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Abstract

We describe a variational problem on a surface of a Euclidean space under a distance constraint. We
provide sufficient and necessary conditions for the existence of bifurcation points, generalizing Skrypnik’s
analog described in [P. Vyridis, Int. J. Nonlinear Anal. Appl. 2 (2011), 1–10]. The problem in local
coordinates corresponds to an elliptic boundary value problem. c©2014 All rights reserved.
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1. Introduction

We consider a bifurcation problem of variational character in the form

F ′[u]− λG′[u] = 0 , (1.1)

where F , G are functionals defined on a Hilbert space X, with F ′[0] = G′[0] = 0, and λ is a real parameter.

Definition 1.1. The number λ0 is a bifurcation point for equation (1.1) if and only if in every sufficiently
small neighborhood of (0, λ0) there exists a solution (u, λ) of (1.1) with u 6= 0.
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Suppose that the functionals F and G satisfy the following conditions:
1. The functional G is weakly continuous, differentiable, and its differential is Lipschitz continuous with

G′[u] = Au+N(u) , (1.2)

where A is a linear self-adjoint and compact operator. For the nonlinear part N the following estimate
holds:

‖N(u)‖ ≤ c ‖u‖p , (1.3)

where c is a positive constant, p > 1 and u ∈ V.
2. The functional F is differentiable with the property:

F ′[u] = B u+ L(u) , (1.4)

where B is a linear, bounded, self-adjoint and positive definite operator. For the nonlinear part L the
following estimates hold:

‖L(u)‖ ≤ c ‖u‖r , ‖L(u1)− L(u2)‖ ≤ c
(
‖u1‖r−1 + ‖u2‖r−1

)
‖u1 − u2‖ , (1.5)

where c is a positive constant, r > 1, and u, u1, u2 ∈ V.
Then according to Skrypnik’s theory [5], every λ ∈ R, corresponding to a non zero critical point u of the
functional

I[u, λ] = G[u]− λF [u],

is a bifurcation point for the equation

I ′[u, λ]w = G′[u ]w − λF ′[u ]w = 0 (1.6)

in Hilbert space X if and only if the equation

I ′′[0, λ](u,w) = (I ′′[0, λ]u, w) = 0 (1.7)

is satisfied by a non zero solution u for all w ∈ X.
Note that under these assumptions equation (1.7) can be rewritten as

Au− λB u = 0.

We have developed an analog of Skrypnik’s theory [6] on the existence of bifurcation points for the
variational problem

F ′[u]− λG′[u] = 0 , Φ[u] = 0 , u ∈ X (1.8)

for constraints of the type Φ : X −→ R, where Φ is a continuous and differentiable mapping with

Φ[ 0 ] = 0 .

In previous applications [6, 7] such constraints have been defined by functionals of integral type. The
equation of the constraint

Φ[u ] = 0 (1.9)

restricts the domain of (1.1) to a smaller subspace according to Lyapunov - Schmidt decomposition. We
consider that the solutions of equation (1.9) for small values of ‖u‖ are a coset in a neighborhood of 0 ∈ X,
i.e.

X = X1 ⊕X2 ,

where
X1 = KerΦ′[0] 6= 0 , X2 = X⊥1 ,
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and there exists a continuous differentiable mapping h from a small neighborhood of 0 ∈ X1 to a small
neighborhood of 0 ∈ X2 such that the set of all solutions

u = v + w , v ∈ X1 , w ∈ X2

is written in the form:
u = v + h(v) , v ∈ X1 (1.10)

with
h(0) = 0 , h′(0) = 0 . (1.11)

According to (1.10), we define the functionals:

J [ v] = G[v + h(v)] = G[u] , v ∈ X1 , (1.12)

and
Q[ v] = F [v + h(v)] = F [u] , v ∈ X1 . (1.13)

Then the derivatives
DF [u] = Q′[ v] , DG[u] = J ′[ v]

have the meaning of differentiation of the functionals F and G along the tangential direction of the manifold
{v + h(v) , v ∈ X1}. Thus the bifurcation problem (1.8) is equivalent to the problem:

Q′[ v ]− λJ ′[ v ] = 0 , v ∈ X1 , (1.14)

or equivalently
DF [u]− λDG[u] = 0 , u ∈ X . (1.15)

Definition 1.2. The number λ0 is a bifurcation point for equation (1.15) if in the intersection of any
sufficiently small neighborhood of (0, λ0) with the manifold {v + h(v) , v ∈ X1} ther exists a solution (u, λ)
of (1.15) with u 6= 0.

It has been proved [6] that the functionals (1.13) and (1.12) satisfy the properties (1.4), (1.5), (1.2),
(1.3), and the appropriate conditions of continuity and differentiability, with the additional condition r ≥ 2
in a small neighborhood of subspace X1. This leads to the following result [6]:

Theorem 1.3. Let X be a Hilbert space and the functionals G[u], F [u], defined in a neighborhood of 0 ∈ X,
satisfy properties (1.4), (1.5), (1.2), (1.3) and the appropriate conditions of continuity and differentiability
for r ≥ 2. Let Φ : X −→ R be a continuous differentiable functional, which satisfies the conditions:

Φ[ 0 ] = 0 , Ker Φ′[ 0 ] = X1 6= 0 .

Then the number λ 6= 0 is a bifurcation point for problem (1.15) if and only if the equation

(PAP − λPBP )u = 0 , u ∈ X ,

where P : X −→ X1 the orthogonal projector, has a non zero solution.

It is obvious that bifurcation points exists when PAP 6= 0.
In this work, we extend this suggested analog for constraints of a more general type, represented by a

differentiable mapping Φ : X −→ Y between the Hilbert spaces X, Y . Suppose that Φ is a weakly continuous
mapping in X. Thus, Φ′[0] is a compact operator in and invertible in X2. This implies that the identity
operator Id = Φ′[0]−1Φ′[0] : Y −→ Y is a compact operator, which is true only in the case that the Hilbert
space Y is of finite dimension. Thus the mapping Φ has to be weakly continuous in a larger space Y1, such
that Y ⊂ Y1.
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Proposition 1.4. Suppose that the the functional G is weakly continuous and the mapping Φ : X −→ Y1 is
weakly continuous. Then the functional J : X1 −→ R, defined by (1.12), is also weakly continuous.

Proof. Let vn ∈ X1 be the sequence with ‖vn‖ < δ, for all n ∈ N with respect to the norm of X, such that
vn converges weakly to v. We suppose that J [ vn] does not converge to J [ v ]. Then there exists ε > 0 and a
subsequence vn (we keep the same index) such that

|J [ vn]− J [ v ]| = |G[ vn + h( vn)]−G[ v + h(v)]| ≥ ε . (1.16)

The sequence h( vn) is bounded, as the values of the mapping h located in a small neighborhood of 0 ∈ X2,
so there exists a subsequence h( vk), which converges weakly to w. The equation of constraint (1.9) also
implies that

Φ[ vk + h(vk)] = 0 .

Since the mapping Φ is weakly continuous in Y1 we deduce that

lim
k→∞

Φ[ vk + h( vk)] = Φ[ v + w] = 0 . (1.17)

The solutions of (1.17) for small values of ‖v‖ and ‖w‖ are represented by

w = h(v) . (1.18)

Since the functional G is weakly continuous, equation (1.18) and inequality (1.16) lead to a contradiction
for n = k.

Using proposition (1.4), we generalize theorem (1.3):

Theorem 1.5. Let X be a Hilbert space and the functionals G[u], F [u], defined in a neighborhood of
0 ∈ X, satisfy the properties (1.4), (1.5), (1.2), (1.3), and the appropriate conditions of continuity and
differentiability for r ≥ 2. Let Φ : X −→ Y be a continuous differentiable mapping, which satisfies the
conditions

Φ[ 0 ] = 0 , Ker Φ′[ 0 ] = X1 6= 0 ,

and there exists a Hilbert space Y1 with Y ⊂ Y1 such that the mapping Φ : X −→ Y1 is weakly continuous.
Then the number λ 6= 0 is a bifurcation point for problem (1.15) if and only if the equation

(PAP − λPBP )u = 0 , u ∈ X ,

where P : X −→ X1 is the orthogonal projector, has a non zero solution.

2. Description of the constraint

Let M be a smooth and connected surface in R3 and S ⊂ M an open region in M with a smooth
boundary ∂S. Consider the closed curve ∂S as a one - dimensional compact submanifold in M , the tangent
space Tx∂S of ∂S as a linear subspace of the tangent space TxM of M at x ∈ ∂S, as well as the continuously
differentiable vector field ~ν(x) , x ∈ R3 identified to the normal vector field of the curve ∂S at x ∈ ∂S,
located in the tangent space TxM ⊆ R3 and is vertical to the tangent space Tx∂S. Since the boundary ∂S
is a compact submanifold in M , for fixed x ∈ ∂S the ball

B = {~ν(x) ∈ TxM : |~ν(x)| < ε}

is diffeomorphical to a neighborhood U of x ∈ ∂S in M . Thus, starting from y ∈ U , there exists a localy
unique geodesic γ to ∂S, which realizes the distance from y ∈ U to the boundary ∂S, denoted by

ρ(y) = dist(y, ∂S) . (2.1)
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The function ρ depends smoothly on the points y ∈ U [2]. Let y ∈ M , y /∈ ∂S. Since the curve ∂S is a
smooth submanifold of M , there exists ε > 0 such that the set

Γε = {y ∈M : ρ(y) = ε}

is a smooth curve on M and such that the distance ρ = dist(·, ∂S) is a smooth function on the set

Uε = {y ∈M : 0 < ρ(y) < 2 ε} .

For such ε > 0 the geodesic

γ : [0, 1] −→ Uε ⊂M , γ(0) ∈ ∂S , γ(ε) = y

realizes the distance from y to ∂S. Let z be the point on ∂S such that

ρ(y) = dist(y, ∂S) = dist(y, z) , γ(0) = z .

Since M is a connected surface, we have that

ρ(y) = ρ(z) +

∫
γ

gradρ(y) ds =

∫
γ

gradρ(y) ds =

∫ ε

0
gradρ(γ(t)) γ̇(t) dt .

On the other hand, the length of the curve γ is given by

L(γ) =

∫
γ
ds =

∫ ε

0

√
gij(γ(t)) γ̇i(t) γ̇j(t) dt =

∫ ε

0

gij(γ(t)) γ̇i(t) γ̇j(t)√
gij(γ(t)) γ̇i(t) γ̇j(t)

dt ,

where gij(y) are the components of metric tensor g(y) at y ∈ M . Since the curve γ is the geodesic that
connects the point z and y, we obtain

ρ(y) = L(γ) ,

or equivalently

grad ρ(γ(t)) =
g(γ(t)) γ̇(t)

|γ̇(t)|
= g(γ(t))~ν(γ(t)) ,

where ~ν(γ(t)) is the unit normal vector field of the curve Γt at point γ(t) for t ≤ ε. Evaluating at t = 0,
and considering a local coordinate system at z ∈ ∂S, we obtain

∂ρ(z)

∂zi
= gij(z) ν

j(z) . (2.2)

We consider now the mapping

y : ∂S −→ Uε ⊂M , y(x) = x+ ~u(x) , (2.3)

where ~u ∈ W 2
2 (∂S, TxM) for small values of ‖~u‖. The mapping (2.3) leaves invariant the boundary ∂S if

and only if
y(∂S) ⊂ ∂S . (2.4)

We define the mapping

Φ : W 2
2 (∂S, TxM) −→W 2

2 (∂S) , Φ[ ~u ] = ρ(y) = ρ(x+ ~u(x)) (2.5)

in a small neighborhood of ~0 ∈W 2
2 (∂S, TxM). Thus, the constraint (2.4) holds if and only if

Φ[ ~u ] = 0 . (2.6)

The mapping Φ is differentiable, due to the differentiability of the distance function. For a vector field
~v ∈W 2

2 (∂S, TxM) we consider the following representation:

~v(x) = ϕ(x)~τ(x) + ψ(x)~ν(x) , x ∈ ∂S , ϕ, ψ ∈W 2
2 (∂S) , (2.7)

where ~τ(x) ∈ Tx∂S is the tangent unit vector of the curve ∂S, and ~ν(x) ∈ TxM is the normal unit vector of
the curve ∂S vertical to Tx∂S at point x ∈ ∂S.
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Proposition 2.1. There exists a decomposition of the space W 2
2 (∂S, TxM) in a direct sum

W 2
2 (∂S, TxM) = X1 ⊕X2 , (2.8)

where

X1 =
{
~v ∈W 2

2 (∂S, TxM), ~v(x) = ϕ(x)~τ(x), ϕ ∈W 2
2 (∂S)

}
,

X2 =
{
~v ∈W 2

2 (∂S, TxM), ~v(x) = ψ(x)~ν(x), ψ ∈W 2
2 (∂S)

}
,

and a differentiable mapping h from a neighborhood of X1 to a neighborhood of X2, such that the solutions
of equation (2.6) can be expressed as

~u = ~v + h[~v ] , ~v ∈ X1 , (2.9)

with
h[~0 ] = ~0 , h′[~0 ] = 0 . (2.10)

Furthermore, Φ is weakly continuous as a mapping from W 2
2 (∂S, TxM) into the space C(∂S).

Proof. First, we observe that for ~u,~v ∈W 2
2 (∂S, TxM) the variation of the mapping Φ is

Φ[ ~u+ ~v ]− Φ[ ~u ] = Φ′[ ~u ]~v +B[ ~u ](~v,~v) ,

where

Φ′[ ~u ]~v =
∂

∂xi
ρ(x+ ~u(x)) vi(x) ,

and

B[ ~u ](~v,~v) =

∫ 1

0
(1− t) ∂2

∂xi∂xj
ρ(x+ ~u(x) + t~v(x)) vi(x) vj(x) dt .

Following the methods described in [4], by the boudness of the embedding of W 2
2 (∂S) into spaces C(∂S)

and C1(∂S) we obtain the estimates:

‖Φ′[ ~u ]~v‖W 2
2 (∂S) ≤ C

[
‖~v‖W 2

2
+ ‖~u‖C1‖~v‖C1 + ‖~u‖2C1‖~v‖C + ‖~u‖W 2

2
‖~v‖C

]
≤

≤ C ′ (1 + ‖~u‖W 2
2
) ‖~v‖W 2

2

and
‖B[ ~u ](~v,~v)‖W 2

2 (∂S) ≤ C
[
‖~v‖C‖~v‖W 2

2
+ ‖~v‖2C1 + (‖~u‖C + ‖~v‖C + ‖~u‖W 2

2
+ ‖~v‖W 2

2
)‖~v‖W 2

2

]
≤ C ′

(
1 + ‖~u‖W 2

2
+ ‖~v‖W 2

2

)
‖~v‖2W 2

2
,

where C and C ′ are various constants. This means that the mapping Φ is continiously differentiable. In the
same manner, we can verify that Φ′[ ~u ] depends continiously on ~u.
Now the conclusion comes from the Lyapunov - Schmidt reduction, and the implicit function theorem [4].
By the definition (2.5) of the mapping Φ, it is obvious that

Φ[~0 ] = 0 ,

and by (2.2), and the reprsentation (2.7) of a vector field ~v ∈W 2
2 (∂S, TxM), we obtain that

Φ′[~0 ]~v = gij(x)νi(x)vj(x) = ψ(x) , ψ ∈W 2
2 (∂S) .

Thus we set
X1 = Ker Φ′[~0 ] 6= {~0 } , X2 = X⊥1 .

Finally, Φ is weakly continuous as a maping from W 2
2 (∂S, TxM) into C(∂S), due to the compactness of the

embedding of W 2
2 (∂S) into C(∂S).
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3. The constrained variational problem

Let M be a smooth surface in R3, ~η(x) , x ∈ R3 a continuously differentiable vector field identified to the
normal vector field for every x ∈ M and S an open and connected set in M , with boundary ∂S consisting
of two non-intersecting sufficiently smooth components Γ and Γ1. We assume that the mean curvature H
of surface M does not vanish [7].

Let a vector field ~u ∈ H0(S, TxM), where

H0(S, TxM) =
{
~u ∈W 1

2 (S, TxM) , ~u|Γ ∈W 2
2 (Γ, TxM) , ~u|Γ1 = ~0

}
.

We denote by W 1
2 (S, TxM) and W 2

2 (Γ, TxM) the Sobolev spaces of functions defined on S and Γ with values
in TxM ⊂ R3, respectively. We introduce the following functionals

F [ ~u ] =
1

2

∫
S
aijkl(x) ξij(~u) ξkl(~u) dS +

1

2

∫
Γ
|δiδi ~u|2ds , (3.1)

G[ ~u ] =

∫
Γ
q(~u, x) ds , (3.2)

I[ ~u, λ ] = F [ ~u ]− λG[ ~u ] , λ ∈ R. (3.3)

The coefficients aijkl ∈ L∞(S) satisfy the symmetry properties aijkl(x) = aklij(x), and are positive definite,
i.e.

aijkl(x) ξijξkl ≥ Λ ξij ξij , Λ > 0 . (3.4)

The tensor ξij(~u) is defined as

ξij(~u) =
1

2
(∇iuj +∇jui) , (3.5)

where ∇i is the i-th component of the tangent differentiation with respect to the surface M [3]:

∇i =
∂

∂xi
− ηi(x) ηj(x)

∂

∂xj
, i = 1, 2, 3 , x ∈M , (3.6)

and δi is the i-th component of the tangent directional differentiation along the curve ∂S:

δi = τ i(x)
d

ds
= τ i(x) τ j(x)

∂

∂xj
, i = 1, 2, 3 , x ∈ ∂S . (3.7)

Finally, we assume that function q is three times differentiable with the following properties

q(~0, x) = 0 , qui(~0, x) = 0 , x ∈ Γ , i = 1, 2, 3. (3.8)

Now a critical point for the functional (3.3) under the constraint (2.6), for a given λ ∈ R, is the vector field
~u ∈ X, which satisfies the relation

I ′[ ~u, λ ]~r = 0 , (3.9)

or equivalently ∫
S
aijkl(x) ξij(~u) ξkl(~r) dS +

∫
Γ
δiδi ~u δjδj ~r ds− λ

∫
Γ
qui(~u, x) rids = 0 (3.10)

for all ~r ∈ X, where the vector fields ~u and ~r have the representation (1.10):

~u = ~v + h(~v) , ~r = ~w + h(~w) , ~v , ~w ∈ X1 ,

and the space X1 is defined in proposition (2.1). The linearised equation (1.7), which corresponds to (3.9),
is ∫

S
aijkl(x) ξij(~v) ξkl(~w) dS +

∫
Γ
δiδi~v δjδj ~w ds− λ

∫
Γ
quiuj (~0, x) viwj ds = 0 . (3.11)
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Under the additional assumptions of smoothness

∂S ∈ C∞ , aijkl ∈ C∞(S) , q ∈ C∞(TxM × ∂S),

using the methods described in [6, 7] and proposition (2.1), the integral equation (3.11) in local coordinates
reduces to the equivalent boundary value problem:

Hηlbijkl(x) ξij(~v) +∇l [ bijkl(x) ξij(~v)] = 0, x ∈ S

bijkl(x) ξij(~v)νkτ l + (K2 +R2 −K −R)Dvlτ l +D2vlτ l − λqvkvl(~0, x)vkτ l = 0 ,

x ∈ Γ (3.12)

~v = ~0, x ∈ Γ1 ,

where H is the mean curvature of surface M [3], K is the geodesic curvature, R is the normal curvature of
curve ∂S, located in the surface M [1], D = δiδi, and bijkl = aijkl − aijlk.

We formulate the result:

Theorem 3.1. Consider the functional (3.3), subjected to the constraint (2.6). Then the number λ0 is a
bifurcation point for equation (3.10) if and only if there exists a nonzero solution ~v0 ∈ X1 of equation (3.11)
for all ~w ∈ X1.

Proof. The linearized equation (3.11) can be written in the following equivalent form

(~v, ~w)− λ (A~v, ~w) , ~v, ~w ∈ X1 , (3.13)

such as the expression

‖u‖ =

[ ∫
S
aijkl(x) ξij(~u) ξkl(~u) dS +

∫
Γ
δiδi ~u δjδj ~u ds

]1/2

defines a norm in the space H0(S, TxM), equivalent to the standard one [7], while the operator A defined
by,

(A~u,~v)H0 =

∫
∂S
quiuj (~0, x)uivjds ,

is linear, compact and symmetric [6, 7]. This implies that

~v − λA~v = ~0 , ~v ∈ X1 ,

or equivalently
(P IdP − λPAP ) ~u = ~0 , ~u ∈ H0(S, TxM) ,

where Id is the identity operator of H0(S, TxM), and P is the orthogonal projector of H0(S, TxM) in X1,
considering that ~u has the representation (1.10). Now the conclusion is obvious by the proposition (2.1) and
the theorem (1.5). We can observe that bifurcation points exist when quiuj (~0, x) 6= 0.
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