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Abstract

We carry out the global bifurcation analysis of the classical Lorenz system. For many years, this system has
been the subject of study by numerous authors. However, until now the structure of the Lorenz attractor
is not clear completely yet, and the most important question at present is to understand the bifurcation
scenario of chaos transition in this system. Using some numerical results and our bifurcational geometric
approach, we present a new scenario of chaos transition in the Lorenz system. c©2014 All rights reserved.
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1. Introduction

We consider a three-dimensional dynamical system

ẋ = σ(y − x), ẏ = x(r − z)− y, ż = xy − bz (1)

known as the Lorenz system. Historically, (1) was the first dynamical system for which the existence of an
irregular attractor (chaos) was proved for σ = 10, b = 8/3, and 24,06 < r < 28. For many years, the Lorenz
system has been the subject of study by numerous authors; see, e. g., [1, 2], [11]–[16]. However, until now
the structure of the Lorenz attractor is not clear completely yet, and the most important question at present
is to understand the bifurcation scenario of chaos transition in system (1).

In Section 2 of this paper, we recall the classical scenario of chaos transition in the Lorenz system (1).
In Section 3, we give for (1) a relatively new chaos transition scenario proposed by N. A. Magnitskii and
S. V. Sidorov [12]. In Section 4, we present a different bifurcation scenario for system (1), where σ = 10,
b = 8/3, and r > 0, using numerical results of [12] and our bifurcational geometric approach to the global
qualitative analysis of three-dimensional dynamical systems which we applied earlier in the planar case
[3]–[10].
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2. The classical scenario of chaos transition

First, let us briefly recall the contemporary point of view on the structure of the Lorenz attractor and
chaos transition [12, 16].

1. The Lorenz system (1) is dissipative and symmetric with respect to the z-axis. The origin O(0, 0, 0)
is a singular point of system (1) for any σ, b, and r. It is a stable node for r < 1. For r = 1, the origin
becomes a triple singular point, and then, for r > 1, there are two more singular points in the system:
O1(

√
b(r−1),

√
b(r−1), r−1) and O2(−

√
b(r−1),−

√
b(r−1), r−1) which are stable up to the parameter

value ra = σ(σ + b + 3)/(σ − b − 1) (ra ≈ 24,74 for σ = 10 and b = 8/3). For all r > 1, the point O is a
saddle-node. It has a two-dimensional stable manifold W s and a one-dimensional unstable manifold W u. If
1 < r < r1 ≈ 13,9, then separatrices Γ1 and Γ2 issuing from the point O along its one-dimensional unstable
manifold W u are attracted by their nearest stable points O1 and O2, respectively.

2. If r = r1, then each of the separatrices Γ1 and Γ2 becomes a closed homoclinic loop. In this case, two
homoclinic loops are tangent to each other and the z-axis at the point O and form a figure referred to as
a homoclinic butterfly. It is assumed that the generation of an unstable homoclinic butterfly is one of the
two bifurcations leading to the appearance of the Lorenz attractor.

3. If r1 < r < r2 ≈ 24,06, then a saddle periodic trajectory bifurcates from each of the closed homoclinic
loops (these trajectories will be denoted by L1 and L2, respectively). In this case, separatrices Γ1 and
Γ2 tend to the stable points O2 and O1, respectively. It is usually assumed that stable manifolds of the
saddle periodic trajectories L1 and L2 are the boundaries of attraction domains of points O1 and O2. A
curve issuing from the exterior of these domains can make oscillations from the neighborhood of L1 into a
neighborhood of L2 and conversely until it enters the attraction domain of the attractor O1 and O2; the
closer is parameter r to the value r2, the larger is the number of oscillations. This behavior of the system is
referred to as metastable chaos. If r = r2, then separatrices Γ1 and Γ2 do not tend to the points O2 and O1,
but wind around the limit saddle cycles L2 and L1, respectively. Here the second bifurcation leading to the
appearance of the Lorenz attractor takes place. If r2 < r < r3 = ra, then points O1 and O2 are still stable.
In addition, in the phase space, there is an attracting set B referred to as the Lorenz attractor; it is a set
of integral curves moving from L1 to L2 and vice versa. The saddle point O, together with its separatrices
Γ1 and Γ2, belongs to the attractor.

4. If r → r3 = ra, then the saddle limit cycles L1 and L2 shrink to the points O1 and O2; for r = r3,
they vanish and coincide with these points as a result of the Andronov–Hopf subcritical bifurcation.

5. If r3 < r < r4 ≈ 30,1, then the Lorenz attractor is the unique stable limit set of system (1). It is usually
assumed that this set is a branching surface S lying near the plane x − y = 0 and consisting of infinitely
many sheets tied together and infinitely close to each other. A phase trajectory issuing on the left from the
z-axis comes untwisted along a spiral around the point O1 until the transition to the right of the z-axis, after
which it becomes untwisted along a spiral around the point O2 in the opposite direction. The number of
rotations around the points O1 and O2 varies irregularly; thus the motion looks chaotic. It is assumed that
the attractor is not a two-dimensional manifold and has a fractal structure [12]. If r4 < r ≤ 313, then the
structure of solutions of the system of Lorenz equations becomes extremely complicated with alternation of
chaotic and periodic modes. It is usually assumed that there may be infinitely many periodicity windows
in the system, and each of such windows is a direct subharmonic cascade of bifurcations, which terminates
with a basic stable limit cycle. For further growth of r, each of such cycles is destroyed by an intermittency,
and the appearance of periodicity windows is preceded by the inverse cascade of bifurcations [12].

6. If r > 313, then the unique stable limit cycle is an attractor in the Lorenz system.

3. The Magnitskii–Sidorov scenario

It was shown in [12], that actually in the Lorenz system absolutely another scenario of chaos transition
would be realized. It turns out that all cycles from infinite family of unstable cycles, generating Lorenz
attractor, have crossing with an one-dimensional unstable not invariant manifold V u of the point O (do not
confuse with the invariant unstable manifold W u). This result follows from the theory of dynamical chaos



V. A. Gaiko, J. Nonlinear Sci. Appl. 7 (2014), 429–434 431

stated in [12]. After the derivation of analytic formulas for the manifold V u, it becomes possible to reduce
the problem of establishing and proving the existence of unstable cycles in the Lorenz system to the one-
dimensional case, namely, to finding stable points of the one-dimensional first return mapping defined on
the unstable manifold [12]. By this method, it is shown in [12] that items 2 and 3 of the above-represented
classical scenario of transition to chaos in the Lorenz system (1) are invalid. Some assertions of items 4–6
fail, while other require a more detailed investigation.

1. This item remains the same as item 1 of the classical scenario.
2. If r = r1 ≈ 13,9, then the separatrices Γ1 and Γ2 do not form two separate homoclinic loops. Here

we have a bifurcation with the generation of a single closed contour surrounding both stationary points O1

and O2; the end of the separatrix Γ1 enters the beginning of the separatrix Γ2, and vice versa, the end of
Γ2 enters the beginning of Γ1. As r grows, from this contour, a closed cycle C0 appears there first. It is an
eight-shaped figure surrounding both points O1 and O2.

3. If r1 < r < r2 ≈ 24,06, then cycles L1 and L2 surrounding the points O1 and O2, respectively, do
not appear; but with further growth of r, pairs of cycles C+

n , C
−
n , n = 0, 1, . . . , are successively generated.

They determine the generation of the Lorenz attractor. The cycle C+
n makes n complete rotations in the

half-space containing the point O1 and one incomplete rotation around the point O2. Conversely, the cycle
C−
n makes n complete rotations around the point O2 and one incomplete rotation around the point O1.

For each r, r1 < r < r2, there exists the number n(r) (n(r)→∞ as r → r2) such that in the phase-space
of (1), there are unstable cycles C0, C

+
k , C

−
k , k = 0, . . . , n, and cycles C+

km, C
−
km, k,m < n, which make k

rotations around the point O1 and m rotations around the point O2 and are various combinations of the
cycles C+

n and C−
n , and many other cycles generated by bifurcations of the cycles C+

n and C−
n [12]. Points

of intersection of all these cycles with the manifold Vu have the following arrangement on the curve Vu for
0 ≤ zmin ≤ z ≤ zmax < r − 1. The point zmin corresponds to the right large single loop of the cycle C−

n .
This loop is the larger face of the right truncated cone of the set S. Further, the trajectory of the cycle
passes into the left half-plane and makes n clockwise rotations around the point O2. The smallest first loop
around the point O2 is the smaller face of the truncated cone of the set S. The point zmax corresponds to
the smallest loop of the cycle C+

n around the point O1. This loop is the smaller face of the right truncated
cone. Further, the trajectory of this cycle makes n rotations around the point O1 clockwise, passes into the
left half-plane, and makes one large rotation around the point O2. This rotation is the larger face of the left
truncated cone. Between the points zmin and zmax there is a point z0 corresponding to the main cycle C0.

Boundaries of the attraction domains of the stable points O1 and O2 are given by the smallest loops of
the cycles C+

n and C−
n , whose size decay as r grows. Therefore, for some r = rm, the attraction domain

of the set B no longer intersects the attraction domains of points O1 and O2, and the set B becomes an
attractor. Therefore, in the Lorenz system (a = 10, b = 8/3), metastable chaos exists only in the interval
r1 < r < rm, and in the interval rm < r < r2, the system has three stable limit sets, namely, O1 and O2 and
the Lorenz attractor.

If r → r2, then the eye size decreases as the number of rotations of the cycles C+
n and C−

n around the
points O1 and O2, respectively, grows. The value zmax grows, and zmin decays; moreover, zmin → 0 as
r → r2. The lengths of generatrices of truncated cones grow, since additional rotations are added to the
cone vertex and diminish the size of the smaller face. Conversely, the larger face grows. If r = r2, then
zmin = 0, but zmax < r − 1; thus, the larger face of each cone achieves its maximal size, while the smaller
face is not contracted into a point, the cone vertex. The following bifurcation takes place. In the limit as
n→∞, each set of cycles C+

n (respectively, C−
n ) forms a point-cycle heteroclinic structure consisting of two

separatrix contours of the point O. The first contour consists of a separatrix issuing from the point O along
its unstable manifold and spinning on the appearing (only for r = r2) saddle cycle L1 (respectively, L2) of
the point O1 (respectively, O1). The second contour consists of the separatrix spinning out from the saddle
cycle L1 (respectively, L2) and entering the point O along its stable manifold.

As mentioned above, the described bifurcation does not lead to generation of the Lorenz attractor for
r = r2. It is more correct to say that it is only a prerequisite of destruction of the attractor as r decays. The
attractor itself, existing in the system for r = r2, is formed from finitely many stable cycles C±

k , k = 0, . . . , l,
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for r < 313. It contains neither separatrices Γ1 and Γ2 of the point O nor infinitely many unstable cycles
C±
n existing in the neighborhood of the point-cycle heteroclinic structure.

If r2 < r < r3, then points O1 and O2 are still stable, and their attraction domains are bound by the
appearing limit cycles L1 and L2 contracting to points as r → r3. But the Lorenz attractor B is not a
set of integral curves going from L1 to L2 and back, and separatrices Γ1 and Γ2 of the saddle point O do
not belong to the attractor. Cycles L1 and L2 have already made their job at r = r2 and no longer have
anything to do with the attractor. If r2 < r < r3, then, just as in the case of r1 < r < r2, the cycles C+

n and
C−
n appear again from separatrix contours. The attractor is determined by finitely many such cycles [12].

4. For r = r3, the saddle cycles L1 and L2 disappear. In the system, there is a unique limit set, namely,
the Lorenz attractor.

5. There exist one more important value of the parameter r which affects the formation of the Lorenz
attractor. This is a point r4 ≈ 30,485. If r grows from r3 to r4, then the number of rotations of the cycles
C+
n and C−

n first rapidly decays, then grows again. In this case, eyes by separatrices of the point O are much
smaller than attractor eyes and begin to grow as r increases. Therefore, almost heteroclinic and almost
homoclinic contours exist in system (1) at the point r4.

The process of generation of the Lorenz attractor in system (1) as r decays from the value 313 up to r4
is referred to as the incomplete double homoclinic cascade [12]. The complete cascade occurs if the r-axis
passes exactly through the point of existence of two homoclinic contours. Note that in systems with a single
homoclinic contour, there can be a simple complete or incomplete homoclinic cascade of bifurcations of
transition to chaos, and in [12], a detailed description of transition to chaos through the double homoclinic
(complete or incomplete) cascade of bifurcations is given. Just as in item 6 of the classical scenario, if
r > 313, then in the system, there exists a unique stable limit cycle C0 surrounding both points. If r ≈ 313,
then the cycle C0 becomes unstable and generates two stable cycles C+

0 and C−
0 which also surround the

points O1 and O2 but have deflections in the direction of corresponding halves of the unstable manifold V u

of the point O. This is the point where the double homoclinic cascade of bifurcations really begins. In case
of an incomplete cascade, it consists of finitely many stages of appearance of stable cycles C±

k , k = 0, . . . , l,
and their infinitely many further bifurcations. But in case of a complete cascade, the number of stages is
infinite, and at the limit of l→∞, cycles tend to homoclinic contours of the points O1 and O2, respectively.
At the k-th stage of the cascade, originally stable cycles C±

k undergo a subharmonic cascade of bifurcations
and form two band-form attractors that consist of infinitely many unstable limit cycles intersecting the
respective domains of the unstable manifold V u of the point O. Then these two bands merge and form a
single attractor surrounding both the points O1 and O2, after which there is a cascade of bifurcations of
cycles generated as a result of the merger and making rotations separately around the points O1 and O2 and
simultaneously around both the points. The last cascade of bifurcations has the property of self-organization,
since it is characterized by simplification of the structure of cycles and the generation of new stable cycles
with a smaller number of rotations around the points O1 and O2 as r decays. Each cycle of the cascade of
self-organization bifurcations undergoes its own subharmonic cascade of bifurcations, after which all cycles
formed during infinitely many bifurcations of all subharmonic cascades and cascades of self-organization
bifurcations of cycles become unstable and form some set Bk. After an incomplete homoclinic cascade of
bifurcations, we obtain a set B =

⋃
Bk consisting of infinitely many possible unstable cycles appearing

at all stages of the cascade. These cycles generate an incomplete double homoclinic attractor, that is the
classical Lorenz attractor.

6. This item remains the same as item 6 of the classical scenario.

4. The bifurcational geometric scenario

Revising the above scenarios, we carry out the global bifurcation analysis of the Lorenz system (1) and
present a new scenario of chaos transition in this system for σ = 10, b = 8/3, and r > 0.

1. If r < 1, the unique singular point O of system (1) is a stable node. For r = 1, it becomes a triple
singular point, and then, for r > 1, there are two more singular points in the system: O1 and O2 which
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are stable up to the parameter value ra ≈ 24,74. For all r > 1, the point O is a saddle-node. It has a two-
dimensional stable manifold W s and an one-dimensional unstable manifold W u. If 1 < r < rl = r1 ≈ 13,9,
then the separatrices Γ1 and Γ2 issuing from the point O along its one-dimensional unstable manifold W u

are attracted by their nearest stable points O1 and O2, respectively.
2. If r = rl, then each of the separatrices Γ1 and Γ2 becomes a closed homoclinic loop. In this case, two

unstable homoclinic loops, C+
0 and C−

0 , are formed around the points O1 and O2, respectively. They are
tangent to each other and the z-axis at the point O and form together a homoclinic butterfly.

3. If rl < r < ra ≈ 24,74, then, unfortunately, neither the classical scenario (see, e. g., [16]) nor the
scenario of [12] can be realized. The reason is that, in both cases, trajectories of system (1) should intersect
the two-dimensional stable manifold W s of the point O. Since this is impossible, the only way to overcome
the contradiction is to suppose that a cascade of period-doubling bifurcations [12] will begin immediately in
each of the half-spaces with respect to the manifold W s, when r > rl. In this case, each of the homoclinic
loops C+

0 and C−
0 generates an unstable limit cycle of period 2 and a stable limit cycle of period 1 lying

between the coils of the cycle of period 2 in the corresponding half-spaces containing the points O1 and O2,
respectively. With further growth of r, each of the cycles of period 2 generates an unstable limit cycle of
period 4 with a stable limit cycle of period 3 inside of it and each of the cycles of period 1 generates a stable
limit cycle of period 2 with an unstable limit cycle of period 1 inside of it. Then, after next doubling, we
will have in each of the half-spaces an unstable limit cycle of period 8 with an inserted stable limit cycle
of period 7 and a stable limit cycle of period 6 with an inserted unstable limit cycle of period 5, and a
stable limit cycle of period 4 with an inserted unstable limit cycle of period 3, and an unstable limit cycle of
period 2 with an inserted stable limit cycle of period 1. Continuing this process further, we will obtain limit
cycles of all periods from one to infinity, and the space between these cycles will be filled by spirals issuing
from unstable limit cycles and tending to stable limit cycles as t→ +∞. These cycles are inserted into each
other, they make various combinations of rotation around the points O1 and O2 in the corresponding half-
spaces containing these points and form geometric constructions (limit periodic sets) which look globally
like very flat truncated cones described in the chaos transition scenario of [12].

4. For r = ra, the biggest unstable limit cycles of infinite period disappear through the Andronov–
Shilnikov bifurcation [11, 14] in each of the half-spaces containing the points O1 and O2 (the cone vertices
are at these points), and these points become unstable saddle-foci generating two small stable limit cycles
lying on two-dimensional focus manifolds of O1 and O2.

5. If ra < r < +∞, then a cascade of period-halving bifurcations [12] occurs in each of the half-spaces
with respect to the manifold W s. We have got again two symmetric with respect to the z-axis limit periodic
sets consisting of limit cycles of all periods which are inserted into each other and make various combinations
of rotation around the points O1 and O2 in the corresponding half-spaces containing these points, and the
space between the cycles is filled by spirals issuing from unstable limit cycles and tending to stable limit
cycles as t→ +∞. With further growth of r, the period-halving process makes the limit periodic sets more
and more flat. The obtained geometric constructions are the only stable limit sets of system (1). The spirals
of the unstable saddle-foci O1 and O2 and the trajectories issuing from infinity tend to these limit periodic
sets (more precisely, to their stable limit cycles) as t→ +∞. Just these stable limit periodic sets form two
symmetric parts of the so-called Lorenz attractor, and this really looks very chaotic.

6. If r → +∞ (numerically, when r > 313), then the period-halving process will be finishing and
system (1) will have two stable limit cycles lying on the two-dimensional focus manifolds of the unstable
saddle-foci O1 and O2 in two phase half-spaces of (1) containing these points. This completes our scenario
of chaos transition in the Lorenz system (1).
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