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1. Introduction

In 2012, Panthi and Jha [3] have established the following result.

Theorem 1.1. ([3]) Let A,B, T and S be four continuous self-mappings of a complete d-metric space (X, d)
such that

1. TX ⊂ AX and SX ⊂ BX;

2. The pairs (S,A) and (T,B) are weakly compatible;

3. d(Sx, Ty) ≤ α [d(Ax, Ty) + d(By, Sx)] + β [d(Ax, Sx) + d(By, Ty)] + γd(Ax,By)

for all x, y ∈ X where α, β, γ ≥ 0 satisfying α+ β + γ <
1

4
.

Then A, B, T and S have a unique common fixed point in X.
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Our purpose, here, is to prove that this theorem can be improved without any continuity requirement.

Further, we will point out that if one supposes that γ > 0, then one can replace condition α+ β+ γ <
1

4
by

α + β + γ ≤ 1

4
. Recall that the notion of dislocated metric, introduced in 2000 by Hitzler and Seda [1], is

characterized by the fact that self distance of a point need not be equal to zero and has useful applications
in topology, logical programming and in electronics engineering. For further details on dislocated metric
spaces, see, for example [2, 4]. We begin by recalling some basic concepts of the theory of dislocated metric
spaces.

Definition 1.2. Let X be a non empty set and let d : X×X → [0,∞) be a function satisfying the following
conditions

1. d(x, y) = d(y, x)

2. d(x, y) = d(y, x) = 0 implies x = y

3. d(x, y) = d(x, z) + d(z, y) forall x, y, z ∈ X.

Then d is called dislocated metric(or simply d-metric) on X.

Definition 1.3. A sequence (xn) in a d-metric space (X, d) is called a Cauchy sequence if for given ε > 0,
there exists n0 ∈ N such that for all m,n ≥ n0, we have d(xm, xn) < ε.

Definition 1.4. A sequence in a d-metric space converges if there exists x ∈ X such that d(xn, x)→ 0.

Definition 1.5. A d-metric space (X, d) is called complete if every Cauchy sequence is convergent.

Remark 1.6. It is easy to verify that in a dislocated metric space, we have the following technical properties:

• A subsequence of a Cauchy sequence in d-metric space is a Cauchy sequence.

• A Cauchy sequence in d-metric space which possesses a convergent subsequence, converges.

• Limits in a d-metric space are unique.

Definition 1.7. Let A and S be two self-mappings of a d-metric space (X, d).
A and S are said to be weakly compatible if they commute at their coincident point; that is, Ax = Sx for
some x ∈ X implies ASx = SAx.

2. Main results

Theorem 2.1. Let A,B, T and S be four self-mappings of a d-metric space (X, d) such that

1. TX ⊂ AX and SX ⊂ BX;

2. The pairs (S,A) and (T,B) are weakly compatible;

3. For all x, y ∈ X and α, β, γ ≥ 0 satisfying α+ β + γ <
1

4
, we have

d(Sx, Ty) ≤ α [d(Ax, Ty) + d(By, Sx)] + β [d(Ax, Sx) + d(By, Ty)] + γd(Ax,By); (2.1)

4. The range of one of the mappings A, B, S or T is a complete subspace of X.

Then A, B, T and S have a unique common fixed point in X.
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Proof. Let x0 be an arbitrary point in X. Choose x1 ∈ X such that Bx1 = Sx0. Choose x2 ∈ X such that
Ax2 = Tx1. Continuing in this fashion, choose xn ∈ X such that Sx2n = Bx2n+1 and Tx2n+1 = Ax2n+2 for
n = 0, 1, 2, .... To simplify, we consider the sequence (yn) defined by y2n = Sx2n and y2n+1 = Tx2n+1 for
n = 0, 1, 2, ....
We claim that (yn) is a Cauchy sequence. Indeed, by using (2.1) for n ≥ 1, we have

d(y2n+1, y2n) = d(Sx2n, Tx2n+1)
≤ α [d(Ax2n, Tx2n+1) + d(Bx2n+1, Sx2n)]

+ β [d(Ax2n, Sx2n) + d(Bx2n+1, Tx2n+1)] + γd(Ax2n, Bx2n+1)
≤ α [d(y2n−1, y2n+1) + d(y2n, y2n)]

+ β [d(y2n−1, y2n) + d(y2n, y2n+1)] + γd(y2n−1, y2n)
≤ α [d(y2n−1, y2n) + d(y2n, y2n+1) + d(y2n, y2n+1) + d(y2n+1, y2n)]

+ β [d(y2n−1, y2n) + d(y2n, y2n+1)] + γd(y2n−1, y2n)
≤ (α+ β + γ)d(y2n−1, y2n) + (3α+ β)d(y2n, y2n+1).

Therefore
d(y2n, y2n+1) ≤ h d(y2n−1, y2n)

where h =
α+ β + γ

1− 3α− β
∈ [0, 1[. Hence (yn) is a Cauchy sequence in X and therefore, according to Remarks

1.1, (Sx2n), (Bx2n+1), (Tx2n+1) and (Ax2n+2) are also Cauchy sequence.
Suppose that SX is a complete subspace of X, then the sequence (Sx2n) converges to some Sa such
that a ∈ X. According to Remark (1.6), (yn), (Bx2n+1), (Tx2n+1) and (Ax2n+2) converge to Sa. Since
SX ⊂ BX, there exists u ∈ X such that Sa = Bu. We show that Bu = Tu. In fact, by using (2.1), we have

d(Sx2n, Tu) ≤ α [d(Sx2n, Tu) + d(Bu, Sx2n)] + β [d(Ax2n, Sx2n) + d(Bu, Tu)] + γd(Ax2n, Bu)

and therefore, on letting n to infty, we get

d(Bu, Tu) ≤ α [d(Bu, Tu) + d(Bu,Bu)] + β [d(Bu,Bu) + d(Bu, Tu)] + γd(Bu,Bu)
≤ (α+ β + γ) d(Bu,Bu) + (α+ β) d(Bu, Tu)
≤ 2 (α+ β + γ) d(Bu, Tu) + (α+ β) d(Bu, Tu)
≤ (3α+ 3β + 2γ) d(Bu, Tu)

which implies that
(1− 3α− 3β − 2γ) d(Bu, Tu) ≤ 0

and therefore d(Bu, Tu) = 0, since (1− 3α− 3β − 2γ) < 0, which implies that Tu = Bu. Since TX ⊂ AX,
there exists v ∈ X such that Tu = Av. We show that Sv = Av. Indeed, by using (2.1), we have

d(Sv,Av) = d(Sv, Tu)
≤ α [d(Av, Tu) + d(Bu, Sv)] + β [d(Av, Sv) + d(Bu, Tu)] + γd(Av,Bu)
≤ α [d(Av,Av) + d(Av, Sv)] + β [d(Av, Sv) + d(Av,Av)] + γd(Av,Av)
≤ α [d(Av, Sv) + d(Sv,Av) + d(Av, Sv)] + β [d(Av, Sv) + d(Av, Sv) + d(Sv,Av)]

+ γ [d(Av, Sv) + d(Sv,Av)]
≤ (3α+ 3β + 2γ) d(Av, Sv)

which implies that
(1− 3α− 3β − 2γ) d(Av, Sv) ≤ 0

and therefore d(Av, Sv) = 0, since 1 − 3α − 3β − 2γ < 0, which implies that Av = Sv. Hence Bu = Tu =
Av = Sv.
The weak compatibility of S and A implies that ASv = SAv, from which it follows that AAv = ASv =
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SAv = SSv.
The weak compatibility of B and T implies that BTu = TBu, from which it follows that BBu = BTu =
TBu = TTu.
Let us show that Bu is a fixed point of T . Indeed, from (2.1), we get

d(Bu, TBu) = d(Sv, TBu)
≤ α [d(Av, TBu) + d(BBu, Sv)] + β [d(Av, Sv) + d(BBu, TBu)] + γd(Av,BBu)
≤ α [d(Bu, TBu) + d(TBu,Bu)] + β [d(Bu,Bu) + d(TBu, TBu)] + γd(Bu, TBu)
≤ 2αd(Bu, TBu) + β [d(Bu, TBu) + d(TBu,Bu) + d(TBu,Bu) + d(Bu, TBu)]

+ γd(Bu, TBu)
≤ (2α+ 4β + γ) d(Bu, TBu)

and therefore d(Bu, TBu) = 0, since 1 − 2α − 4β − γ < 0, which implies that TBu = Bu. Hence Bu is a
fixed point of T . It follows that BBu = TBu = Bu, which implies that Bu is a fixed point of B.
On the other hand, in view of (2.1), we have

d(SBu,Bu) = d(SBu, TBu)
≤ α [d(ABu, TBu) + d(BBu, SBu)] + β [d(ABu, SBu) + d(BBu, TBu)] + γd(ABu,BBu)
≤ α [d(SBu,Bu) + d(Bu, SBu)] + β [d(Bu,Bu) + d(Bu,Bu)] + γd(Bu,Bu)
≤ 2αd(Bu, SBu) + β [d(Bu, SBu) + d(SBu,Bu) + d(Bu, SBu) + d(SBu,Bu)]

+ γ [d(Bu, SBu) + d(SBu,Bu)]
≤ (2α+ 4β + 2γ) d(Bu, SBu)

and therefore d(Bu, SBu) = 0, since 1 − 2α − 4β − 2γ < 0, which implies that SBu = Bu. Hence Bu is a
fixed point of S. It follows that ABu = SBu = Bu, which implies that Bu is also a fixed point of S. Thus
Bu is a common fixed point of S, T , A and B.
Finally to prove uniqueness, suppose that there exists u, v ∈ X such that Su = Tu = Au = Bu and
Su = Tu = Au = Bv. If d(u, v) 6= 0, then, by using (2.1), we get

d(u, v) = d(Su, Tv)
≤ α [d(Au, Tv) + d(Bv, Su)] + β [d(Au, Su) + d(Bv, Tv)] + γd(Au,Bv)
≤ α [d(u, v) + d(u, v)] + β [d(u, u) + d(v, v)] + γd(u, v)
≤ (2α+ 4β + γ)d(u, v)

from which it follows that (1− 2α− 4β − γ) d(u, v) ≤ 0 which is a contradiction since 1− 2α− 4β − γ < 0.
Hence d(u, v) = 0 and therefore u = v.
The proof is similar when TX or AX or Bx is a complete subspace of X. This completes the proof.

For A = B and S = T in (2.1), we have the following result.

Corollary 2.2. Let (X, d) be a d-metric space. Let A and T be two self-mappings of X such that

1. TX ⊂ AX
2. The pair (T,A) is weakly compatible and

3. d(Tx, Ty) ≤ α [d(Ax, Ty) + d(Ay, Tx)] + β [d(Ax, Tx) + d(Ay, Ty)] + γd(Ax,Ay)

for all x, y ∈ X where α, β, γ ≥ 0 satisfying α+ β + γ <
1

4
4. TX or AX is a complete subspace of X.

Then A and T have a unique common fixed point in X.

For A = B = IdX in (2.1), we get the following corollary.

Corollary 2.3. Let (X, d) be a d-metric space. Let T and S be two self-mappings of X such that
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1. d(Sx, Ty) ≤ α [d(x, Ty) + d(y, Sx)] + β [d(x, Sx) + d(y, Ty)] + γd(x, y)

for all x, y ∈ X where α, β, γ ≥ 0 satisfying α+ β + γ <
1

4
2. TX or SX is a complete subspace of X.

Then T and S have a unique common fixed point in X.

For S = T = IdX in (2.1), we have the following result.

Corollary 2.4. Let (X, d) be a complete d-metric space. Let A and B be two surjective self-mappings of X
such that

d(x, y) ≤ α [d(Ax, y) + d(By, x)] + β [d(Ax, x) + d(By, y)] + γd(Ax,By)

for all x, y ∈ X where α, β, γ ≥ 0 satisfying α + β + γ <
1

4
. Then A and B have a unique common fixed

point in X.

Remark 2.5. Following the procedure used in the proof of Theorem in 2.1, we have the next new result in

which we replace the condition α+ β + γ <
1

4
by α+ β + γ ≤ 1

4

Theorem 2.6. Let A,B, T and S be four self-mappings of a d-metric space (X, d) such that

1. TX ⊂ AX and SX ⊂ BX
2. The pairs (S,A) and (T,B) are weakly compatible and

3. For all x, y ∈ X, α, β ≥ 0 and γ > 0 satisfying α+ β + γ ≥ 1

4
, we have

d(Sx, Ty) ≤ α [d(Ax, Ty) + d(By, Sx)] + β [d(Ax, Sx) + d(By, Ty)] + γd(Ax,By) (2.2)

4. The range of one of the mappings A, B, S or T is a complete subspace of X.

Then A, B, T and S have a unique common fixed point in X.

Proof. For α, β ≥ 0 and γ > 0 satisfying α + β + γ <
1

4
, we apply Theorem 2.1. For α, β ≥ 0 and γ > 0

satisfying α + β + γ =
1

4
, we consider, as in Theorem 2.1, an arbitrary point x0 in X and the sequence

(xn) defined in X by Sx2n = Bx2n+1 and Tx2n+1 = Ax2n+2 for n = 0, 1, 2, .... To simplify, we consider the
sequence (yn) defined by y2n = Sx2n and y2n+1 = Tx2n+1 for n = 0, 1, 2, ....
We claim that (yn) is a Cauchy sequence. Indeed, by using (2.2) for n ≥ 1, we have

d(y2n+1, y2n) = d(Sx2n, Tx2n+1)
≤ α [d(Ax2n, Tx2n+1) + d(Bx2n+1, Sx2n)]

+ β [d(Ax2n, Sx2n) + d(Bx2n+1, Tx2n+1)] + γd(Ax2n, Bx2n+1)
≤ α [d(y2n−1, y2n+1) + d(y2n, y2n)]

+ β [d(y2n−1, y2n) + d(y2n, y2n+1)] + γd(y2n−1, y2n)
≤ α [d(y2n−1, y2n) + d(y2n, y2n+1) + d(y2n, y2n+1) + d(y2n+1, y2n)]

+ β [d(y2n−1, y2n) + d(y2n, y2n+1)] + γd(y2n−1, y2n)
≤ (α+ β + γ)d(y2n−1, y2n) + (3α+ β)d(y2n, y2n+1)

≤ 1

4
d(y2n−1, y2n) + (3α+ β)d(y2n, y2n+1).

Therefore d(y2n, y2n+1) ≤ h d(y2n−1, y2n), where h =
1

4(1− 3α− β)
∈ [0, 1[. Hence (yn) is a Cauchy

sequence in X and therefore, according to Remarks 1.1, (Sx2n), (Bx2n+1), (Tx2n+1) and (Ax2n+2) are also
Cauchy sequence.
Suppose that SX is a complete subspace of X, then the sequence (Sx2n) converges to some Sa such
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that a ∈ X. According to Remark (1.6), (yn), (Bx2n+1), (Tx2n+1) and (Ax2n+2) converge to Sa. Since
SX ⊂ BX, there exists u ∈ X such that Sa = Bu. We show that Bu = Tu. In fact, in view of by using
(2.1), we have

d(Sx2n, Tu) ≤ α [d(Sx2n, Tu) + d(Bu, Sx2n)] + β [d(Ax2n, Sx2n) + d(Bu, Tu)] + γd(Ax2n, Bu)

and therefore, on letting n to infty, we get

d(Bu, Tu) ≤ α [d(Bu, Tu) + d(Bu,Bu)] + β [d(Bu,Bu) + d(Bu, Tu)] + γd(Bu,Bu)
≤ (α+ β + γ) d(Bu,Bu) + (α+ β) d(Bu, Tu)
≤ 2 (α+ β + γ) d(Bu, Tu) + (α+ β) d(Bu, Tu)
≤ (3α+ 3β + 2γ) d(Bu, Tu)

≤
(

3

4
− γ

)
d(Bu, Tu)

which implies that (
1

4
+ γ) d(Bu, Tu) ≤ 0. Therefore d(Bu, Tu) = 0, which implies that Tu = Bu. Since

TX ⊂ AX, there exists v ∈ X such that Tu = Av. We show that Sv = Av. In fact, by using (2.2), we have

d(Sv,Av) = d(Sv, Tu)
≤ α [d(Av, Tu) + d(Bu, Sv)] + β [d(Av, Sv) + d(Bu, Tu)] + γd(Av,Bu)
≤ α [d(Av,Av) + d(Av, Sv)] + β [d(Av, Sv) + d(Av,Av)] + γd(Av,Av)
≤ α [d(Av, Sv) + d(Sv,Av) + d(Av, Sv)] + β [d(Av, Sv) + d(Av, Sv) + d(Sv,Av)]

+ γ [d(Av, Sv) + d(Sv,Av)]
≤ (3α+ 3β + 2γ) d(Av, Sv)

≤
(

3

4
− γ

)
d(Av, Sv)

which implies that (
1

4
+ γ) d(Av, Sv) ≤ 0. Therefore d(Av, Sv) = 0, which implies that Av = Sv. Hence

Bu = Tu = Av = Sv.
The weak compatibility of S and A implies that ASv = SAv, from which it follows that AAv = ASv =
SAv = SSv.
The weak compatibility of B and T implies that BTu = TBu, from which it follows that BBu = BTu =
TBu = TTu.
Let us show that Bu is a fixed point of T . Indeed, by using (2.2), we have

d(Bu, TBu) = d(Sv, TBu)
≤ α [d(Av, TBu) + d(BBu, Sv)] + β [d(Av, Sv) + d(BBu, TBu)] + γd(Av,BBu)
≤ α [d(Bu, TBu) + d(TBu,Bu)] + β [d(Bu,Bu) + d(TBu, TBu)] + γd(Bu, TBu)
≤ 2αd(Bu, TBu) + β [d(Bu, TBu) + d(TBu,Bu) + d(TBu,Bu) + d(Bu, TBu)]

+ γd(Bu, TBu)
≤ (2α+ 4β + γ) d(Bu, TBu)

and therefore d(Bu, TBu) = 0, since 1 − 2α − 4β − γ ≥ 1 − 4(
1

4
− γ) − γ = 3γ > 0, which implies that

TBu = Bu. Hence Bu is a fixed point of T . It follows that BBu = TBu = Bu, which implies that Bu is a
fixed point of B.
On the other hand, by using (2.2), we have

d(SBu,Bu) = d(SBu, TBu)
≤ α [d(ABu, TBu) + d(BBu, SBu)] + β [d(ABu, SBu) + d(BBu, TBu)] + γd(ABu,BBu)
≤ α [d(SBu,Bu) + d(Bu, SBu)] + β [d(Bu,Bu) + d(Bu,Bu)] + γd(Bu,Bu)
≤ 2αd(Bu, SBu) + β [d(Bu, SBu) + d(SBu,Bu) + d(Bu, SBu) + d(SBu,Bu)]

+ γ [d(Bu, SBu) + d(SBu,Bu)]
≤ (2α+ 4β + 2γ) d(Bu, SBu)
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and therefore d(Bu, SBu) = 0, since 1 − 2α − 4β − 2γ ≥ 1 − 4(
1

4
− γ) − 2γ = 2γ > 0, which implies that

SBu = Bu. Hence Bu is a fixed point of S. It follows that ABu = SBu = Bu, which implies that Bu is
also a fixed point of S. Thus Bu is a common fixed point of S, T , A and B.
Finally to prove uniqueness, suppose that there exists u, v ∈ X such that Su = Tu = Au = Bu and
Su = Tu = Au = Bv. If d(u, v) 6= 0, then by using (2.2), we get

d(u, v) = d(Su, Tv)
≤ α [d(Au, Tv) + d(Bv, Su)] + β [d(Au, Su) + d(Bv, Tv)] + γd(Au,Bv)
≤ α [d(u, v) + d(u, v)] + β [d(u, u) + d(v, v)] + γd(u, v)
≤ (2α+ 4β + γ)d(u, v)

from which it follows that (1− 2α− 4β − γ) d(u, v) ≤ 0 which is a contradiction since 1− 2α− 4β − γ < 0.
Hence d(u, v) = 0 and therefore u = v.
The proof is similar when TX or AX or Bx is a complete subspace of X. This completes the proof.

For A = B and S = T in (2.6), we have the following result.

Corollary 2.7. Let (X, d) be a d-metric space. Let A and T be two self-mappings of X such that

1. TX ⊂ AX
2. The pair (T,A) is weakly compatible and

3. d(Tx, Ty) ≤ α [d(Ax, Ty) + d(Ay, Tx)] + β [d(Ax, Tx) + d(Ay, Ty)] + γd(Ax,Ay)

for all x, y ∈ X where α, β ≥ 0 and γ > 0 satisfying α+ β + γ ≤ 1

4
4. TX or AX is a complete subspace of X.

Then A and T have a unique common fixed point in X.

For A = B = IdX in (2.6), we get the following corollary.

Corollary 2.8. Let (X, d) be a d-metric space. Let T and S be two self-mappings of X such that

1. d(Sx, Ty) ≤ α [d(x, Ty) + d(y, Sx)] + β [d(x, Sx) + d(y, Ty)] + γd(x, y)

for all x, y ∈ X where α, β ≥ 0 and γ > 0 satisfying α+ β + γ ≤ 1

4
2. TX or SX is a complete subspace of X.

Then T and S have a unique common fixed point in X.

For S = T = IdX in (2.6), we have the following result.

Corollary 2.9. Let (X, d) be a complete d-metric space. Let A and B be two surjective self-mappings of X
such that

d(x, y) ≤ α [d(Ax, y) + d(By, x)] + β [d(Ax, x) + d(By, y)] + γd(Ax,By)

for all x, y ∈ X where α, β ≥ 0 and γ > 0 satisfying α+ β + γ ≤ 1

4
. Then A and B have a unique common

fixed point in X.
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