Bifurcation in a variational problem on a surface with a distance constraint

Panayotis Vyridis ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Physics and Mathematics, National Polytechnical Institute (I.P.N.), Campus Zacatecas (U.P.I.I.Z.), Zacatecas, Mexico.

Communicated by Th.M. Rassias

Abstract

We describe a variational problem on a surface of a Euclidean space under a distance constraint. We provide sufficient and necessary conditions for the existence of bifurcation points, generalizing Skrypnik's analog described in [P. Vyridis, Int. J. Nonlinear Anal. Appl. 2 (2011), 1-10]. The problem in local coordinates corresponds to an elliptic boundary value problem. © 2014 All rights reserved. Keywords: Calculus of Variations, Critical points, Bifurcation points, Distance function, Curvatures of a Surface, Boundary value problem for an elliptic PDE.

2010 MSC: 58E30, 58E07, 58E10.

1. Introduction

We consider a bifurcation problem of variational character in the form

$$
\begin{equation*}
F^{\prime}[u]-\lambda G^{\prime}[u]=0, \tag{1.1}
\end{equation*}
$$

where F, G are functionals defined on a Hilbert space X, with $F^{\prime}[0]=G^{\prime}[0]=0$, and λ is a real parameter.
Definition 1.1. The number λ_{0} is a bifurcation point for equation 1.1) if and only if in every sufficiently small neighborhood of $\left(0, \lambda_{0}\right)$ there exists a solution (u, λ) of 1.1$)$ with $u \neq 0$.

[^0]Suppose that the functionals F and G satisfy the following conditions:

1. The functional G is weakly continuous, differentiable, and its differential is Lipschitz continuous with

$$
\begin{equation*}
G^{\prime}[u]=A u+N(u) \tag{1.2}
\end{equation*}
$$

where A is a linear self-adjoint and compact operator. For the nonlinear part N the following estimate holds:

$$
\begin{equation*}
\|N(u)\| \leq c\|u\|^{p} \tag{1.3}
\end{equation*}
$$

where c is a positive constant, $p>1$ and $u \in \mathcal{V}$.
2. The functional F is differentiable with the property:

$$
\begin{equation*}
F^{\prime}[u]=B u+L(u) \tag{1.4}
\end{equation*}
$$

where B is a linear, bounded, self-adjoint and positive definite operator. For the nonlinear part L the following estimates hold:

$$
\begin{equation*}
\|L(u)\| \leq c\|u\|^{r}, \quad\left\|L\left(u_{1}\right)-L\left(u_{2}\right)\right\| \leq c\left(\left\|u_{1}\right\|^{r-1}+\left\|u_{2}\right\|^{r-1}\right)\left\|u_{1}-u_{2}\right\| \tag{1.5}
\end{equation*}
$$

where c is a positive constant, $r>1$, and $u, u_{1}, u_{2} \in \mathcal{V}$.
Then according to Skrypnik's theory [5], every $\lambda \in \mathbb{R}$, corresponding to a non zero critical point u of the functional

$$
I[u, \lambda]=G[u]-\lambda F[u]
$$

is a bifurcation point for the equation

$$
\begin{equation*}
I^{\prime}[u, \lambda] w=G^{\prime}[u] w-\lambda F^{\prime}[u] w=0 \tag{1.6}
\end{equation*}
$$

in Hilbert space X if and only if the equation

$$
\begin{equation*}
I^{\prime \prime}[0, \lambda](u, w)=\left(I^{\prime \prime}[0, \lambda] u, w\right)=0 \tag{1.7}
\end{equation*}
$$

is satisfied by a non zero solution u for all $w \in X$.
Note that under these assumptions equation (1.7) can be rewritten as

$$
A u-\lambda B u=0
$$

We have developed an analog of Skrypnik's theory [6] on the existence of bifurcation points for the variational problem

$$
\begin{equation*}
F^{\prime}[u]-\lambda G^{\prime}[u]=0, \quad \Phi[u]=0, \quad u \in X \tag{1.8}
\end{equation*}
$$

for constraints of the type $\Phi: X \longrightarrow \mathbb{R}$, where Φ is a continuous and differentiable mapping with

$$
\Phi[0]=0
$$

In previous applications [6, 7] such constraints have been defined by functionals of integral type. The equation of the constraint

$$
\begin{equation*}
\Phi[u]=0 \tag{1.9}
\end{equation*}
$$

restricts the domain of (1.1) to a smaller subspace according to Lyapunov - Schmidt decomposition. We consider that the solutions of equation 1.9 for small values of $\|u\|$ are a coset in a neighborhood of $0 \in X$, i.e.

$$
X=X_{1} \oplus X_{2}
$$

where

$$
X_{1}=\operatorname{Ker} \Phi^{\prime}[0] \neq 0, \quad X_{2}=X_{1}^{\perp}
$$

and there exists a continuous differentiable mapping h from a small neighborhood of $0 \in X_{1}$ to a small neighborhood of $0 \in X_{2}$ such that the set of all solutions

$$
u=v+w, \quad v \in X_{1}, \quad w \in X_{2}
$$

is written in the form:

$$
\begin{equation*}
u=v+h(v), \quad v \in X_{1} \tag{1.10}
\end{equation*}
$$

with

$$
\begin{equation*}
h(0)=0, \quad h^{\prime}(0)=0 . \tag{1.11}
\end{equation*}
$$

According to (1.10), we define the functionals:

$$
\begin{equation*}
J[v]=G[v+h(v)]=G[u], \quad v \in X_{1}, \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
Q[v]=F[v+h(v)]=F[u], \quad v \in X_{1} . \tag{1.13}
\end{equation*}
$$

Then the derivatives

$$
\mathcal{D} F[u]=Q^{\prime}[v], \quad \mathcal{D} G[u]=J^{\prime}[v]
$$

have the meaning of differentiation of the functionals F and G along the tangential direction of the manifold $\left\{v+h(v), v \in X_{1}\right\}$. Thus the bifurcation problem (1.8) is equivalent to the problem:

$$
\begin{equation*}
Q^{\prime}[v]-\lambda J^{\prime}[v]=0, \quad v \in X_{1} \tag{1.14}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\mathcal{D} F[u]-\lambda \mathcal{D} G[u]=0, \quad u \in X \tag{1.15}
\end{equation*}
$$

Definition 1.2. The number λ_{0} is a bifurcation point for equation (1.15) if in the intersection of any sufficiently small neighborhood of $\left(0, \lambda_{0}\right)$ with the manifold $\left\{v+h(v), v \in X_{1}\right\}$ ther exists a solution (u, λ) of (1.15) with $u \neq 0$.

It has been proved [6] that the functionals (1.13) and (1.12) satisfy the properties (1.4), (1.5), (1.2), (1.3), and the appropriate conditions of continuity and differentiability, with the additional condition $r \geq 2$ in a small neighborhood of subspace X_{1}. This leads to the following result [6:

Theorem 1.3. Let X be a Hilbert space and the functionals $G[u], F[u]$, defined in a neighborhood of $0 \in X$, satisfy properties (1.4), (1.5), 1.2), 1.3) and the appropriate conditions of continuity and differentiability for $r \geq 2$. Let $\Phi: X \longrightarrow \mathbb{R}$ be a continuous differentiable functional, which satisfies the conditions:

$$
\Phi[0]=0, \quad \operatorname{Ker} \Phi^{\prime}[0]=X_{1} \neq 0
$$

Then the number $\lambda \neq 0$ is a bifurcation point for problem (1.15) if and only if the equation

$$
(P A P-\lambda P B P) u=0, \quad u \in X
$$

where $P: X \longrightarrow X_{1}$ the orthogonal projector, has a non zero solution.
It is obvious that bifurcation points exists when $P A P \neq 0$.
In this work, we extend this suggested analog for constraints of a more general type, represented by a differentiable mapping $\Phi: X \longrightarrow Y$ between the Hilbert spaces X, Y. Suppose that Φ is a weakly continuous mapping in X. Thus, $\Phi^{\prime}[0]$ is a compact operator in and invertible in X_{2}. This implies that the identity operator $I d=\Phi^{\prime}[0]^{-1} \Phi^{\prime}[0]: Y \longrightarrow Y$ is a compact operator, which is true only in the case that the Hilbert space Y is of finite dimension. Thus the mapping Φ has to be weakly continuous in a larger space Y_{1}, such that $Y \subset Y_{1}$.

Proposition 1.4. Suppose that the the functional G is weakly continuous and the mapping $\Phi: X \longrightarrow Y_{1}$ is weakly continuous. Then the functional $J: X_{1} \longrightarrow \mathbb{R}$, defined by (1.12), is also weakly continuous.

Proof. Let $v_{n} \in X_{1}$ be the sequence with $\left\|v_{n}\right\|<\delta$, for all $n \in \mathbb{N}$ with respect to the norm of X, such that v_{n} converges weakly to v. We suppose that $J\left[v_{n}\right]$ does not converge to $J[v]$. Then there exists $\varepsilon>0$ and a subsequence v_{n} (we keep the same index) such that

$$
\begin{equation*}
\left|J\left[v_{n}\right]-J[v]\right|=\left|G\left[v_{n}+h\left(v_{n}\right)\right]-G[v+h(v)]\right| \geq \varepsilon \tag{1.16}
\end{equation*}
$$

The sequence $h\left(v_{n}\right)$ is bounded, as the values of the mapping h located in a small neighborhood of $0 \in X_{2}$, so there exists a subsequence $h\left(v_{k}\right)$, which converges weakly to w. The equation of constraint (1.9) also implies that

$$
\Phi\left[v_{k}+h\left(v_{k}\right)\right]=0
$$

Since the mapping Φ is weakly continuous in Y_{1} we deduce that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \Phi\left[v_{k}+h\left(v_{k}\right)\right]=\Phi[v+w]=0 \tag{1.17}
\end{equation*}
$$

The solutions of (1.17) for small values of $\|v\|$ and $\|w\|$ are represented by

$$
\begin{equation*}
w=h(v) \tag{1.18}
\end{equation*}
$$

Since the functional G is weakly continuous, equation 1.18 and inequality 1.16 lead to a contradiction for $n=k$.

Using proposition (1.4), we generalize theorem (1.3):
Theorem 1.5. Let X be a Hilbert space and the functionals $G[u], F[u]$, defined in a neighborhood of $0 \in X$, satisfy the properties (1.4), (1.5), (1.2), (1.3), and the appropriate conditions of continuity and differentiability for $r \geq 2$. Let $\Phi: X \longrightarrow Y$ be a continuous differentiable mapping, which satisfies the conditions

$$
\Phi[0]=0, \quad \operatorname{Ker} \Phi^{\prime}[0]=X_{1} \neq 0
$$

and there exists a Hilbert space Y_{1} with $Y \subset Y_{1}$ such that the mapping $\Phi: X \longrightarrow Y_{1}$ is weakly continuous. Then the number $\lambda \neq 0$ is a bifurcation point for problem (1.15) if and only if the equation

$$
(P A P-\lambda P B P) u=0, \quad u \in X
$$

where $P: X \longrightarrow X_{1}$ is the orthogonal projector, has a non zero solution.

2. Description of the constraint

Let M be a smooth and connected surface in \mathbb{R}^{3} and $S \subset M$ an open region in M with a smooth boundary ∂S. Consider the closed curve ∂S as a one - dimensional compact submanifold in M, the tangent space $T_{x} \partial S$ of ∂S as a linear subspace of the tangent space $T_{x} M$ of M at $x \in \partial S$, as well as the continuously differentiable vector field $\vec{\nu}(x), x \in \mathbb{R}^{3}$ identified to the normal vector field of the curve ∂S at $x \in \partial S$, located in the tangent space $T_{x} M \subseteq \mathbb{R}^{3}$ and is vertical to the tangent space $T_{x} \partial S$. Since the boundary ∂S is a compact submanifold in M, for fixed $x \in \partial S$ the ball

$$
B=\left\{\vec{\nu}(x) \in T_{x} M: \quad|\vec{\nu}(x)|<\varepsilon\right\}
$$

is diffeomorphical to a neighborhood U of $x \in \partial S$ in M. Thus, starting from $y \in U$, there exists a localy unique geodesic γ to ∂S, which realizes the distance from $y \in U$ to the boundary ∂S, denoted by

$$
\begin{equation*}
\rho(y)=\operatorname{dist}(y, \partial S) \tag{2.1}
\end{equation*}
$$

The function ρ depends smoothly on the points $y \in U[2]$. Let $y \in M, y \notin \partial S$. Since the curve ∂S is a smooth submanifold of M, there exists $\varepsilon>0$ such that the set

$$
\Gamma_{\varepsilon}=\{y \in M: \quad \rho(y)=\varepsilon\}
$$

is a smooth curve on M and such that the distance $\rho=\operatorname{dist}(\cdot, \partial S)$ is a smooth function on the set

$$
U_{\varepsilon}=\{y \in M: \quad 0<\rho(y)<2 \varepsilon\} .
$$

For such $\varepsilon>0$ the geodesic

$$
\gamma:[0,1] \longrightarrow U_{\varepsilon} \subset M, \quad \gamma(0) \in \partial S, \quad \gamma(\varepsilon)=y
$$

realizes the distance from y to ∂S. Let z be the point on ∂S such that

$$
\rho(y)=\operatorname{dist}(y, \partial S)=\operatorname{dist}(y, z), \quad \gamma(0)=z .
$$

Since M is a connected surface, we have that

$$
\rho(y)=\rho(z)+\int_{\gamma} \operatorname{grad} \rho(y) d s=\int_{\gamma} \operatorname{grad} \rho(y) d s=\int_{0}^{\varepsilon} \operatorname{grad} \rho(\gamma(t)) \dot{\gamma}(t) d t
$$

On the other hand, the length of the curve γ is given by

$$
L(\gamma)=\int_{\gamma} d s=\int_{0}^{\varepsilon} \sqrt{g_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t)} d t=\int_{0}^{\varepsilon} \frac{g_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t)}{\sqrt{g_{i j}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t)}} d t
$$

where $g_{i j}(y)$ are the components of metric tensor $g(y)$ at $y \in M$. Since the curve γ is the geodesic that connects the point z and y, we obtain

$$
\rho(y)=L(\gamma)
$$

or equivalently

$$
\operatorname{grad} \rho(\gamma(t))=\frac{g(\gamma(t)) \dot{\gamma}(t)}{|\dot{\gamma}(t)|}=g(\gamma(t)) \vec{\nu}(\gamma(t)),
$$

where $\vec{\nu}(\gamma(t))$ is the unit normal vector field of the curve Γ_{t} at point $\gamma(t)$ for $t \leq \varepsilon$. Evaluating at $t=0$, and considering a local coordinate system at $z \in \partial S$, we obtain

$$
\begin{equation*}
\frac{\partial \rho(z)}{\partial z^{i}}=g_{i j}(z) \nu^{j}(z) . \tag{2.2}
\end{equation*}
$$

We consider now the mapping

$$
\begin{equation*}
y: \partial S \longrightarrow U_{\varepsilon} \subset M, \quad y(x)=x+\vec{u}(x) \tag{2.3}
\end{equation*}
$$

where $\vec{u} \in W_{2}^{2}\left(\partial S, T_{x} M\right)$ for small values of $\|\vec{u}\|$. The mapping leaves invariant the boundary ∂S if and only if

$$
\begin{equation*}
y(\partial S) \subset \partial S \tag{2.4}
\end{equation*}
$$

We define the mapping

$$
\begin{equation*}
\Phi: W_{2}^{2}\left(\partial S, T_{x} M\right) \longrightarrow W_{2}^{2}(\partial S), \quad \Phi[\vec{u}]=\rho(y)=\rho(x+\vec{u}(x)) \tag{2.5}
\end{equation*}
$$

in a small neighborhood of $\overrightarrow{0} \in W_{2}^{2}\left(\partial S, T_{x} M\right)$. Thus, the constraint 2.4 holds if and only if

$$
\begin{equation*}
\Phi[\vec{u}]=0 . \tag{2.6}
\end{equation*}
$$

The mapping Φ is differentiable, due to the differentiability of the distance function. For a vector field $\vec{v} \in W_{2}^{2}\left(\partial S, T_{x} M\right)$ we consider the following representation:

$$
\begin{equation*}
\vec{v}(x)=\varphi(x) \vec{\tau}(x)+\psi(x) \vec{\nu}(x), \quad x \in \partial S, \quad \varphi, \psi \in W_{2}^{2}(\partial S) \tag{2.7}
\end{equation*}
$$

where $\vec{\tau}(x) \in T_{x} \partial S$ is the tangent unit vector of the curve ∂S, and $\vec{\nu}(x) \in T_{x} M$ is the normal unit vector of the curve ∂S vertical to $T_{x} \partial S$ at point $x \in \partial S$.

Proposition 2.1. There exists a decomposition of the space $W_{2}^{2}\left(\partial S, T_{x} M\right)$ in a direct sum

$$
\begin{equation*}
W_{2}^{2}\left(\partial S, T_{x} M\right)=X_{1} \oplus X_{2} \tag{2.8}
\end{equation*}
$$

where

$$
\left.\left.\begin{array}{ll}
X_{1}=\left\{\vec{v} \in W_{2}^{2}\left(\partial S, T_{x} M\right),\right. & \vec{v}(x)=\varphi(x) \vec{\tau}(x), \\
X_{2}=\left\{\vec{v} \in W_{2}^{2}\left(\partial S, T_{x} M\right),\right. & \quad \vec{v}(x)=\psi(x) \vec{\nu}(x),
\end{array} \quad \psi \in W_{2}^{2}(\partial S)\right\},\right\}
$$

and a differentiable mapping h from a neighborhood of X_{1} to a neighborhood of X_{2}, such that the solutions of equation (2.6) can be expressed as

$$
\begin{equation*}
\vec{u}=\vec{v}+h[\vec{v}], \quad \vec{v} \in X_{1}, \tag{2.9}
\end{equation*}
$$

with

$$
\begin{equation*}
h[\overrightarrow{0}]=\overrightarrow{0}, \quad h^{\prime}[\overrightarrow{0}]=0 \tag{2.10}
\end{equation*}
$$

Furthermore, Φ is weakly continuous as a mapping from $W_{2}^{2}\left(\partial S, T_{x} M\right)$ into the space $C(\partial S)$.
Proof. First, we observe that for $\vec{u}, \vec{v} \in W_{2}^{2}\left(\partial S, T_{x} M\right)$ the variation of the mapping Φ is

$$
\Phi[\vec{u}+\vec{v}]-\Phi[\vec{u}]=\Phi^{\prime}[\vec{u}] \vec{v}+B[\vec{u}](\vec{v}, \vec{v})
$$

where

$$
\Phi^{\prime}[\vec{u}] \vec{v}=\frac{\partial}{\partial x^{i}} \rho(x+\vec{u}(x)) v^{i}(x)
$$

and

$$
B[\vec{u}](\vec{v}, \vec{v})=\int_{0}^{1}(1-t) \frac{\partial^{2}}{\partial x^{i} \partial x^{j}} \rho(x+\vec{u}(x)+t \vec{v}(x)) v^{i}(x) v^{j}(x) d t
$$

Following the methods described in [4], by the boudness of the embedding of $W_{2}^{2}(\partial S)$ into spaces $C(\partial S)$ and $C^{1}(\partial S)$ we obtain the estimates:

$$
\begin{gathered}
\left\|\Phi^{\prime}[\vec{u}] \vec{v}\right\|_{W_{2}^{2}(\partial S)} \leq C\left[\|\vec{v}\|_{W_{2}^{2}}+\|\vec{u}\|_{C^{1}}\|\vec{v}\|_{C^{1}}+\|\vec{u}\|_{C^{1}}^{2}\|\vec{v}\|_{C}+\|\vec{u}\|_{W_{2}^{2}}\|\vec{v}\|_{C}\right] \leq \\
\leq C^{\prime}\left(1+\|\vec{u}\|_{W_{2}^{2}}\right)\|\vec{v}\|_{W_{2}^{2}}
\end{gathered}
$$

and

$$
\begin{gathered}
\|B[\vec{u}](\vec{v}, \vec{v})\|_{W_{2}^{2}(\partial S)} \leq C\left[\|\vec{v}\|_{C}\|\vec{v}\|_{W_{2}^{2}}+\|\vec{v}\|_{C^{1}}^{2}+\left(\|\vec{u}\|_{C}+\|\vec{v}\|_{C}+\|\vec{u}\|_{W_{2}^{2}}+\|\vec{v}\|_{W_{2}^{2}}\right)\|\vec{v}\|_{W_{2}^{2}}\right] \\
\leq C^{\prime}\left(1+\|\vec{u}\|_{W_{2}^{2}}+\|\vec{v}\|_{W_{2}^{2}}\right)\|\vec{v}\|_{W_{2}^{2}}^{2}
\end{gathered}
$$

where C and C^{\prime} are various constants. This means that the mapping Φ is continiously differentiable. In the same manner, we can verify that $\Phi^{\prime}[\vec{u}]$ depends continiously on \vec{u}.
Now the conclusion comes from the Lyapunov - Schmidt reduction, and the implicit function theorem [4]. By the definition 2.5 of the mapping Φ, it is obvious that

$$
\Phi[\overrightarrow{0}]=0
$$

and by 2.2 , and the reprsentation 2.7 of a vector field $\vec{v} \in W_{2}^{2}\left(\partial S, T_{x} M\right)$, we obtain that

$$
\Phi^{\prime}[\overrightarrow{0}] \vec{v}=g_{i j}(x) \nu^{i}(x) v^{j}(x)=\psi(x), \quad \psi \in W_{2}^{2}(\partial S)
$$

Thus we set

$$
X_{1}=\operatorname{Ker} \Phi^{\prime}[\overrightarrow{0}] \neq\{\overrightarrow{0}\}, \quad X_{2}=X_{1}^{\perp}
$$

Finally, Φ is weakly continuous as a maping from $W_{2}^{2}\left(\partial S, T_{x} M\right)$ into $C(\partial S)$, due to the compactness of the embedding of $W_{2}^{2}(\partial S)$ into $C(\partial S)$.

3. The constrained variational problem

Let M be a smooth surface in $\mathbb{R}^{3}, \vec{\eta}(x), x \in \mathbb{R}^{3}$ a continuously differentiable vector field identified to the normal vector field for every $x \in M$ and S an open and connected set in M, with boundary ∂S consisting of two non-intersecting sufficiently smooth components Γ and Γ_{1}. We assume that the mean curvature H of surface M does not vanish [7].

Let a vector field $\vec{u} \in H_{0}\left(S, T_{x} M\right)$, where

$$
H_{0}\left(S, T_{x} M\right)=\left\{\vec{u} \in W_{2}^{1}\left(S, T_{x} M\right),\left.\vec{u}\right|_{\Gamma} \in W_{2}^{2}\left(\Gamma, T_{x} M\right),\left.\vec{u}\right|_{\Gamma_{1}}=\overrightarrow{0}\right\}
$$

We denote by $W_{2}^{1}\left(S, T_{x} M\right)$ and $W_{2}^{2}\left(\Gamma, T_{x} M\right)$ the Sobolev spaces of functions defined on S and Γ with values in $T_{x} M \subset \mathbb{R}^{3}$, respectively. We introduce the following functionals

$$
\begin{gather*}
F[\vec{u}]=\frac{1}{2} \int_{S} a_{i j k l}(x) \xi_{i j}(\vec{u}) \xi_{k l}(\vec{u}) d S+\frac{1}{2} \int_{\Gamma}\left|\delta_{i} \delta_{i} \vec{u}\right|^{2} d s, \tag{3.1}\\
G[\vec{u}]=\int_{\Gamma} q(\vec{u}, x) d s, \tag{3.2}\\
I[\vec{u}, \lambda]=F[\vec{u}]-\lambda G[\vec{u}], \quad \lambda \in \mathbb{R} . \tag{3.3}
\end{gather*}
$$

The coefficients $a_{i j k l} \in L_{\infty}(S)$ satisfy the symmetry properties $a_{i j k l}(x)=a_{k l i j}(x)$, and are positive definite, i.e.

$$
\begin{equation*}
a_{i j k l}(x) \xi^{i j} \xi^{k l} \geq \Lambda \xi^{i j} \xi^{i j}, \quad \Lambda>0 \tag{3.4}
\end{equation*}
$$

The tensor $\xi_{i j}(\vec{u})$ is defined as

$$
\begin{equation*}
\xi_{i j}(\vec{u})=\frac{1}{2}\left(\nabla_{i} u^{j}+\nabla_{j} u^{i}\right) \tag{3.5}
\end{equation*}
$$

where ∇_{i} is the i-th component of the tangent differentiation with respect to the surface M [3]:

$$
\begin{equation*}
\nabla_{i}=\frac{\partial}{\partial x^{i}}-\eta^{i}(x) \eta^{j}(x) \frac{\partial}{\partial x^{j}}, \quad i=1,2,3, \quad x \in M \tag{3.6}
\end{equation*}
$$

and δ_{i} is the i-th component of the tangent directional differentiation along the curve ∂S :

$$
\begin{equation*}
\delta_{i}=\tau^{i}(x) \frac{d}{d s}=\tau^{i}(x) \tau^{j}(x) \frac{\partial}{\partial x^{j}}, \quad i=1,2,3, \quad x \in \partial S \tag{3.7}
\end{equation*}
$$

Finally, we assume that function q is three times differentiable with the following properties

$$
\begin{equation*}
q(\overrightarrow{0}, x)=0, \quad q_{u^{i}}(\overrightarrow{0}, x)=0, \quad x \in \Gamma, \quad i=1,2,3 . \tag{3.8}
\end{equation*}
$$

Now a critical point for the functional (3.3) under the constraint (2.6), for a given $\lambda \in \mathbb{R}$, is the vector field $\vec{u} \in X$, which satisfies the relation

$$
\begin{equation*}
I^{\prime}[\vec{u}, \lambda] \vec{r}=0 \tag{3.9}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\int_{S} a_{i j k l}(x) \xi_{i j}(\vec{u}) \xi_{k l}(\vec{r}) d S+\int_{\Gamma} \delta_{i} \delta_{i} \vec{u} \delta_{j} \delta_{j} \vec{r} d s-\lambda \int_{\Gamma} q_{u^{i}}(\vec{u}, x) r^{i} d s=0 \tag{3.10}
\end{equation*}
$$

for all $\vec{r} \in X$, where the vector fields \vec{u} and \vec{r} have the representation 1.10 :

$$
\vec{u}=\vec{v}+h(\vec{v}), \quad \vec{r}=\vec{w}+h(\vec{w}), \quad \vec{v}, \vec{w} \in X_{1}
$$

and the space X_{1} is defined in proposition (2.1). The linearised equation (1.7), which corresponds to (3.9), is

$$
\begin{equation*}
\int_{S} a_{i j k l}(x) \xi_{i j}(\vec{v}) \xi_{k l}(\vec{w}) d S+\int_{\Gamma} \delta_{i} \delta_{i} \vec{v} \delta_{j} \delta_{j} \vec{w} d s-\lambda \int_{\Gamma} q_{u_{i} u_{j}}(\overrightarrow{0}, x) v^{i} w^{j} d s=0 \tag{3.11}
\end{equation*}
$$

Under the additional assumptions of smoothness

$$
\partial S \in C^{\infty}, \quad a_{i j k l} \in C^{\infty}(\bar{S}), \quad q \in C^{\infty}\left(T_{x} M \times \partial S\right)
$$

using the methods described in [6, 7] and proposition (2.1), the integral equation (3.11) in local coordinates reduces to the equivalent boundary value problem:

$$
\begin{array}{r}
H \eta^{l} b_{i j k l}(x) \xi_{i j}(\vec{v})+\nabla_{l}\left[b_{i j k l}(x) \xi_{i j}(\vec{v})\right]=0, \quad x \in S \\
b_{i j k l}(x) \xi_{i j}(\vec{v}) \nu^{k} \tau^{l}+\left(K^{2}+R^{2}-K-R\right) D v^{l} \tau^{l}+D^{2} v^{l} \tau^{l}-\lambda q_{v^{k} v^{l}}(\overrightarrow{0}, x) v^{k} \tau^{l}=0
\end{array}
$$

$$
\begin{equation*}
x \in \Gamma \tag{3.12}
\end{equation*}
$$

$$
\vec{v}=\overrightarrow{0}, \quad x \in \Gamma_{1},
$$

where H is the mean curvature of surface M [3], K is the geodesic curvature, R is the normal curvature of curve ∂S, located in the surface M [1], $D=\delta_{i} \delta_{i}$, and $b_{i j k l}=a_{i j k l}-a_{i j l k}$.

We formulate the result:
Theorem 3.1. Consider the functional (3.3), subjected to the constraint 2.6). Then the number λ_{0} is a bifurcation point for equation (3.10) if and only if there exists a nonzero solution $\vec{v}_{0} \in X_{1}$ of equation (3.11) for all $\vec{w} \in X_{1}$.
Proof. The linearized equation (3.11) can be written in the following equivalent form

$$
\begin{equation*}
(\vec{v}, \vec{w})-\lambda(A \vec{v}, \vec{w}), \quad \vec{v}, \vec{w} \in X_{1} \tag{3.13}
\end{equation*}
$$

such as the expression

$$
\|u\|=\left[\int_{S} a_{i j k l}(x) \xi_{i j}(\vec{u}) \xi_{k l}(\vec{u}) d S+\int_{\Gamma} \delta_{i} \delta_{i} \vec{u} \delta_{j} \delta_{j} \vec{u} d s\right]^{1 / 2}
$$

defines a norm in the space $H_{0}\left(S, T_{x} M\right)$, equivalent to the standard one [7], while the operator A defined by,

$$
(A \vec{u}, \vec{v})_{H_{0}}=\int_{\partial S} q_{u^{i} u^{j}}(\overrightarrow{0}, x) u^{i} v^{j} d s
$$

is linear, compact and symmetric [6, 7]. This implies that

$$
\vec{v}-\lambda A \vec{v}=\overrightarrow{0}, \quad \vec{v} \in X_{1}
$$

or equivalently

$$
(P I d P-\lambda P A P) \vec{u}=\overrightarrow{0}, \quad \vec{u} \in H_{0}\left(S, T_{x} M\right)
$$

where $I d$ is the identity operator of $H_{0}\left(S, T_{x} M\right)$, and P is the orthogonal projector of $H_{0}\left(S, T_{x} M\right)$ in X_{1}, considering that \vec{u} has the representation (1.10). Now the conclusion is obvious by the proposition (2.1) and the theorem 1.5 . We can observe that bifurcation points exist when $q_{u^{i} u^{j}}(\overrightarrow{0}, x) \neq 0$.

References

[1] H. Cartan, Differential Calculus - Differential Forms, Herman Paris (1971). 3
[2] B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern Geometry - Methods and Applications, Part II, SpringerVerlag New York Inc. (1990). 2
[3] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, Vol. 80 Birkhäuser, Boston-Basel-Stuttgart (1984). 3. 3
[4] V. G. Osmolovskii, Linear and nonlinear perturbations of operator div, Translations of Mathematical Monographs, Vol. 160 (1997). 2
[5] I. V. Skrypnik, Nonlinear Partial Differential Equations of Higher Order, Kiev (1973). 1
[6] P. Vyridis, Bifurcation in a Variational Problem on a Surface with a Constraint, Int. J. Nonlinear Anal. Appl. 2 (2011), 1-10. 1, 1, 1, 3, 3
[7] P. Vyridis, Free and Constrained Equilibrium States in a Variational Problem on a Surface (to appear) $1,3,3,3$

[^0]: *Corresponding author
 Email address: pvyridis@gmail.com (Panayotis Vyridis)

