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Abstract

We describe a variational problem on a surface of a Euclidean space under a distance constraint. We
provide sufficient and necessary conditions for the existence of bifurcation points, generalizing Skrypnik’s
analog described in [P. Vyridis, Int. J. Nonlinear Anal. Appl. 2 (2011), 1-10]. The problem in local
coordinates corresponds to an elliptic boundary value problem. (©)2014 All rights reserved.
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1. Introduction
We consider a bifurcation problem of variational character in the form
F'lu] = XG'[u] =0, (1.1)
where F', G are functionals defined on a Hilbert space X, with F'[0] = G'[0] = 0, and ) is a real parameter.

Definition 1.1. The number ) is a bifurcation point for equation (1.1]) if and only if in every sufficiently
small neighborhood of (0, \g) there exists a solution (u, A) of (L.1)) with u # 0.
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Suppose that the functionals F' and G satisfy the following conditions:
1. The functional G is weakly continuous, differentiable, and its differential is Lipschitz continuous with

G'lu] = Au+ N(u), (1.2)

where A is a linear self-adjoint and compact operator. For the nonlinear part N the following estimate
holds:
IN () < eflul”, (1.3)

where c is a positive constant, p > 1 and u € V.
2. The functional F' is differentiable with the property:

F'lu] = Bu+ L(u), (1.4)

where B is a linear, bounded, self-adjoint and positive definite operator. For the nonlinear part L the
following estimates hold:

IL@)I| < cllul™, 1L(u1) = Llu)l| < e (Jua]"™" + lual"™) Jlur = uall, (1.5)

where c is a positive constant, r > 1, and u, uy, ug € V.
Then according to Skrypnik’s theory [5], every A € R, corresponding to a non zero critical point u of the
functional

Iu, A\l = Glu] — A F[u],

is a bifurcation point for the equation
I'u,Nw=Gu]w—-AF'[u]w=0 (1.6)
in Hilbert space X if and only if the equation
"0, N (u, w) = (I"0, \] u, w) =0 (1.7)

is satisfied by a non zero solution u for all w € X.
Note that under these assumptions equation ([1.7)) can be rewritten as

Au— ABu=0.

We have developed an analog of Skrypnik’s theory [6] on the existence of bifurcation points for the
variational problem

Fllu] = AG'[u] =0, ®[u]=0, uweX (1.8)

for constraints of the type ® : X — R, where ® is a continuous and differentiable mapping with
®[0]=0.

In previous applications [6l [7] such constraints have been defined by functionals of integral type. The
equation of the constraint
®lu]=0 (1.9)

restricts the domain of (1.1)) to a smaller subspace according to Lyapunov - Schmidt decomposition. We
consider that the solutions of equation ([1.9) for small values of ||u|| are a coset in a neighborhood of 0 € X,
i.e.

X =X Xo,

where
X =Kerd®'[0] #0, Xo=Xj,



P. Vyridis, J. Nonlinear Sci. Appl. 7 (2014), 160-167 162

and there exists a continuous differentiable mapping h from a small neighborhood of 0 € X; to a small
neighborhood of 0 € X5 such that the set of all solutions

u=v+w, ve Xy, we Xy
is written in the form:
u=v+h(v), veX; (1.10)

with
h(0) =0, K(0)=0. (1.11)

According to (1.10]), we define the functionals:

J[v] = Glv+ h(v)] = Glu], ve Xy, (1.12)
and

Q[v] = Flv+ h(v)] = Flu], veX;. (1.13)

Then the derivatives

DF[u] = Q'[v], DG[u] = J'[v]

have the meaning of differentiation of the functionals F' and G along the tangential direction of the manifold
{v+ h(v), v e X;}. Thus the bifurcation problem (|1.8) is equivalent to the problem:

Q'v]=AJ[v]=0, veXy, (1.14)
or equivalently
DF|u] — ADG[u] =0, wuweX. (1.15)

Definition 1.2. The number Ao is a bifurcation point for equation (1.15)) if in the intersection of any
sufficiently small neighborhood of (0, Ag) with the manifold {v + h(v), v € X3} ther exists a solution (u, \)

of (1.15)) with w # 0.

It has been proved [6] that the functionals (1.13)) and (1.12) satisfy the properties (1.4), (L.5), (1.2),
(1.3), and the appropriate conditions of continuity and differentiability, with the additional condition r > 2

in a small neighborhood of subspace X;. This leads to the following result [6]:

Theorem 1.3. Let X be a Hilbert space and the functionals G[u], F[u|, defined in a neighborhood of 0 € X,
satisfy properties , , , and the appropriate conditions of continuity and differentiability

forr>2. Let ®: X — R be a continuous differentiable functional, which satisfies the conditions:
®[0] =0, Kerd'[0]=X;#0.

Then the number X # 0 is a bifurcation point for problem if and only if the equation
(PAP —APBP)u=0, uelX,

where P : X — X the orthogonal projector, has a non zero solution.

It is obvious that bifurcation points exists when PAP # 0.

In this work, we extend this suggested analog for constraints of a more general type, represented by a
differentiable mapping ® : X — Y between the Hilbert spaces X, Y. Suppose that ® is a weakly continuous
mapping in X. Thus, ®'[0] is a compact operator in and invertible in X5. This implies that the identity
operator Id = ®'[0]71®’[0] : Y — Y is a compact operator, which is true only in the case that the Hilbert
space Y is of finite dimension. Thus the mapping ® has to be weakly continuous in a larger space Y7, such
that Y C Y;.
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Proposition 1.4. Suppose that the the functional G is weakly continuous and the mapping ® : X — Y7 is
weakly continuous. Then the functional J : X1 — R, defined by , is also weakly continuous.

Proof. Let v, € X1 be the sequence with |lv,|| < J, for all n € N with respect to the norm of X, such that
vy, converges weakly to v. We suppose that J|v,] does not converge to J[v]|. Then there exists € > 0 and a
subsequence v, (we keep the same index) such that

|J[vn] — J[v]| = |G[vy, + h(vy)] — Glv+ h(v)]| > €. (1.16)

The sequence h(v,) is bounded, as the values of the mapping h located in a small neighborhood of 0 € X5,
so there exists a subsequence h(wvy), which converges weakly to w. The equation of constraint also
implies that

®fvg + h(vy)] = 0.

Since the mapping ® is weakly continuous in Y; we deduce that

lim ®[vx + h(vg)] = P[v+w] =0. (1.17)

k—o00

The solutions of ((1.17)) for small values of ||v|| and ||w]|| are represented by
w = h(v). (1.18)

Since the functional G is weakly continuous, equation ([1.18) and inequality (1.16]) lead to a contradiction
for n = k. O

Using proposition ([1.4)), we generalize theorem (|1.3)):

Theorem 1.5. Let X be a Hilbert space and the functionals G[u|, F|u], defined in a neighborhood of

0 € X, satisfy the properties , , , , and the appropriate conditions of continuity and
differentiability for r > 2. Let ® : X — Y be a continuous differentiable mapping, which satisfies the
conditions

®[0]=0, Kerd'[0]=X;+#0,

and there exists a Hilbert space Y1 with Y C Y7 such that the mapping ® : X — Y7 is weakly continuous.
Then the number \ # 0 is a bifurcation point for problem if and only if the equation

(PAP —APBP)u=0, ueX,

where P : X — X7 1is the orthogonal projector, has a non zero solution.

2. Description of the constraint

Let M be a smooth and connected surface in R? and S C M an open region in M with a smooth
boundary 0S. Consider the closed curve S as a one - dimensional compact submanifold in M, the tangent
space T,,0S of S as a linear subspace of the tangent space T, M of M at x € 05, as well as the continuously
differentiable vector field ¥(z), x € R? identified to the normal vector field of the curve 95 at = € 95,
located in the tangent space T, M C R3 and is vertical to the tangent space T,,0S. Since the boundary 0.5
is a compact submanifold in M, for fixed z € S the ball

B={v(x) e T,M: |U(z)| <e}

is diffeomorphical to a neighborhood U of x € 05 in M. Thus, starting from y € U, there exists a localy
unique geodesic v to 0.5, which realizes the distance from y € U to the boundary 9.5, denoted by

p(y) = dist(y, 0S). (2.1)
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The function p depends smoothly on the points y € U [2]. Let y € M, y ¢ 9S. Since the curve 95 is a
smooth submanifold of M, there exists ¢ > 0 such that the set

Fe={yeM: ply) =c¢}
is a smooth curve on M and such that the distance p = dist(-, dS) is a smooth function on the set
U.={yeM: 0<ply) <2e}.
For such ¢ > 0 the geodesic
v:[0,1] — U.Cc M, ~(0)€dS, ~()=y
realizes the distance from y to 0S. Let z be the point on 05 such that
p(y) = dist(y, 0S) = dist(y, 2) , ~7(0) = z.

Since M is a connected surface, we have that
p(y) = p(z) + / gradp(y) ds = / gradp(y) ds = /0 gradp(v(t)) ¥(¢t) dt.
¥ ¥

On the other hand, the length of the curve ~ is given by

v = [ds= [* o030 0=

= gii(v(1) (1) (1)
0 Vais(v(1) A (1) 7 (2)
where g;;(y) are the components of metric tensor g(y) at y € M. Since the curve v is the geodesic that
connects the point z and y, we obtain

)

or equivalently
9(v(£) ¥(t) _
= = 9(v(1) 7(v(1))

15(2)]
where 7(y(t)) is the unit normal vector field of the curve I'; at point y(t) for ¢ < e. Evaluating at ¢ = 0,
and considering a local coordinate system at z € 0.5, we obtain

W) i) (2). (22)

grad p(y(t)) =

We consider now the mapping
y:08 —U.c M, ylz)=z+i(r), (2.3)

where i@ € W2(9S, T, M) for small values of ||ii]|. The mapping (2.3) leaves invariant the boundary 95 if
and only if

y(0S) C 0S. (2.4)
We define the mapping
O WIS, T, M) — W(0S),  ®lid] = ply) = pla + i(x)) (2.5)
in a small neighborhood of 0¢e W22(85’, T, M). Thus, the constraint 1' holds if and only if
d[u]=0. (2.6)

The mapping @ is differentiable, due to the differentiability of the distance function. For a vector field
7 € W2(9S,T,,M) we consider the following representation:

O(x) = (z)7(z) + Y(z) U(x), x€dS, ¢peWidS), (2.7)

where 7(z) € T,0S is the tangent unit vector of the curve 95, and (x) € T, M is the normal unit vector of
the curve 05 vertical to T,,0S at point z € 05.
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Proposition 2.1. There exists a decomposition of the space W22(65’, T.M) in a direct sum

W2(98, T,M) = X1 ® Xo, (2.8)

X, = {Ue W30S, TpM), v(z)=px)7(z), ¢cWidS)},
X, = {TeWi0S, T,M), v(x)=1¢(@)v(z), veWids)},

and a differentiable mapping h from a neighborhood of X1 to a neighborhood of Xo, such that the solutions
of equation @ can be expressed as

i=0+h[7], TeXi, (2.9)

with
h[0]=0, A'[0]=0. (2.10)

Furthermore, ® is weakly continuous as a mapping from W2(9S, T,M) into the space C(dS).
Proof. First, we observe that for @, 7 € W3 (95, T, M) the variation of the mapping ® is
O+ U] — @[] = d'[d]| v+ Bla](v,v),

where

0
oz F

O[@]5 = o pla+ii(z)) v'(a)

and
2

1
B[ﬁ](ﬁ,ﬁ):/o (1-1) 8x(?8:1:j pla + @(x) + t7(x)) v (@) v (z) dt .

Following the methods described in [4], by the boudness of the embedding of W2(9S) into spaces C(9S)
and C*(dS) we obtain the estimates:

12'[@] Fllwzes) < CLITNwz + Tl IFlor + 112 1Tlle + @l 1Tlc ] <

< O (1 + [allwz) 15w

and
IB[@](@, D) lwz0s) < CLITNNTlwz + 1812 + (1@lle + |1Flle + 1@z + [17w2) 1 lws]

< C'(1+ Nl + 1Flwe) 1122

where C' and C’ are various constants. This means that the mapping ® is continiously differentiable. In the
same manner, we can verify that ®[#] depends continiously on .

Now the conclusion comes from the Lyapunov - Schmidt reduction, and the implicit function theorem [4].
By the definition of the mapping ®, it is obvious that

®[0]=0,
and by , and the reprsentation (2.7) of a vector field 7 € W3 (95, T, M), we obtain that
W'[0]7 = gij (@) ()0 (2) = (), &€ W5(09).

Thus we set
X =Ker®'[0]#{0}, Xo=Xi.

Finally, ® is weakly continuous as a maping from W3 (9.5, T, M) into C(9S), due to the compactness of the
embedding of WZ(9S) into C(99). O
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3. The constrained variational problem

Let M be a smooth surface in R3, 7j(x), € R? a continuously differentiable vector field identified to the
normal vector field for every x € M and S an open and connected set in M, with boundary 0S consisting
of two non-intersecting sufficiently smooth components I' and I';. We assume that the mean curvature H
of surface M does not vanish [7].

Let a vector field @ € Hy(S, T, M ), where

Ho(S, T,M) = {a e WS, T,M), dr € W2(T, T,M), i, = 6} .

We denote by W3 (S, T, M) and W(I', T,,M) the Sobolev spaces of functions defined on S and I" with values
in T, M C R3, respectively. We introduce the following functionals

Fla] = ;/Saz‘jkl(x) & (@) & (@) dS + ;/F|5i5z‘ l*ds , (3.1)
Glu] = /Fq(ﬁ,a:) ds, (3.2)
I[@,\] = Fli] — AG[@], AeR. (3.3)

The coefficients a;ji € Loo(S) satisfy the symmetry properties a;jri(x) = arij(x), and are positive definite,
i.e.
aijp(x) TN > AT ET, A > 0. (3.4)
The tensor &;;(u) is defined as
1 . .
f,](u) = 5 (Viuj + Vju’) R (3.5)
where V; is the i-th component of the tangent differentiation with respect to the surface M [3]:

0

: . 9
_ i J P —
V’L 8.171 77 (‘T)n (f]f) ax] ’ ¢ 172737 S M7 (36)
and 9; is the i-th component of the tangent directional differentiation along the curve 9S:
5‘_Ti(£ﬂ)i_7'i(l’)7'j($)i i=1,2,3, z€0dS (3.7)
1T ds - ax.] ) - ) ) ) N *

Finally, we assume that function g is three times differentiable with the following properties
q0,2) =0, ¢u0,2)=0, zel, i=1,23. (3.8)

Now a critical point for the functional (3.3) under the constraint ({2.6)), for a given A\ € R, is the vector field
1 € X, which satisfies the relation
I'li,\]7=0, (3.9)

or equivalently
/ aijkl(x) fl](ﬁ) fkl(F) ds + / 0;0; 65]'6]' 7ds — A / Qi (ﬁ, x) rids =0 (3.10)
s r r
for all ¥ € X, where the vector fields @ and 7 have the representation (|1.10)):
U=0+h(¥), T=d+h(w), T,7€X,

and the space X is defined in proposition (2.1)). The linearised equation ({1.7)), which corresponds to (3.9)),

1S

/ aiji () &;(0) & (W) dS + / 80,0 8;0,0 ds — A / Quu, (0, 2) v'wl ds = 0. (3.11)
S Tr T
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Under the additional assumptions of smoothness

0S € C™, ajjm € C(S), qeC®(T,M x08),

using the methods described in [6l [7] and proposition ([2.1]), the integral equation (3.11)) in local coordinates
reduces to the equivalent boundary value problem:

Hn'bijra(x) &5(0) + Vi [bijr(2) & ()] =0, x€S

bijri () &j (U)l/le + (K2 +R?-K— R)Dvlrl + D%trt — Akl (6, x)val =0,
zel (3.12)

:6, zely,

0l
where H is the mean curvature of surface M [3], K is the geodesic curvature, R is the normal curvature of
curve 0S5, located in the surface M [I], D = §;0;, and byjp = aijir — Qijik-

We formulate the result:

Theorem 3.1. Consider the functional , subjected to the constraint (@ Then the number \g is a
bifurcation point for equation if and only if there exists a nonzero solution vy € X1 of equation
for all W e Xy.

Proof. The linearized equation (3.11]) can be written in the following equivalent form
(U, W) — X (A0, W), v,W€ Xy, (3.13)

such as the expression

1/2
\mn—[Lamﬂwgﬂm@ﬂmds+/b@ﬁ@@a@]
T

defines a norm in the space Hy(S,T, M), equivalent to the standard one [7], while the operator A defined
by,

(A4, V), = / Quini (0, ) u'vids
oS
is linear, compact and symmetric [0 [7]. This implies that
T—ANAT=0, v€X,

or equivalently
(PIdP - APAP)u =0, ue€ HyS,T,M),

where Id is the identity operator of Hy(S,T,M), and P is the orthogonal projector of Hy(S,T,M) in X1,
considering that # has the representation ((1.10). Now the conclusion is obvious by the proposition (2.1]) and
the theorem 1' We can observe that bifurcation points exist when q,i,; (0, x) # 0. O
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