
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 7 (2014), 218–228

Research Article

Positive periodic solution for a nonlinear neutral
delay population equation with feedback control

Payam Nasertayoob, S. Mansour Vaezpour∗

Department of Mathematics, Amirkabir University of Technology (Polytechnic), Hafez Ave., P. O. Box 15914, Tehran, Iran.

Communicated by C. Park

Abstract

In this paper, sufficient conditions are investigated for the existence of positive periodic solution for a
nonlinear neutral delay population system with feedback control. The proof is based on the fixed-point
theorem of strict-set-contraction operators. We also present an example of nonlinear neutral delay population
system with feedback control to show the validity of conditions and efficiency of our results. c©2014 All rights
reserved.
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1. Introduction and Preliminaries

The preliminary mathematical model of the population growth is given by the following logistic equation:

dx

dt
= ρx(t)[1− ax(t)]. (1.1)

In the real problems, conditions for the population of species are more complicated and the simple logistic
model (1.1) could be generalized in many ways. For some kinds of population systems, when density of
species depends not only on the population at time, but also on the population unit earlier, the equation
(1.1) may be recovered as follows [15]:

dx

dt
= ρx(t)[1− ax(t)− bx(t− τ)]. (1.2)
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One can also consider the non-autonomous version of (1.2) [18], i.e.,

dx

dt
= ρ(t)x(t)[1− a(t)x(t)− b(t)x(t− τ)]. (1.3)

In the more realistic situation, the biological systems or ecosystems are continuously perturbed via unpre-
dictable forces. These perturbations are generally results of the change in the system’s parameters. In the
language of the control theory, these perturbation functions may be regarded as control variables and, con-
sequently, one should ask a question that whether or not an ecosystem can withstand those unpredictable
perturbations which persist for a finite periodic time. In the mathematical biology, the following population
model of systems of differential equations is a famous feedback control model with delays [6],

dx

dt
= ρx(t)[1− ax(t− τ)− bu(t)],

du

dt
= −ηu(t) + gx(t− τ),

where, a, b, g, µ, ρ ∈ (0,∞) and u represent an indirect feedback control mechanism. In the recent years,
study of the feedback control models has been further developed and the literature in mathematical biology
has been riched with study of such models [6, 10, 16]. Besides, many scholars have worked on neutral
systems. Some results can be found in [1, 9].

In [14], existence of positive periodic solutions for neutral population model was studied. Subsequently,
Lu et. al., [13] investigated the positive periodic solutions for such a neutral differential system with feedback
control. Besides, several scholars have paid their attention to the nonlinear population dynamics [3, 4, 5, 11],
because such kinds of systems could simulate the real world more accurately. Recently, the almost periodic
solution of the following nonlinear population dynamics with feedback control has been studied [17],

dx

dt
= x(t)[ρ(x)− a(x)xα(t)−

n∑
i=1

bi(t)x
βi(t− σi)− c(t)u(t)],

du

dt
= −η(t)u(t) +

n∑
i=1

g(t)xβi(t− σi). (1.4)

Investigation of the nonlinear system above is based on the properties of almost periodic systems and
Lyapunov-Razumikhin technique.

In this paper, we consider the following nonlinear neutral non-autonomous delay population model

dx

dt
= x(t)[ρ(x)− a(x)xα(t)−

n∑
i=1

bi(t)x
βi(t− σi)− γ(t)x′(t− τ)− c(t)u(t)],

du

dt
= −η(t)u(t) +

n∑
i=1

g(t)xβi(t− σi), (1.5)

which is a generalization of neutral system dynamics in [13], where, a, bi, g, µ, ρ, η, γ are positive ω-periodic
functions and α, βi are belong to (0,∞).
Our investigation in this paper is based on a fixed point theorem of strict-set-contractive operator which
goes back to Cac-Gatica [2] and which was used for similar purpose in [13].
We recall some preliminaries that will be used in the further sections.

Definition 1.1. Let X be a Banach space. For the bounded set Ω ⊂ X, Kuratowski measure of noncom-
pactness defines by:

µX(Ω) = inf{d > 0 : there is a finite number of subsets Ωi ⊂ Ω

such that Ω =
⋃
i

Ωi and diamΩi < d}.
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Definition 1.2. ([7, 8]) Let X and Y are Banach spaces. A continuous and bounded map
F : E ⊂ X → Y is called a k-set contraction if for any bounded set Ω ⊂ E

µY (F (Ω)) ≤ kµX(Ω).

The operator F is called a strict-set-contraction, where 0 ≤ k < 1.

Theorem 1.3. ([2, 12]) Let Π be a semi-ordered cone in a Banach space X and

Πr,R = {x ∈ Π : 0 < r ≤ ‖x‖ ≤ R}.

Let F : Πr,R → Π be a strict-set-contraction, satisfying

Fx � x for any x ∈ Πr,R and ‖x‖ = r, (1.6)

and

Fx � x for any x ∈ Πr,R and ‖x‖ = R. (1.7)

Then, F : Πr,R → Π has at least one fixed point in Πr,R .

One may easily shows that the following function is a solution of the second equation in (1.5),

(Φx)(t) =

∫ t+ω

t
G(t, s){

n∑
i=1

g(s)xβi(s− σi)}ds, (1.8)

where

G(t, s) =
exp(

∫ s
t η(θ)dθ)

exp(
∫ ω
0 η(θ)dθ)− 1

, s ∈ [t, t+ ω], t ∈ R.

Therefore, existence of the ω-periodic solution of the system (1.5) is equivalent to the existence of the
solution of the following equation:

dx

dt
= x(t)[ρ(t)− a(t)xα(t)−

n∑
i=1

bi(t)x
βi(t− σi)− γ(t)x′(t− τ)− c(t)(Φx)(t)]. (1.9)

On the other hand, each ω-periodic solution of the following integral equation

x(t) =

∫ t+ω

t
G̃(t, s)x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
βi(s− σi) + γ(s)x′(s− τ) + c(s)(Φx)(s)]ds, (1.10)

is a solution of equation (1.9), where

G̃(t, s) =
exp(−

∫ s
t ρ(θ)dθ)

1− exp(−
∫ ω
0 ρ(θ)dθ)

, s ∈ [t, t+ ω], t ∈ R.

Also, in what follows, we employ the following notations:

f = sup
t∈[t,t+ω]

f(t), f = inf
t∈[t,t+ω]

f(t),

λ = exp(−
∫ ω

0
ρ(θ)dθ) < 1, κ = exp(

∫ ω

0
η(θ)dθ) > 1,

Cω = {x ∈ C(R, (0,+∞)) : x(t+ ω) = x(t)},
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C1ω = {x ∈ C1(R, (0,+∞)) : x(t+ ω) = x(t)},

A = min{1, α, β1, ..., βn}, B = max{1, α, β1, ..., βn},

Ψ(t) =

∫ t+ω

t
G(t, s)g(s)ds,

M = sup
t∈[t,t+ω]

[a(t) +

n∑
i=1

bi(t) + γ(t) + nc(t)Ψ(t)],

N =

∫ ω

0
[a(s) +

n∑
i=1

bi(s) + γ(s) + nc(s)Ψ(s)]ds.

Clearly, two spaces (Cω, ‖‖) and (C1ω, ‖‖1) are Banach spaces. Where

‖x‖ = max
t∈[t,t+ω]

|x(t)|,

and
‖x‖1 = max{‖x(t)‖, ‖x′(t)‖}.

We define the following integral operator F : Π 7→ C1ω

(Fx)(t) =

∫ t+ω

t
G̃(t, s)x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
βi(s− σi) + γ(s)x′(s− τ) + c(s)(Φx)(s)]ds, (1.11)

where, Π = {x ∈ C1ω : x(t) ≥ λ‖x‖1} is a semi-ordered cone in C1ω.

2. Main results

Lemma 2.1. Let R ≤ 1, ρ ≤ 1 and there exists a positive real number Z such that

Z ≤ λBrB−A, (2.1)

and

M ≤ (ρ+ 1)
Zλ2

(1− λ)
N, (2.2)

and

γ(t) ≤ Z{a(t) +
n∑
i=1

bi(t) + nc(t)Ψ(t)}, (2.3)

then, the integral operator F maps Πr,R into Π.

Proof : For x ∈ Πr,R with R ≤ 1, we have

Z ≤ λBrB−A ≤ λB‖x‖B−A1 ≤ λξ‖x‖ξ−A1 , for any ξ ∈ {1, α, β1, ..., βn},

therefore
Z‖x‖A1 ≤ λξ‖x‖

ξ
1 ≤ x

ξ(t), for any ξ ∈ {1, α, β1, ..., βn}. (2.4)

On the other hand, since ‖x‖1 ≤ 1, we obtain

‖x‖ξ1 ≤ ‖x‖
A
1 , for any ξ ∈ {1, α, β1, ..., βn}, (2.5)

thus
nZ‖x‖A1 Ψ(t) ≤ (Φx)(t) ≤ n‖x‖A1 Ψ(t). (2.6)
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Applying (2.3), (2.4) and (2.6), we have

‖x‖A1 γ(t) ≤ Z‖x‖A1 a(t) + Z‖x‖A1
n∑
i=1

bi(t) + nZ‖x‖A1 c(t)Ψ(t).

Thus

±x′(t)γ(t) ≤ ‖x‖1γ(t) ≤ a(t)xα(t) +
n∑
i=1

bi(t)x
βi(t− σi) + c(t)(Φx)(t).

Consequently,

0 ≤ a(t)xα(t) +
n∑
i=1

bi(t)x
βi(t− σi)± x′(t)γ(t) + c(t)(Φx)(t). (2.7)

On the other hand, since ρ is a positive and ω-periodic function we obtain

λ

1− λ
≤ G̃(t, s) ≤ 1

1− λ
. (2.8)

Step 1. We show (Fx)(t) ≥ λ‖Fx‖.
‖Fx‖ = sup

t∈[t,t+ω]
|(Fx)(t)|

= sup
t∈[t,t+ω]

∫ t+ω

t
G̃(t, s)x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
βi(s− σi)

+γ(s)x′(s− τ) + c(s)(Φx)(s)]ds

≤ 1

1− λ

∫ t+ω

t
x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
βi(s− σi)

+γ(s)x′(s− τ) + c(s)(Φx)(s)]ds

=
1

λ
{
∫ t+ω

t

λ

1− λ
x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
βi(s− σi)

+γ(s)x′(s− τ) + c(s)(Φx)(s)]ds}

=
1

λ

∫ t+ω

t
G̃(t, s)x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
βi(s− σi)

+γ(s)x′(s− τ) + c(s)(Φx)(s)]ds

=
1

λ
(Fx)(t). (2.9)

Step 2. We show (Fx)′(t) ≤ Fx. Based on the Leibniz integral rule, relations (2.2) and (2.8), we obtain

(Fx)′(t) = G̃(t+ ω, t)x(t+ ω)

× [a(t+ ω)xα(t+ ω) +

n∑
i=1

bi(t+ ω)xβi(t+ ω − σi)

+ γ(t+ ω)x′(t+ ω − τ) + c(t+ ω)(Φx)(t+ ω)]

− G̃(t)x(t)[a(t)xα(t) +

n∑
i=1

bi(t)x
βi(t− σi)

+ γ(t)x′(t− τ) + c(t)(Φx)(t)]

= (
λ

1− λ
− 1

1− λ
)x(t)[a(t)xα(t) +

n∑
i=1

bi(t)x
βi(t− σi)

+ γ(t)x′(t− τ) + c(t)(Φx)(t)]− ρ(t)(Fx)(t)

≤ ρ(t)(Fx)(t) ≤ (Fx)(t). (2.10)
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Step 3. We show −(Fx)′(t) ≤ (Fx)(t). Applying (2.2), (2.10), (2.5), (2.8) and (2.4), we obtain

−(Fx)′(t) = x(t)[a(t)xα(t) +
n∑
i=1

bi(t)x
βi(t− σi)

+ γ(t)x′(t− τ) + c(t)(Φx)(t)]− ρ(t)(Fx)(t)

≤ ‖x‖A+1
1 sup

t∈[t,t+ω]
[a(t) +

n∑
i=1

bi(t) + γ(t) + nc(t)Ψ(t)]− ρ(t)(Fx)(t)

≤ ‖x‖A+1
1 M − ρ(Fx)(t)

≤ ‖x‖A+1
1 {ρ+ 1} Zλ2

(1− λ)
N − ρ(Fx)(t)

= {ρ+ 1}
∫ ω

0

λ

1− λ
(λ‖x‖1)[a(s)(Z‖x‖A1 ) +

n∑
i=1

bi(s)(Z‖x‖A1 )

+ γ(s)(Z‖x‖A1 ) + c(s)n(Z‖x‖A1 )Ψ(t)]ds− ρ(Fx)(t)

≤ {ρ+ 1}
∫ t+ω

t
G̃(t, s)x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
βi(s− σi)

+ γ(s)x′(s− τ) + c(s)(Φx)(s)]ds− ρ(Fx)(t)

= {ρ+ 1}(Fx)(t)− ρ(Fx)(t) = (Fx)(t).

Steps 1, 2 and 3 result that (Fx)(t) ≥ λ‖Fx‖1. Thus, Fx ∈ Π and the proof is completed. �

Lemma 2.2. Let the relation (2.2) satisfies and Rγ ≤ 1, then F : Πr,R 7→ Π is a strict-set-contraction.

Proof : Clearly, one may indicate that F is continuous and bounded operator. Let Ω ⊂ Πr,R be any
bounded set and µC1ω(Ω) = d, then, for any positive real number ε ≤ Rγd there exists a finite family {Ωi}
such that Ω =

⋃
i Ωi and diamΩi ≤ d+ ε. Thus,

‖x− y‖1 ≤ d+ ε, for any x, y ∈ Ωi. (2.11)

On the other hand, Ωi is precompact in Cω thus there is a finite family of subsets Ωij such that Ωi =
⋃
j Ωij

and
max{‖x− y‖, ‖xα − yα‖, ‖xβ1 − yβ1‖, ..., ‖xβn − yβn‖} ≤ ε, (2.12)

for any x, y ∈ Ωij . Also, F (Ω) is precompact in Cω. To see this, note that

|(Fx)(t)| ≤ 1

1− λ
‖x‖A+1

1

∫ ω

0
{a(t) +

n∑
i=1

bi(t) + γ(t) + nc(t)Ψ(t)}dt

≤ N

γA+1(1− λ)
.

This inequality together with (2.6) give

|(Fx)′(t)| = |x(t)[a(t)xα(t) +
n∑
i=1

bi(t)x
βi(t− σi)

+ γ(t)x′(t− τ) + c(t+ ω)(Φx)(t)]− ρ(t)(Fx)(t)|

≤ ‖x‖A+1
1 |a(t) +

n∑
i=1

bi(t) + γ(t) + nc(t)Ψ(t)|+ 1

λ
|(Fx)(t)|

≤ 1

γA+1
{M +

N

λ(1− λ)
} = %. (2.13)
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Suppose {ξm} is an arbitrary sequences on Ω. Clearly, {ξm} is bounded. Based on the definition of integral
operator F in (1.10) the function (Fξm)(t) is differentiable for all m ∈ N and t ∈ [0, ω]. For given ε > 0, if
we consider δ = ε

% , then for all m ∈ N and t, t′ ∈ [0, ω] with |t− t′| < δ we obtain

|(Fξm)(t)− (Fξm)(t′)| ≤ %|t− t′| ≤ ε.

Thus, {(Fξm)(t)} as a sequence of functions on [0, ω] is equicontinuous. Therefore, based on Arzela-Ascoli
theorem there exists a subsequent of {(Fξm)(t)}, say {(Fξmi)(t)}, which is uniformly convergence on [0, ω].
Consequently, F is a compact bounded operator and F (Ω) is precompact in Cω. As a result, there exists a
family of subsets Ωijk such that Ωij =

⋃
k Ωijk and

‖Fx− Fy‖ ≤ ε, for any x, y ∈ Ωijk. (2.14)

On the other hand, applying (2.10), (2.11), (2.12) and (2.14), for any x, y ∈ Ωijk, we obtain

‖(Fx)′ − (Fy)′‖ = sup
t∈[t,t+ω]

|(Fx)′(t)− (Fy)′(t)|

≤ sup
t∈[t,t+ω]

|ρ(t)(Fx)′(t)− ρ(t)(Fy)′(t)|

+ sup
t∈[t,t+ω]

|x(t)[a(t)xα(t) +

n∑
i=1

bi(t)x
βi(t− σi)

+ γ(t)x′(t− τ) + c(t)(Φx)(t)]− y(t)[a(t)yα(t)

+
n∑
i=1

bi(t)y
βi(t− σi) + γ(t)y′(t− τ) + c(t)(Φy)(t)]|

≤ ‖ρ‖‖(Fx)′ − (Fy)′‖

+ sup
t∈[t,t+ω]

|(x(t)− y(t))[a(t)yα(t) +

n∑
i=1

bi(t)y
βi(t− σi)

+ γ(t)y′(t− τ) + c(t)(Φy)(t)]|

≤ 1

λ
ε+ {aRα +

n∑
i=1

biR
βi + γR+ cg

κ

κ− 1

n∑
i=1

Rβiω}ε

+ R{aε+
n∑
i=1

biε+ γ(d+ ε) + cg
κ

κ− 1
nεω}

≤ Rγd+ Jε, (2.15)

where

J =
1

λ
+ a{Rα +R}+

n∑
i=1

bi{Rβi +R}

+ 2γR+ cg
κ

κ− 1
ω{

n∑
i=1

Rβi +R}.

Therefore, from (2.14) and (2.15) and the condition ε ≤ Rγd, we obtain

‖Fx− Fy‖1 ≤ Rγd+ Jε, for any x, y ∈ Ωijk.

Since ε is arbitrary small, we have
µC1ω(F (Ω)) ≤ RγµC1ω(Ω),

and the proof of lemma is completed. �
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Theorem 2.3. Let conditions of the Lemma 2.1 hold, also

r < {1− λ
N
}

1
A , (2.16)

and

{1− λ
ZλN

}
1
A < R, (2.17)

then, the integral operator (1.11) has at least one periodic solution in Πr,R.

Proof : step 1. Let x ∈ Πr,R and ‖x‖ = r. If Fx = x, then the operator F has fixed point.
Let Fx > x. This means that Fx − x ∈ Π − {0}, which implies that (Fx)(t) − x(t) ≥ λ‖Fx − x‖1,
consequently,

‖x‖ ≤ ‖Fx‖. (2.18)

Applying (2.8), (2.5) and inequality (2.16), we have

(Fx)(t) =

∫ t+ω

t
G̃(t, s)x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
βi(s− σi)

+γ(s)x′(s− τ) + c(s)(Φx)(s)]ds

≤ 1

1− λ

∫ t+ω

t
x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
βi(s− σi)

+γ(s)x′(s− τ) + c(s)(Φx)(s)]ds

≤ 1

1− λ

∫ t+ω

t
‖x‖[a(s)‖x‖α1 +

n∑
i=1

bi(s)‖x‖βi1

+γ(s)‖x‖1 + c(s)
n∑
i=1

‖x‖βi1 Ψ(s)]ds

≤ ‖x‖‖x‖A1
1− λ

∫ ω

0
[a(s) +

n∑
i=1

bi(s) + γ(s) + nc(s)Ψ(s)]ds

=
‖x‖rAN

1− λ
< ‖x‖, (2.19)

therefore,
‖x‖ ≤ ‖Fx‖ < ‖x‖.

which is a contradiction.
step 2. Let x ∈ Πr,R and ‖x‖ = R. If Fx = x, then the operator F has fixed point.
Let Fx > x. This means that x − Fx ∈ Π − {0}, which implies that x(t) − (Fx)(t) ≥ λ‖Fx − x‖1,
consequently, for any t ∈ [0, ω] we have

(Fx)(t) ≤ x(t). (2.20)

Applying (2.20), (2.8), (2.4) and (2.17), we have

x(t) ≥ (Fx)(t)

=

∫ t+ω

t
G̃(t, s)x(s)[a(s)xα(s) +

n∑
i=1

bi(s)x
β
i (s− σi)

+γ(s)x′(s− τ) + c(s)(Φx)(s)]ds

≥ λ‖x‖1
1− λ

∫ t+ω

t
[a(s)xα(s) +

n∑
i=1

bi(s)x
β
i (s− σi)

+γ(s)x′(s− τ) + c(s)(Φx)(s)]ds
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≥ λ‖x‖1
1− λ

∫ t+ω

t
[a(s)(λ‖x‖1)α +

n∑
i=1

bi(s)(λ‖x‖1)βi

+γ(s)(λ‖x‖1) + c(s)

n∑
i=1

(λ‖x‖1)βiΨ(s)]ds

≤ Zλ‖x‖1‖x‖A1
1− λ

∫ ω

0
[a(s) +

n∑
i=1

bi(s) + γ(s) + nc(s)Ψ(s)]ds

=
Zλ‖x‖1RA

1− λ
N > ‖x‖1.

That is a contradiction. Therefore, (1.6) and (1.7) hold. By Theorem 1.3 we see that the integral operator
F has at least one fixed point in Πr,R under appropriate conditions. �

Remark 2.4. Note that

N =

∫ ω

0
[a(s) +

n∑
i=1

bi(s) + γ(s) + nc(s)Ψ(s)]ds

≤
∫ ω

0
sup

t∈[t,t+ω]
[a(t) +

n∑
i=1

bi(t) + γ(t) + nc(t)Ψ(t)]ds

≤ ωM.

Thus, for any arbitrary positive ω-periodic functions a, bi, γ, c and g the real number ω is bounded below
by N

M .
On the other hand, inequality (2.2) yields

1− λ
λ2Z{ρ+ 1}

≤ N

M
≤ ω. (2.21)

This shows that ω is also bounded below by (1− λ)(λ2Z{ρ+ 1})−1. However, λ depends on the both select
of the function ρ and period number ω. This means that ρ is a ω-periodic function with the following
property:

exp(2

∫ ω

0
ρ(θ)dθ)− exp(

∫ ω

0
ρ(θ)dθ) ≤ ωZ(ρ+ 1),

that is valid for ρ(t) = 1+sin(2πt)
32 , ω = 1 and Z = 0.9.

Remark 2.5. According to the Lemma 2.2, F : Πr,R 7→ Π is a strict-set-contraction operator so long as
Rγ ≤ 1. Or

γ(t) ≤ 1

R
.

Thus, with due attention to inequality (2.17), we obtain

γ(t) ≤ {ZλN
1− λ

}
1
A .

On the other hand, inequality (2.16) yields N
1
A < {1− λ}

1
A r−1, consequently,

γ(t) <
{Zλ}

1
A

r
. (2.22)
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Thus, γ is bounded above by {Zλ}
1
A r−1.

Remark 2.6. Combining inequalities (2.16) and (2.17), we obtain

1− λ
ZλRA

< N <
1− λ
rA

, (2.23)

that indicate that N is bounded above and below.

3. Illustrative Example

Consider the following system of neutral population dynamics with delay and feedback control

dN

dt
= N(t)[1 + sin(2πt)− w(1− cos(2πt))N

31
32 (t)

− w(1 +
1

2
cos(2πt))(N

32
33 (t− σ1) +N

33
34 (t− σ2))

− w(2 + cos(2πt))N ′(t− τ)− w(1 +
10

18
cos(2πt))u(t)]

du

dt
= (−1− cos(2πt))u(t) +

1− sin(2πt)

0.582
(N

32
33 (t− σ1) +N

33
34 (t− σ2)),

which is an example of nonlinear population system (1.5), with

n = 2, ω = 1,

a(t) = w(1− cos(2πt)), c(t) = w(1 +
10

18
cos(2πt)),

g(t) =
1− sin(2πt)

0.582
, ρ(t) =

1 + sin(2πt)

32
,

γ(t) = w(2 + cos(2πt)), η(t) = 1 + cos(2πt),

b1(t) = b2(t) = w(1 +
1

2
cos(2πt)),

α =
31

32
, β1 =

32

33
, β2 =

33

34
,

λ = exp(−
∫ 1

0
ρ(θ)dθ) = exp(−

∫ 1

0
(
1 + sin(2πθ)

32
)dθ) =

1
32
√
e

= 0.9692 < 1,

κ = exp(

∫ 1

0
η(θ)dθ) = exp(

∫ 1

0
1 + cos(2πθ)dθ)) = e > 1,

R = 0.99, Z = 0.9, r = 0.5.

Taking into consideration aforesaid data, we have

Z = 0.9 < 0.9692× (
1

2
)

1
32 = 0.948 = λBrB−A, (3.1)

and
M

N
=

10.31w

5.27w
= 1.97 < (ρ+ 1)

Zλ2

(1− λ)
= 27.44. (3.2)

Besides, according to the inequality
1

e− 1
≤ G(s, t),
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we obtain,

2 + cos(2πt) ≤ 4.5 + cos(2πt)

= 0.9{1− cos(2πt) + 1 +
1

2
cos(2πt) + 1 +

1

2
cos(2πt) + 2(1 +

10

18
cos(2πt))}

= 0.9{1− cos(2πt) + 1 +
1

2
cos(2πt) + 1 +

1

2
cos(2πt)

+ 2(1 +
10

18
cos(2πt))

1

e− 1

∫ 1

0

1− sin(2πt)

0.582
}

≤ 0.9{1− cos(2πt) + 1 +
1

2
cos(2πt) + 1 +

1

2
cos(2πt)

+ 2(1 +
10

18
cos(2πt))

∫ 1

0
G(s, t)

1− sin(2πt)

0.582
}.

(3.3)

These three expressions, (3.1), (3.2) and (3.3) show that conditions (2.1), (2.2) and (2.3) in Lemma 2.1 are
valid for our example. At the end, for the inequality (2.23) we obtain 0.0439 < N < 0.0745, that is valid by
proper choosing of w.
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