

ψ(2pb(T1, T4)) = ψ(2pb(
7

4
, 8)) =

641

8
�

108

8

= ψ(18)− ϕ(18) = 18− 18

4
= ψ(MT

s (1, 4))− ϕ(MT
s (1, 4)).

We will prove the following:
i) T : X → X is an α-ψ-ϕ-contractive mapping, with ψ(t) = t for all t ≥ 0;
ii) T is α−admissible;
iii) there exists x1 = 1 ∈ X and x1 � Tx1, such that α(x1, Tx1) ≥ 1;
iv) If {xn}∞n=1 is a sequence in X such that α(xn, xn+1) ≥ 1 and xn → x as n → ∞, then α(xn, x) ≥ 1 for
all n ∈ N;

Proof. i) Clearly T is α-ψ-ϕ-contractive mapping with ψ(t) = t for all t ≥ 0, since for all x, y ∈ X,

α(x, y)ψ(spb(Tx, Ty)) = ψ(2pb(
x+ 6

4
,
y + 6

4
)) = 2|x+ 6

4
− y + 6

4
|2 + 2 =

1

8
|x− y|2 + 2,

while without loss of generality if 1 ≤ y ≤ x ≤ 2,then

α(x, y)ψ(spb(Tx, Ty)) = ψ(2pb(
x+ 6

4
,
y + 6

4
))

= 2|x+ 6

4
− y + 6

4
|2 + 2 =

1

8
|x− y|2 + 2

≤ 9

4
= 3− 3

4
= ψ(3)− ϕ(3)

= ψ(MT
s (x, y))− ϕ(MT

s (x, y)).

ii) Let (x, y) ∈ X ×X such that α(x, y) ≥ 1. From the definition of T and α we have both Tx = x+6
4 ,and

Ty = y+6
4 are in [1, 2], so we have α(Tx, Ty) = 1 ≥ 1. Then T is an α-admissible.

iii) Taking x1 = 1 ∈ X, we have

α(x1, Tx1) = α(1, T1) = α(1,
7

4
) = 1 ≥ 1.

iv) let {xn} be a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x ∈ X as n→∞. Since
α(xn, xn+1) ≥ 1 for all n ∈ N and by the definition of α, we have xn ∈[1,2] for all n ∈ N and x ∈ [1, 2]. Then
α(xn, x) = 1 ≥ 1. Now, all the hypothesis of Theorem 2.1 are satisfied. Therefore, T has a fixed point.

Example 2.2. Let X = [0,∞) be equipped with the partial order � defined by

x � y ⇐⇒ x ≤ y

and with the functional pb : X ×X → [0,∞) defined by pb(x, y) = [max{x, y}]2 For all x, y ∈ X. Clearly,
(X, pb) is a partial ordered complete b-metric space with s = 2. Define the mapping T : X → X by

Tx =

{
x√

2
√
1+x

if 0 ≤ x ≤ 1,

x
2 if x > 1,
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and α : X ×X → [0,∞) by

α(x, y) =

{
1 if x, y ∈ [0, 1],
0 otherwise.

and taking the altering distance functions ψ(t) = t and

ϕ(t) =

{
t
√
t

1+
√
t

if t ∈ [0, 1],
t
2 t > 1.

Then T is continuous and increasing, 0 � T0. For Checking the contraction condition (2.1) for all comparable
x, y ∈ X. Let x = 0 and y = 4, we get

ψ(2pb(T0, T2)) = ψ(2pb((0, 2)) = 8 � 2 = 4− 2

= ψ(4)− ϕ(4) = ψ(MT
s (0, 2))− ϕ(MT

s (0, 2)).

We will prove the following:
i) T : X → X is an α-ψ-ϕ-contractive mapping, with ψ(t) = t for all t ≥ 0;
ii) T is α−admissible;
iii) there exists x1 = 0 ∈ X and x1 � Tx1, such that α(x1, Tx1) ≥ 1;
iv) If {xn}∞n=1 is a sequence in X such that α(xn, xn+1) ≥ 1 and xn → x as n → ∞, then α(xn, x) ≥ 1 for
all n ∈ N;

Proof. i) Clearly T is α-ψ-ϕ-contractive mapping with ψ(t) = t for all t ≥ 0, since for all x, y ∈ X,

α(x, y)ψ(spb(Tx, Ty)) ≤ ψ(MT
s (x, y))− ϕ(MT

s (x, y))

Since,

α(x, y)ψ(spb(Tx, Ty)) = ψ(2pb(
x√

2
√

1 + x
,

y√
2
√

1 + y
))

= 2[max{ x√
2
√

1 + x
,

y√
2
√

1 + y
}]2

=
x2

(1 + x)

and

MT
s (x, y) = max{x2, x2, y2,

x2 + [max{y, x√
2
√
1+x
}]2

4
} = x2

Thus

α(x, y)ψ(spb(Tx, Ty)) =
x2

(1 + x)
≤ x2 − x3

1 + x
= ψ(x2)− ϕ(x2) = ψ(MT

s (x, y))− ϕ(MT
s (x, y)).

ii) Let (x, y) ∈ X×X such that α(x, y) ≥ 1. From the definition of T and α we have both Tx = x√
2
√
1+x

,and

Ty = y√
2
√
1+y

are in [0, 1], so we have α(Tx, Ty) = 1 ≥ 1. Then T is an α-admissible.

iii) Taking x1 = 0 ∈ X, we have

α(x1, Tx1) = α(0, T0) = α(0, 0) = 1 ≥ 1.

iv) let {xn} be a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x ∈ X as n→∞. Since
α(xn, xn+1) ≥ 1 for all n ∈ N and by the definition of α, we have xn ∈[0,1] for all n ∈ N and x ∈ [0, 1]. Then
α(xn, x) = 1 ≥ 1.
Now, all the hypothesis of Theorem 2.1 are satisfied. Therefore, T has a fixed point
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