

Journal of Nonlinear Science and Applications

Print: ISSN 2008-1898 Online: ISSN 2008-1901

Bifurcation in a variational problem on a surface with a distance constraint

Panayotis Vyridis^{a,*}

^aDepartment of Physics and Mathematics, National Polytechnical Institute (I.P.N.), Campus Zacatecas (U.P.I.I.Z.), Zacatecas, Mexico.

Communicated by Th.M. Rassias

Abstract

We describe a variational problem on a surface of a Euclidean space under a distance constraint. We provide sufficient and necessary conditions for the existence of bifurcation points, generalizing Skrypnik's analog described in [P. Vyridis, Int. J. Nonlinear Anal. Appl. 2 (2011), 1–10]. The problem in local coordinates corresponds to an elliptic boundary value problem. ©2014 All rights reserved.

Keywords: Calculus of Variations, Critical points, Bifurcation points, Distance function, Curvatures of a Surface, Boundary value problem for an elliptic PDE. *2010 MSC:* 58E30, 58E07, 58E10.

1. Introduction

We consider a bifurcation problem of variational character in the form

$$F'[u] - \lambda G'[u] = 0, \qquad (1.1)$$

where F, G are functionals defined on a Hilbert space X, with F'[0] = G'[0] = 0, and λ is a real parameter.

Definition 1.1. The number λ_0 is a bifurcation point for equation (1.1) if and only if in every sufficiently small neighborhood of $(0, \lambda_0)$ there exists a solution (u, λ) of (1.1) with $u \neq 0$.

^{*}Corresponding author

Email address: pvyridis@gmail.com (Panayotis Vyridis)

Suppose that the functionals F and G satisfy the following conditions:

1. The functional G is weakly continuous, differentiable, and its differential is Lipschitz continuous with

$$G'[u] = A \, u + N(u) \,, \tag{1.2}$$

where A is a linear self-adjoint and compact operator. For the nonlinear part N the following estimate holds:

$$\|N(u)\| \le c \,\|u\|^p \,, \tag{1.3}$$

where c is a positive constant, p > 1 and $u \in \mathcal{V}$.

2. The functional F is differentiable with the property:

$$F'[u] = B u + L(u), (1.4)$$

where B is a linear, bounded, self-adjoint and positive definite operator. For the nonlinear part L the following estimates hold:

$$||L(u)|| \le c ||u||^r, \quad ||L(u_1) - L(u_2)|| \le c \left(||u_1||^{r-1} + ||u_2||^{r-1} \right) ||u_1 - u_2||, \tag{1.5}$$

where c is a positive constant, r > 1, and $u, u_1, u_2 \in \mathcal{V}$.

Then according to Skrypnik's theory [5], every $\lambda \in \mathbb{R}$, corresponding to a non zero critical point u of the functional

$$I[u,\lambda] = G[u] - \lambda F[u]$$

is a bifurcation point for the equation

$$I'[u, \lambda] w = G'[u] w - \lambda F'[u] w = 0$$
(1.6)

in Hilbert space X if and only if the equation

$$I''[0,\lambda](u,w) = (I''[0,\lambda]u,w) = 0$$
(1.7)

is satisfied by a non zero solution u for all $w \in X$. Note that under these assumptions equation (1.7) can be rewritten as

$$A \, u - \lambda \, B \, u = 0.$$

We have developed an analog of Skrypnik's theory [6] on the existence of bifurcation points for the variational problem

$$F'[u] - \lambda G'[u] = 0, \quad \Phi[u] = 0, \quad u \in X$$
 (1.8)

for constraints of the type $\Phi: X \longrightarrow \mathbb{R}$, where Φ is a continuous and differentiable mapping with

$$\Phi[0] = 0$$
.

In previous applications [6, 7] such constraints have been defined by functionals of integral type. The equation of the constraint

$$\Phi[u] = 0 \tag{1.9}$$

restricts the domain of (1.1) to a smaller subspace according to Lyapunov - Schmidt decomposition. We consider that the solutions of equation (1.9) for small values of ||u|| are a coset in a neighborhood of $0 \in X$, i.e.

$$X = X_1 \oplus X_2 \,,$$

where

$$X_1 = \text{Ker}\Phi'[0] \neq 0, \quad X_2 = X_1^{\perp},$$

and there exists a continuous differentiable mapping h from a small neighborhood of $0 \in X_1$ to a small neighborhood of $0 \in X_2$ such that the set of all solutions

$$u = v + w, \quad v \in X_1, \quad w \in X_2$$

is written in the form:

$$u = v + h(v), \quad v \in X_1$$
 (1.10)

with

$$h(0) = 0, \quad h'(0) = 0.$$
 (1.11)

According to (1.10), we define the functionals:

$$J[v] = G[v + h(v)] = G[u], \quad v \in X_1,$$
(1.12)

and

$$Q[v] = F[v + h(v)] = F[u], \quad v \in X_1.$$
(1.13)

Then the derivatives

$$\mathcal{D}F[u] = Q'[v], \quad \mathcal{D}G[u] = J'[v]$$

have the meaning of differentiation of the functionals F and G along the tangential direction of the manifold $\{v + h(v), v \in X_1\}$. Thus the bifurcation problem (1.8) is equivalent to the problem:

$$Q'[v] - \lambda J'[v] = 0, \quad v \in X_1,$$
(1.14)

or equivalently

$$\mathcal{D}F[u] - \lambda \mathcal{D}G[u] = 0, \quad u \in X.$$
(1.15)

Definition 1.2. The number λ_0 is a bifurcation point for equation (1.15) if in the intersection of any sufficiently small neighborhood of $(0, \lambda_0)$ with the manifold $\{v + h(v), v \in X_1\}$ ther exists a solution (u, λ) of (1.15) with $u \neq 0$.

It has been proved [6] that the functionals (1.13) and (1.12) satisfy the properties (1.4), (1.5), (1.2), (1.3), and the appropriate conditions of continuity and differentiability, with the additional condition $r \ge 2$ in a small neighborhood of subspace X_1 . This leads to the following result [6]:

Theorem 1.3. Let X be a Hilbert space and the functionals G[u], F[u], defined in a neighborhood of $0 \in X$, satisfy properties (1.4), (1.5), (1.2), (1.3) and the appropriate conditions of continuity and differentiability for $r \geq 2$. Let $\Phi : X \longrightarrow \mathbb{R}$ be a continuous differentiable functional, which satisfies the conditions:

 $\Phi[0] = 0$, $Ker \Phi'[0] = X_1 \neq 0$.

Then the number $\lambda \neq 0$ is a bifurcation point for problem (1.15) if and only if the equation

$$(PAP - \lambda PBP) u = 0, \quad u \in X,$$

where $P: X \longrightarrow X_1$ the orthogonal projector, has a non zero solution.

It is obvious that bifurcation points exists when $PAP \neq 0$.

In this work, we extend this suggested analog for constraints of a more general type, represented by a differentiable mapping $\Phi: X \longrightarrow Y$ between the Hilbert spaces X, Y. Suppose that Φ is a weakly continuous mapping in X. Thus, $\Phi'[0]$ is a compact operator in and invertible in X_2 . This implies that the identity operator $Id = \Phi'[0]^{-1}\Phi'[0]: Y \longrightarrow Y$ is a compact operator, which is true only in the case that the Hilbert space Y is of finite dimension. Thus the mapping Φ has to be weakly continuous in a larger space Y_1 , such that $Y \subset Y_1$.

Proposition 1.4. Suppose that the functional G is weakly continuous and the mapping $\Phi : X \longrightarrow Y_1$ is weakly continuous. Then the functional $J : X_1 \longrightarrow \mathbb{R}$, defined by (1.12), is also weakly continuous.

Proof. Let $v_n \in X_1$ be the sequence with $||v_n|| < \delta$, for all $n \in \mathbb{N}$ with respect to the norm of X, such that v_n converges weakly to v. We suppose that $J[v_n]$ does not converge to J[v]. Then there exists $\varepsilon > 0$ and a subsequence v_n (we keep the same index) such that

$$|J[v_n] - J[v]| = |G[v_n + h(v_n)] - G[v + h(v)]| \ge \varepsilon.$$
(1.16)

The sequence $h(v_n)$ is bounded, as the values of the mapping h located in a small neighborhood of $0 \in X_2$, so there exists a subsequence $h(v_k)$, which converges weakly to w. The equation of constraint (1.9) also implies that

$$\Phi[v_k + h(v_k)] = 0$$

Since the mapping Φ is weakly continuous in Y_1 we deduce that

$$\lim_{k \to \infty} \Phi[v_k + h(v_k)] = \Phi[v + w] = 0.$$
(1.17)

The solutions of (1.17) for small values of ||v|| and ||w|| are represented by

$$w = h(v) \,. \tag{1.18}$$

Since the functional G is weakly continuous, equation (1.18) and inequality (1.16) lead to a contradiction for n = k.

Using proposition (1.4), we generalize theorem (1.3):

Theorem 1.5. Let X be a Hilbert space and the functionals G[u], F[u], defined in a neighborhood of $0 \in X$, satisfy the properties (1.4), (1.5), (1.2), (1.3), and the appropriate conditions of continuity and differentiability for $r \ge 2$. Let $\Phi : X \longrightarrow Y$ be a continuous differentiable mapping, which satisfies the conditions

$$\Phi[0] = 0$$
, $Ker \Phi'[0] = X_1 \neq 0$,

and there exists a Hilbert space Y_1 with $Y \subset Y_1$ such that the mapping $\Phi : X \longrightarrow Y_1$ is weakly continuous. Then the number $\lambda \neq 0$ is a bifurcation point for problem (1.15) if and only if the equation

$$(PAP - \lambda PBP) u = 0, \quad u \in X,$$

where $P: X \longrightarrow X_1$ is the orthogonal projector, has a non zero solution.

2. Description of the constraint

Let M be a smooth and connected surface in \mathbb{R}^3 and $S \subset M$ an open region in M with a smooth boundary ∂S . Consider the closed curve ∂S as a one - dimensional compact submanifold in M, the tangent space $T_x \partial S$ of ∂S as a linear subspace of the tangent space $T_x M$ of M at $x \in \partial S$, as well as the continuously differentiable vector field $\vec{\nu}(x)$, $x \in \mathbb{R}^3$ identified to the normal vector field of the curve ∂S at $x \in \partial S$, located in the tangent space $T_x M \subseteq \mathbb{R}^3$ and is vertical to the tangent space $T_x \partial S$. Since the boundary ∂S is a compact submanifold in M, for fixed $x \in \partial S$ the ball

$$B = \{ \vec{\nu}(x) \in T_x M : |\vec{\nu}(x)| < \varepsilon \}$$

is diffeomorphical to a neighborhood U of $x \in \partial S$ in M. Thus, starting from $y \in U$, there exists a localy unique geodesic γ to ∂S , which realizes the distance from $y \in U$ to the boundary ∂S , denoted by

$$\rho(y) = \operatorname{dist}(y, \partial S) \,. \tag{2.1}$$

The function ρ depends smoothly on the points $y \in U$ [2]. Let $y \in M$, $y \notin \partial S$. Since the curve ∂S is a smooth submanifold of M, there exists $\varepsilon > 0$ such that the set

$$\Gamma_{\varepsilon} = \{ y \in M : \rho(y) = \varepsilon \}$$

is a smooth curve on M and such that the distance $\rho = \operatorname{dist}(\cdot, \partial S)$ is a smooth function on the set

$$U_{\varepsilon} = \{ y \in M : \quad 0 < \rho(y) < 2 \varepsilon \} \,.$$

For such $\varepsilon > 0$ the geodesic

$$\gamma: [0,1] \longrightarrow U_{\varepsilon} \subset M, \quad \gamma(0) \in \partial S, \quad \gamma(\varepsilon) = y$$

realizes the distance from y to ∂S . Let z be the point on ∂S such that

$$\rho(y) = \operatorname{dist}(y, \partial S) = \operatorname{dist}(y, z), \qquad \gamma(0) = z$$

Since M is a connected surface, we have that

$$\rho(y) = \rho(z) + \int_{\gamma} \operatorname{grad} \rho(y) \, ds = \int_{\gamma} \operatorname{grad} \rho(y) \, ds = \int_{0}^{\varepsilon} \operatorname{grad} \rho(\gamma(t)) \, \dot{\gamma}(t) \, dt \, .$$

On the other hand, the length of the curve γ is given by

$$L(\gamma) = \int_{\gamma} ds = \int_{0}^{\varepsilon} \sqrt{g_{ij}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t)} dt = \int_{0}^{\varepsilon} \frac{g_{ij}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t)}{\sqrt{g_{ij}(\gamma(t)) \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t)}} dt,$$

where $g_{ij}(y)$ are the components of metric tensor g(y) at $y \in M$. Since the curve γ is the geodesic that connects the point z and y, we obtain

$$\rho(y) = L(\gamma)$$

or equivalently

$$\operatorname{grad} \rho(\gamma(t)) = \frac{g(\gamma(t)) \,\dot{\gamma}(t)}{|\dot{\gamma}(t)|} = g(\gamma(t)) \,\vec{\nu}(\gamma(t)) \,,$$

where $\vec{\nu}(\gamma(t))$ is the unit normal vector field of the curve Γ_t at point $\gamma(t)$ for $t \leq \varepsilon$. Evaluating at t = 0, and considering a local coordinate system at $z \in \partial S$, we obtain

$$\frac{\partial \rho(z)}{\partial z^i} = g_{ij}(z) \,\nu^j(z) \,. \tag{2.2}$$

We consider now the mapping

$$y: \partial S \longrightarrow U_{\varepsilon} \subset M, \qquad y(x) = x + \vec{u}(x),$$

$$(2.3)$$

where $\vec{u} \in W_2^2(\partial S, T_x M)$ for small values of $\|\vec{u}\|$. The mapping (2.3) leaves invariant the boundary ∂S if and only if

$$y(\partial S) \subset \partial S \,. \tag{2.4}$$

We define the mapping

$$\Phi: W_2^2(\partial S, T_x M) \longrightarrow W_2^2(\partial S), \qquad \Phi[\vec{u}] = \rho(y) = \rho(x + \vec{u}(x))$$
(2.5)

in a small neighborhood of $\vec{0} \in W_2^2(\partial S, T_x M)$. Thus, the constraint (2.4) holds if and only if

$$\Phi[\vec{u}] = 0. \tag{2.6}$$

The mapping Φ is differentiable, due to the differentiability of the distance function. For a vector field $\vec{v} \in W_2^2(\partial S, T_x M)$ we consider the following representation:

$$\vec{v}(x) = \varphi(x)\,\vec{\tau}(x) + \psi(x)\,\vec{\nu}(x)\,, \quad x \in \partial S\,, \quad \varphi, \psi \in W_2^2(\partial S)\,, \tag{2.7}$$

where $\vec{\tau}(x) \in T_x \partial S$ is the tangent unit vector of the curve ∂S , and $\vec{\nu}(x) \in T_x M$ is the normal unit vector of the curve ∂S vertical to $T_x \partial S$ at point $x \in \partial S$.

Proposition 2.1. There exists a decomposition of the space $W_2^2(\partial S, T_xM)$ in a direct sum

$$W_2^2(\partial S, T_x M) = X_1 \oplus X_2, \qquad (2.8)$$

where

$$\begin{aligned} X_1 &= \left\{ \vec{v} \in W_2^2(\partial S, T_x M), \quad \vec{v}(x) = \varphi(x) \, \vec{\tau}(x), \quad \varphi \in W_2^2(\partial S) \right\}, \\ X_2 &= \left\{ \vec{v} \in W_2^2(\partial S, T_x M), \quad \vec{v}(x) = \psi(x) \, \vec{\nu}(x), \quad \psi \in W_2^2(\partial S) \right\}, \end{aligned}$$

and a differentiable mapping h from a neighborhood of X_1 to a neighborhood of X_2 , such that the solutions of equation (2.6) can be expressed as

$$\vec{u} = \vec{v} + h[\vec{v}], \quad \vec{v} \in X_1,$$
(2.9)

with

$$h[\vec{0}] = \vec{0}, \quad h'[\vec{0}] = 0.$$
 (2.10)

Furthermore, Φ is weakly continuous as a mapping from $W_2^2(\partial S, T_x M)$ into the space $C(\partial S)$.

Proof. First, we observe that for $\vec{u}, \vec{v} \in W_2^2(\partial S, T_x M)$ the variation of the mapping Φ is

 $\Phi[\,\vec{u} + \vec{v}\,] - \Phi[\,\vec{u}\,] = \Phi'[\,\vec{u}\,]\,\vec{v} + B[\,\vec{u}\,](\vec{v},\vec{v})\,,$

where

$$\Phi'[\vec{u}] \vec{v} = \frac{\partial}{\partial x^i} \rho(x + \vec{u}(x)) v^i(x) + \frac{\partial}{\partial x^i} v^i(x)$$

and

$$B[\vec{u}](\vec{v},\vec{v}) = \int_0^1 (1-t) \,\frac{\partial^2}{\partial x^i \partial x^j} \,\rho(x+\vec{u}(x)+t\,\vec{v}(x))\,v^i(x)\,v^j(x)\,dt\,.$$

Following the methods described in [4], by the boudness of the embedding of $W_2^2(\partial S)$ into spaces $C(\partial S)$ and $C^1(\partial S)$ we obtain the estimates:

$$\begin{split} \|\Phi'[\vec{u}]\vec{v}\|_{W_{2}^{2}(\partial S)} &\leq C \left[\|\vec{v}\|_{W_{2}^{2}} + \|\vec{u}\|_{C^{1}} \|\vec{v}\|_{C^{1}} + \|\vec{u}\|_{C^{1}}^{2} \|\vec{v}\|_{C} + \|\vec{u}\|_{W_{2}^{2}} \|\vec{v}\|_{C} \right] \leq \\ &\leq C' \left(1 + \|\vec{u}\|_{W_{2}^{2}} \right) \|\vec{v}\|_{W_{2}^{2}} \end{split}$$

and

$$\begin{split} \|B[\vec{u}](\vec{v},\vec{v})\|_{W_{2}^{2}(\partial S)} &\leq C\left[\|\vec{v}\|_{C}\|\vec{v}\|_{W_{2}^{2}} + \|\vec{v}\|_{C^{1}}^{2} + (\|\vec{u}\|_{C} + \|\vec{v}\|_{C} + \|\vec{u}\|_{W_{2}^{2}} + \|\vec{v}\|_{W_{2}^{2}})\|\vec{v}\|_{W_{2}^{2}}\right] \\ &\leq C'\left(1 + \|\vec{u}\|_{W_{2}^{2}} + \|\vec{v}\|_{W_{2}^{2}}\right)\|\vec{v}\|_{W_{2}^{2}}^{2}, \end{split}$$

where C and C' are various constants. This means that the mapping Φ is continiously differentiable. In the same manner, we can verify that $\Phi'[\vec{u}]$ depends continiously on \vec{u} .

Now the conclusion comes from the Lyapunov - Schmidt reduction, and the implicit function theorem [4]. By the definition (2.5) of the mapping Φ , it is obvious that

 $\Phi[\vec{0}] = 0,$

and by (2.2), and the representation (2.7) of a vector field $\vec{v} \in W_2^2(\partial S, T_x M)$, we obtain that

$$\Phi'[\vec{0}] \vec{v} = g_{ij}(x)\nu^i(x)v^j(x) = \psi(x) \,, \quad \psi \in W_2^2(\partial S) \,.$$

Thus we set

$$X_1 = \operatorname{Ker} \Phi'[\vec{0}] \neq \{\vec{0}\}, \quad X_2 = X_1^{\perp}.$$

Finally, Φ is weakly continuous as a maping from $W_2^2(\partial S, T_x M)$ into $C(\partial S)$, due to the compactness of the embedding of $W_2^2(\partial S)$ into $C(\partial S)$.

3. The constrained variational problem

Let M be a smooth surface in \mathbb{R}^3 , $\vec{\eta}(x)$, $x \in \mathbb{R}^3$ a continuously differentiable vector field identified to the normal vector field for every $x \in M$ and S an open and connected set in M, with boundary ∂S consisting of two non-intersecting sufficiently smooth components Γ and Γ_1 . We assume that the mean curvature Hof surface M does not vanish [7].

Let a vector field $\vec{u} \in H_0(S, T_x M)$, where

$$H_0(S, T_x M) = \left\{ \vec{u} \in W_2^1(S, T_x M), \ \vec{u}|_{\Gamma} \in W_2^2(\Gamma, T_x M), \ \vec{u}|_{\Gamma_1} = \vec{0} \right\}.$$

We denote by $W_2^1(S, T_xM)$ and $W_2^2(\Gamma, T_xM)$ the Sobolev spaces of functions defined on S and Γ with values in $T_xM \subset \mathbb{R}^3$, respectively. We introduce the following functionals

$$F[\vec{u}] = \frac{1}{2} \int_{S} a_{ijkl}(x) \,\xi_{ij}(\vec{u}) \,\xi_{kl}(\vec{u}) \,dS + \frac{1}{2} \int_{\Gamma} |\delta_i \delta_i \,\vec{u}|^2 ds \,, \tag{3.1}$$

$$G[\vec{u}] = \int_{\Gamma} q(\vec{u}, x) \, ds \,, \tag{3.2}$$

$$I[\vec{u}, \lambda] = F[\vec{u}] - \lambda G[\vec{u}], \quad \lambda \in \mathbb{R}.$$
(3.3)

The coefficients $a_{ijkl} \in L_{\infty}(S)$ satisfy the symmetry properties $a_{ijkl}(x) = a_{klij}(x)$, and are positive definite, i.e.

$$a_{ijkl}(x)\,\xi^{ij}\xi^{kl} \ge \Lambda\,\xi^{ij}\,\xi^{ij}\,,\qquad \Lambda > 0\,. \tag{3.4}$$

The tensor $\xi_{ij}(\vec{u})$ is defined as

$$\xi_{ij}(\vec{u}) = \frac{1}{2} \left(\nabla_i u^j + \nabla_j u^i \right), \tag{3.5}$$

where ∇_i is the *i*-th component of the tangent differentiation with respect to the surface M [3]:

$$\nabla_i = \frac{\partial}{\partial x^i} - \eta^i(x) \,\eta^j(x) \,\frac{\partial}{\partial x^j} \,, \quad i = 1, 2, 3 \,, \quad x \in M \,, \tag{3.6}$$

and δ_i is the *i*-th component of the tangent directional differentiation along the curve ∂S :

$$\delta_i = \tau^i(x) \frac{d}{ds} = \tau^i(x) \tau^j(x) \frac{\partial}{\partial x^j}, \quad i = 1, 2, 3, \quad x \in \partial S.$$
(3.7)

Finally, we assume that function q is three times differentiable with the following properties

$$q(\vec{0}, x) = 0, \quad q_{u^i}(\vec{0}, x) = 0, \quad x \in \Gamma, \quad i = 1, 2, 3.$$
 (3.8)

Now a critical point for the functional (3.3) under the constraint (2.6), for a given $\lambda \in \mathbb{R}$, is the vector field $\vec{u} \in X$, which satisfies the relation

$$I'[\vec{u},\lambda]\vec{r} = 0, (3.9)$$

or equivalently

$$\int_{S} a_{ijkl}(x)\,\xi_{ij}(\vec{u})\,\xi_{kl}(\vec{r})\,dS + \int_{\Gamma} \delta_i \delta_i\,\vec{u}\,\delta_j \delta_j\,\vec{r}\,ds - \lambda\,\int_{\Gamma} q_{u^i}(\vec{u},x)\,r^i ds = 0 \tag{3.10}$$

for all $\vec{r} \in X$, where the vector fields \vec{u} and \vec{r} have the representation (1.10):

$$\vec{u} = \vec{v} + h(\vec{v}), \quad \vec{r} = \vec{w} + h(\vec{w}), \quad \vec{v}, \vec{w} \in X_1,$$

and the space X_1 is defined in proposition (2.1). The linearised equation (1.7), which corresponds to (3.9), is

$$\int_{S} a_{ijkl}(x) \,\xi_{ij}(\vec{v}) \,\xi_{kl}(\vec{w}) \,dS + \int_{\Gamma} \delta_i \delta_i \vec{v} \,\delta_j \delta_j \vec{w} \,ds - \lambda \int_{\Gamma} q_{u_i u_j}(\vec{0}, x) \,v^i w^j \,ds = 0 \,. \tag{3.11}$$

Under the additional assumptions of smoothness

$$\partial S \in C^{\infty}, \quad a_{ijkl} \in C^{\infty}(\overline{S}), \quad q \in C^{\infty}(T_x M \times \partial S)$$

using the methods described in [6, 7] and proposition (2.1), the integral equation (3.11) in local coordinates reduces to the equivalent boundary value problem:

$$H\eta^l b_{ijkl}(x)\,\xi_{ij}(\vec{v}) + \nabla_l \left[b_{ijkl}(x)\,\xi_{ij}(\vec{v}) \right] = 0, \quad x \in S$$

$$b_{ijkl}(x)\,\xi_{ij}(\vec{v})\nu^k\tau^l + (K^2 + R^2 - K - R)Dv^l\tau^l + D^2v^l\tau^l - \lambda q_{v^kv^l}(\vec{0}, x)v^k\tau^l = 0\,,$$

$$x \in \Gamma \quad (3.12)$$

 $\vec{v} = \vec{0}, \quad x \in \Gamma_1,$

where H is the mean curvature of surface M [3], K is the geodesic curvature, R is the normal curvature of curve ∂S , located in the surface M [1], $D = \delta_i \delta_i$, and $b_{ijkl} = a_{ijkl} - a_{ijlk}$.

We formulate the result:

Theorem 3.1. Consider the functional (3.3), subjected to the constraint (2.6). Then the number λ_0 is a bifurcation point for equation (3.10) if and only if there exists a nonzero solution $\vec{v}_0 \in X_1$ of equation (3.11) for all $\vec{w} \in X_1$.

Proof. The linearized equation (3.11) can be written in the following equivalent form

$$(\vec{v}, \vec{w}) - \lambda \left(A \vec{v}, \vec{w} \right), \quad \vec{v}, \vec{w} \in X_1,$$

$$(3.13)$$

such as the expression

$$\|u\| = \left[\int_{S} a_{ijkl}(x)\,\xi_{ij}(\vec{u})\,\xi_{kl}(\vec{u})\,dS + \int_{\Gamma} \delta_i\delta_i\,\vec{u}\,\delta_j\delta_j\,\vec{u}\,ds\right]^{1/2}$$

defines a norm in the space $H_0(S, T_x M)$, equivalent to the standard one [7], while the operator A defined by,

$$(A\vec{u},\vec{v})_{H_0} = \int_{\partial S} q_{u^i u^j}(\vec{0},x) \, u^i v^j ds \,,$$

is linear, compact and symmetric [6, 7]. This implies that

$$\vec{v} - \lambda A \vec{v} = \vec{0}, \quad \vec{v} \in X_1,$$

or equivalently

$$(P Id P - \lambda PAP) \vec{u} = \vec{0}, \quad \vec{u} \in H_0(S, T_x M),$$

where Id is the identity operator of $H_0(S, T_xM)$, and P is the orthogonal projector of $H_0(S, T_xM)$ in X_1 , considering that \vec{u} has the representation (1.10). Now the conclusion is obvious by the proposition (2.1) and the theorem (1.5). We can observe that bifurcation points exist when $q_{u^i u^j}(\vec{0}, x) \neq 0$.

References

- [1] H. Cartan, Differential Calculus Differential Forms, Herman Paris (1971). 3
- [2] B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern Geometry Methods and Applications, Part II, Springer-Verlag New York Inc. (1990). 2
- [3] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, Vol. 80 Birkhäuser, Boston-Basel-Stuttgart (1984). 3, 3
- [4] V. G. Osmolovskii, *Linear and nonlinear perturbations of operator* div, Translations of Mathematical Monographs, Vol. 160 (1997). 2
- [5] I. V. Skrypnik, Nonlinear Partial Differential Equations of Higher Order, Kiev (1973). 1
- [6] P. Vyridis, Bifurcation in a Variational Problem on a Surface with a Constraint, Int. J. Nonlinear Anal. Appl. 2 (2011), 1–10. 1, 1, 1, 3, 3
- [7] P. Vyridis, Free and Constrained Equilibrium States in a Variational Problem on a Surface (to appear) 1, 3, 3, 3