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Abstract

Employing quasilinearization technique coupled with the method of upper and lower solutions, we con-
struct monotone sequences whose iterates are solutions to corresponding linear problems and show that
the sequences converge uniformly and monotonically to the unique solution of the nonlinear problem with
causal operator. Especially, instead of assuming convexity or concavity assumption on the nonlinear term
that is demanded by the method of quasilinearization, we impose weaker conditions to be more useful in
applications. The results obtained include several special cases and extend previous results. c©2016 All
rights reserved.
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1. Introduction

Causal differential equations (CDEs) or differential equations with causal operators, namely, non-an-
ticipative or abstract Volterra operators, appear in applied sciences and many branches of engineering.
Especially, they are very common equations for modeling problems in mechanical engineering, physical
engineering, electric and electronics engineering, etc. [14, 22, 23, 24, 25]. Moreover, causality is a basic
concept in physical sciences to describe the process of cause and effect in a particular situation.

In further development of nonlinear differential equations together with its importance in physical sys-
tems, much attention has been given to CDEs. They have been a very popular and considerable subject in
applied mathematics because of the fact that the theory of CDEs has the powerful quality of unifying ordi-
nary differential equations, differential equations with finite or infinite delay, integro-differential equations,
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integral equations, functional equations, and so on. All these equations are special cases of CDEs. The
reader can consult [5, 6] for a monograph on this subject with more details. After Corduneanu’s work [6], a
lot of research has been done on CDEs. A systematic account of these developments and new extensions of
CDEs in infinite dimensional spaces, fractional CDEs, set differential equations with causal operators and
CDEs with retardation and anticipation, have been considered in detail by Lakshmikantham, founder of
nonlinear federation, in [18].

On the other hand, linear and nonlinear initial value problems (IVPs) for differential equations appear in
many areas of applied mathematics, physics and in variational problems of circuit, system and control theory.
Since the initial value is commonly related to the time variable and every physical process has a starting time,
IVPs are more commonly known (met, used, dealt, encountered) in physical systems. Moreover, it is known
that various initial boundary value problems for ordinary and partial differential equations can be reduced
to IVPs (see [9, 16]). This reduction allows us to study differential equations with operator coefficient in
abstract spaces (see [1, 2, 15, 26] and the references therein). One of the most significant and important
central point for a nonlinear IVP is to understand how nonlinearity affects the nature and characteristic of
the solution. Even though questions of existence and uniqueness for linear and nonlinear boundary value
problems (BVPs) appear more difficult than for IVPs, in fact, there is no specific general theory for the
answer of this question. Nevertheless, there is a large cycle of works on the existence and uniqueness of the
solutions of nonlinear IVPs. Monotone iterative technique (MIT) and the method of quasilinearization are
well-known and the most common methods in the literature for the answer of the question.

As we know, for proving basic results of existence for nonlinear differential equations, the MIT is a
powerful and flexible method providing a useful mechanism to construct monotone flows from corresponding
linear equations [17] using the upper and lower solutions as initial iterations. Actually, it is shown that these
flows converge monotonically to the extremal solutions of nonlinear equations. In other respects, the method
of quasilinearization is a well-known technique to obtain approximate solutions of nonlinear differential
equations with rapid convergence. The fundamental of the method of quasilinearization lies in the theory of
dynamical programming. Indeed, the quasilinearization technique is a variant version of Newton’s method.
It can be used for both IVPs and BVPs. Besides, by the method of quasilinearization, one gets monotone
schemes whose iterates converge uniformly and quadratically to the unique solution of the problem at hand
[21, 29, 30]. Generally, this method is implemented to the problems with convex or concave nonlinearities.
In view of its miscellaneous usage and applications, the quasilinearization approach is quite wondrous and
easier for applications. Therefore, this method is effective for obtaining approximate solutions of nonlinear
differential equations with finite or infinite delay, integral equations, functional equations, and so on.

A great deal of works on the method of quasilinearization spearheaded by Bellman [3, 4] and Kalaba [4]
has been done in the literature. It provides a descent approach to obtain approximate solutions of nonlinear
BVPs. Lakshmikantham and many coauthors have developed the method extensively and applied it to a
wide range of problems. We refer the reader to the works by Lakshmikantham et al. [19, 20, 21] and the
references therein.

To the best of our knowledge, in researches on causal differential equations, BVPs have mainly been
considered as the main problem [7, 8, 10, 12, 13, 18, 27]. Moreover, MIT has been generally applied to the
basic results concerning the existence problems (see [7, 10, 11, 12, 13, 28] and the references therein). For
example, in [8], the notion of a causal operator has been extended to periodic BVPs{

x′(t) = (Qx)(t),
x(0) = x(2π),

and a MIT has been developed to obtain the existence of a solution in a closed set. In [12], Jankowski, a
Polish mathematician on this subject, investigated the following nonlinear four-point BVPs for second order
differential equation 

x′′(t) = (Qx)(t), t ∈ J = [0, T ],
g1(x(0), x(δ)) = 0, 0 < δ < T,
g2(x(T ), x(γ)) = 0, 0 < γ < T,

(1.1)
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where g1, g2 ∈ C(R × R, R). Sufficient conditions for the existence of solutions, using a monotone
iterative method, were obtained. In [13], nonlinear two-point BVPs for first-order differential equations
with causal operators Q of the form{

x′(t) = (Qx)(t), t ∈ J = [0, T ],
g(x(0), x(T )) = 0

were investigated by the same author and sufficient conditions for the existence of solutions were obtained by
using MIT. Note that the above nonlinear BVP reduces to a periodic BVP for g(x(0), x(T )) = x(0)− x(T )
and an IVP for g(x(0), x(T )) = x(0)−x0. In the same year, in [10], Geng considered the same problem and
the existence of extremal solutions to problem (1.1) was established by utilizing MIT and the method of
upper and lower solutions. After a couple of years, in [27], Wang and Tian considered the following problem{

x′(t) = (Qx)(t) + (Px)(t), t ∈ J = [0, T ],
g(x(0), x(T )) = 0

on the new concepts of upper and lower solutions by constructing monotone sequences and alternating
sequences converging uniformly to the coupled minimal and maximal solutions to the problem.

Finally, the same authors of the paper [27] investigated nonlinear BVPs for difference equations with
causal operators in [28] by using the method of upper and lower solutions coupled with the monotone
iterative technique.

A large cycle of works exist on the basic results of linear and nonlinear BVPs for CDEs where MIT
is used for the results of these problems. However, there are a few rare studies in which the method of
quasilinearization is used for the basic results of IVPs by causal operators.

In [18], Lakshmikantham et al. considered the following causal differential equation{
x′(t) = (Qx)(t), t ∈ J = [0, T ],

x(0) = x0,
(1.2)

where the operator Q satisfies the convexity assumption. The method of quasilinearization is employed
to get lower and upper bounds concurrently. Subsequently, they investigate the case when Q admits a
decomposition into a difference of two convex or concave parts{

x′(t) = (Qx)(t) + (Px)(t), t ∈ J = [0, T ],
x(0) = x0,

with causal operators Q, P . The results are valid for initial value problems.
In [29], by choosing a weaker assumption with initial functions having different initial times, this tech-

nique is appropriately applied to equation (1.2).
The main goal of this study is to improve Lakshmikantham’s study [18] for equation (1.2) containing

general classes of functions. For this goal, we exert the quasilinearization technique coupled with upper
and lower solutions to study CDEs for which particular and general results, including several special cases,
are obtained. As a result, we find monotone sequences whose iterates are solutions to corresponding linear
problems and show that the sequences converge uniformly and monotonically to the unique solution of the
nonlinear problem with causal operators. Especially, instead of imposing the convexity or the concavity
assumption on the operators involved, we assume weaker conditions. Furthermore, we demonstrate that
these monotone sequences converge semi-quadratically.

2. Preliminaries

In this section, some basic definitions related to causal operator, upper and lower solutions, and some
theorems about existence and uniqueness of CDEs are presented and they are necessary for the development
of the paper.
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Definition 2.1. An operator S : E → E, E = C ([t0, t0 + T ] , Rn), is called causal (or non-anticipatory) if,
for any x, y ∈ E such that x(s) = y(s), we have (Sx)(s) = (Sy)(s) for t0 ≤ s < t0 + T .

Consider the following initial value problem (IVP) for CDE{
x′(t) = (Sx) (t), t ∈ J = [0, T ] ,

x(0) = x0,
(2.1)

where S : E → E is a continuous operator, E = C (J,R) , J = [0, T ].

Definition 2.2. Solutions y, z ∈ C1 (J,R) are said to be lower and upper solutions to (2.1) respectively if
they satisfy the following inequalities

y′ ≤ (Sy) (t), y(0) ≤ x0,

z′ ≥ (Sz) (t), z(0) ≥ x0,

for t ∈ J .

Definition 2.3. An operator S : E → E, E = C ([t0, t0 + T ] , Rn) is said to be semi-nondecreasing at t
for each x if

(Sx) (t1) = (Sy) (t1) and (Sx) (t) ≤ (Sy) (t), t0 ≤ t < t1 < t0 + T

for
x (t1) = y (t1) , x(t) < y(t), t0 ≤ t < t1 < t0 + T.

Next theorem is related to the uniqueness of the solution of (2.1) under the Lipschitz condition.

Theorem 2.4. Assume that the operator S satisfies

|(Sx) (t)− (Sy) (t)| ≤ L |x(t)− y(t)| , x, y ∈ Ω, L > 0,

where Ω =

{
x, y ∈ E : max

t0≤s≤t
|x(s)− y(s)| = |x(t)− y(t)|

}
. Then, there exists a unique solution x(t) to IVP

(2.1) on J .

For a proof of the above theorem, see [18].
If we know the existence of lower and upper solutions y, z such that y(t) ≤ z(t), t ∈ J to IVP (2.1), then

existence of a solution to (2.1) can be proved in the sector

Ω̃ = {x ∈ E : y(t) ≤ x(t) ≤ z(t), t ∈ J} .

Accordingly, we give an existence result in this special closed set Ω̃ generated by lower and upper solutions.

Theorem 2.5. Let y, z ∈ C (J,R) be lower and upper solutions to (2.1) such that y(t) ≤ z(t), t ∈ J .
Further, we assume that the operator S is bounded on Ω̃. Then, there exists a solution x(t) to (2.1) satisfying
y(t) ≤ x(t) ≤ z(t), t ∈ J .

For a detailed proof of the above theorem, see [18].

3. Main Theorem

Let the operator S in (2.1) admits a splitting into three parts as P +Q+R. In that case, problem (2.1)
has the following form {

x′(t) = Px(t) +Qx(t) +Rx(t), t ∈ J = [0, T ] ,
x(0) = x0,

where P,Q,R : E → E are continuous operators. As we will state below, P satisfies a weaker condition than
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convexity, Q satisfies a weaker condition than concavity and R is Lipschitzian. We are now in a position to
give the main result.

Theorem 3.1. Suppose that the following hypotheses hold:
H1: y0, z0 ∈ C1(J,R), y0(t) ≤ z0(t) on J and for t ∈ J

y′0 ≤ (Sy0) (t), y0(0) ≤ x0,

z′0 ≥ (Sz0) (t), z0(0) ≥ x0 (3.1)

with y0(0) ≤ x0 ≤ z0(0) where S = P +Q+R.
H2: The Frechet derivatives Px, Qx exist and they are continuous and Px(x)y is semi-nondecreasing in

y for each x and

(Px) (t) ≥ (Py) (t) + (Pxy) (x− y) (t), x ≥ y (3.2)

|(Pxx) (t)− (Pxy) (t)| ≤ L1 |x(t)− y(t)| with L1 > 0, x, y ∈ Ω.

Moreover Qx(x)y is semi-noninreasing in y for each x and

(Qx) (t) ≥ (Qy) (t) + (Qxx) (x− y) (t), x ≥ y (3.3)

|(Qxx) (t)− (Qxy) (t)| ≤ L2 |x(t)− y(t)| with L2 > 0, x, y ∈ Ω

H3: The operator R satisfies the Lipschitz condition

|(Rx) (t)− (Ry) (t)| ≤ K |x(t)− y(t)| with K > 0, x, y ∈ Ω.

Then, there exist monotone sequences {yn} , {zn} such that lim
n→∞

yn = ρ, lim
n→∞

zn = η uniformly and mono-

tonically on J to the unique solution ρ = η = x to IVP (2.1) and the convergence is semi-quadratic i.e.,
there exist nonnegative constants α, β, γ, ᾱ, β̄, γ̄ such that

max
t∈J
|x− yn+1| ≤ αmax

t∈J
|x− yn|2 + βmax

t∈J
|zn − x|2 + γmax

t∈J
|x− yn|

and
max
t∈J
|zn+1 − x| ≤ ᾱmax

t∈J
|x− yn|2 + β̄max

t∈J
|zn − x|2 + γ̄max

t∈J
|zn − x| .

Proof. We consider the following linear IVPs with causal operators{
y′n+1(t) = (Syn) (t) + [(Pxyn) (t) + (Qxzn) (t)−K] (yn+1 − yn) (t),

yn+1(0) = x0
(3.4)

{
z′n+1(t) = (Szn) (t) + [(Pxyn) (t) + (Qxzn) (t)−K] (zn+1 − zn) (t).

zn+1(0) = x0.
(3.5)

Observe that each linear CDE with corresponding initial condition has unique solution. We intend to prove
that

y0 ≤ y1 ≤ · · · ≤ yn ≤ zn ≤ · · · ≤ z1 ≤ z0, on J. (3.6)

First, we show that
y0 ≤ y1 ≤ z1 ≤ z0, on J. (3.7)

Set m(t)= y0 − y1 on J . Then, we get

m′(t) = y′0(t)− y′1(t)
≤ (Sy0) (t)− {(Sy0) (t) + [(Pxy0) (t) + (Qxz0) (t)−K] (y1 − y0) (t)}
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= [(Pxy0) (t) + (Qxz0) (t)−K]m(t)

and m(0) ≤ 0. It follows that m(t) ≤ 0 which implies y0 ≤ y1 on J .
Next, take m(t) = y1 − z0; then in view of (3.4) and H1 on J , we write

m′(t) = y′1 − z′0
= (Sy0) (t) + [(Pxy0) (t) + (Qxz0) (t)−K] (y1 − y0) (t)− z′0
≤ (Py0) (t) + (Qy0) (t) + (Ry0) (t)

+ [(Pxy0) (t) + (Qxz0) (t)−K] (y1 − y0) (t)− (Sz0) (t)

= (Py0) (t) + (Qy0) (t) + (Ry0) (t)

+ [(Pxy0) (t) + (Qxz0) (t)−K] (y1 − y0) (t)

− [(Pz0) (t) + (Qz0) (t) + (Rz0) (t)]

= [(Py0) (t)− (Pz0) (t)] + [(Qy0) (t)− (Qz0) (t)]

+ [(Ry0) (t)− (Rz0) (t)] + [(Pxy0) (t) + (Qxz0) (t)−K] (y1 − y0) (t).

At this point, taking into consideration H2, H3, and the fact that y0 ≤ z0, the following inequalities can be
obtained:

(Pz0) (t) ≥ (Py0) (t) + (Pxy0) (z0 − y0) (t),

(Pxy0) (y0 − z0) (t) ≥ (Py0) (t)− (Pz0) (t).

Similarly

(Qz0) (t) ≥ (Qy0) (t) + (Qxz0) (z0 − y0) (t),

(Qxz0) (y0 − z0) (t) ≥ (Qy0) (t)− (Qz0) (t),

and
−K (z0 − y0) ≤ (Rz0) (t)− (Ry0) (t) ≤ K (z0 − y0) .

Substituting these into the above inequality, we get

m′(t) ≤ (Pxy0) (y0 − z0) (t) + (Qxz0) (y0 − z0) (t) +K (z0 − y0)
+ [(Pxy0) (t) + (Qxz0) (t)−K] (y1 − y0) (t)

= [(Pxy0) (t) + (Qxz0) (t)−K] (y0 − z0 + y1 − y0)
= [(Pxy0) (t) + (Qxz0) (t)−K] (y1 − z0) (t).

This implies that
m′(t) ≤ [(Pxy0) (t) + (Qxz0) (t)−K]m(t) and m(0) ≤ 0,

which yields m(t) ≤ 0. Thus, we achieve y0 ≤ y1(t) ≤ z0(t) on J . In a similar manner, one can obtain
y0 ≤ z1 ≤ z0 on J . We now prove that y1 ≤ z1 on J . For this aim, we put m(t) = y1 − z1 and note that
m(0) = 0. Then, by (3.4) and (3.5)

m′(t) = y′1 − z′1
= (Py0) (t) + (Qy0) (t) + (Ry0) (t)

+ [(Pxy0) (t) + (Qxz0) (t)−K] (y1 − y0) (t)

− (Pz0) (t)− (Qz0) (t)− (Rz0) (t)

− [(Pxy0) (t) + (Qxz0) (t)−K] (z1 − z0) (t)

= [(Pxy0) (t) + (Qxz0) (t)−K] (y1 − y0 + z0 − z1) (t)
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+ [(Py0) (t)− (Pz0) (t)] + [(Qy0) (t)− (Qz0) (t)]

+ [(Ry0) (t)− (Rz0) (t)] .

From H2, H3, and the fact that y0 ≤ z0 on J , it follows that

m′(t) ≤ [(Pxy0) (t) + (Qxz0) (t)−K] (y1 − y0 + z0 − z1) (t)

− (Pxy0) (z0 − y0) (t)− (Qxz0) (z0 − y0) (t) +K (z0 − y0)
= [(Pxy0) (t) + (Qxz0) (t)−K] (y1 − y0 + z0 − z1 + y0 − z0) (t)

= [(Pxy0) (t) + (Qxz0) (t)−K] (y1 − z1) (t),

which shows that m′(t) ≤ [(Pxy0) (t) + (Qxz0) (t)−K]m(t) and m(0) = 0. Therefore, we reach m(t) ≤ 0,
i.e., y1 ≤ z1 on J proving (3.7).

Now using the mathematical induction, assume that for an integer k > 1,

yk−1 ≤ yk ≤ zk ≤ zk−1 on J.

We need to show that
yk ≤ yk+1 ≤ zk+1 ≤ zk on J.

To do so, we take m(t) = yk − yk+1 and utilize H2, H3; we have

m′(t) = y′k − y′k+1

= (Syk−1) (t) + [(Pxyk−1) (t) + (Qxzk−1) (t)−K] (yk − yk−1) (t)

− (Syk) (t)− [(Pxyk) (t) + (Qxzk) (t)−K] (yk+1 − yk) (t)

= (Pyk−1 − Pyk) (t) + (Qyk−1 −Qyk) (t) + (Ryk−1 −Ryk) (t)

+ [(Pxyk−1) (t) + (Qxzk−1) (t)−K] (yk − yk−1) (t)

− [(Pxyk) (t) + (Qxzk) (t)−K] (yk+1 − yk) (t)

≤ (Pxyk−1) (yk−1 − yk) (t) + (Qxzk−1) (yk−1 − yk) (t)

+K (yk−1 − yk)

+ (Pxyk−1) (yk − yk−1) (t) + (Qxzk−1) (yk − yk−1) (t)

+ [(Pxyk) (t) + (Qxzk) (t)] (yk − yk+1) (t)

+K (yk−1 − yk + yk+1 − yk)

= [(Pxyk) (t) + (Qxzk) (t)−K] (yk − yk+1) (t),

where we used the semi-nondecreasing and semi-nonincreasing property of Px(x) and Qx(x)y, respectively.
Thus, one attains m′(t) ≤ [(Pxyk) (t) + (Qxzk) (t)−K]m(t), m(0) = 0 which yields yk ≤ yk+1 on J .
Analogously, it can be shown that zk+1 ≤ zk on J . To prove yk+1 ≤ zk+1, let m(t) = yk+1 − zk+1; then, by
employing H2, H3 and in view of yk ≤ zk, we get

m′(t) = y′k+1 − z′k+1

= (Syk) (t) + [(Pxyk) (t) + (Qxzk) (t)−K] (yk+1 − yk) (t)

− (Szk) (t)− [(Pxyk) (t) + (Qxzk) (t)−K] (zk+1 − zk) (t)

≤ (Pxyk) (yk − zk) (t) + (Qxzk) (yk − zk) (t)−K (yk − zk)

+ [(Pxyk) (t) + (Qxzk) (t)−K] (yk+1 − yk − zk+1 + zk) (t)

≤ [(Pxyk) (t) + (Qxzk) (t)−K] (yk+1 − zk+1) .

Owing to m′(t) ≤ [(Pxyk) (t) + (Qxzk) (t)−K]m(t) and m(0) = 0, we find m(t) ≤ 0, i.e., yk+1 ≤ zk+1 on J .
Obviously, the constructed sequences {yn} , {zn} are equicontinuous and uniformly bounded. Therefore,

employing the Ascoli-Arzela theorem, we find subsequences {ynk
} and {znk

} converging uniformly to the
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functions ρ and η, respectively. However, since the sequences {yn} , {zn} are monotonic, we infer that the
whole sequences converge uniformly and monotonically to ρ and η on J, respectively when n→∞.

Using the corresponding Volterra integral equations of (3.4), (3.5), and passing to limit as n → ∞, we
conclude that ρ and η are solutions to (2.1). Since the operator S satisfies the Lipschitz condition, a unique
solution exists, that is, ρ = x = η on J .

It remains to demonstrate the semi-quadratic convergence. For this aim, we set pn+1 = x − yn+1,
rn+1 = zn+1 − x. Note that pn+1(0) = 0, rn+1(0) = 0. Now consider the following relations

p′n+1 = x′ − y′n+1

= (Sx) (t)− (Syn) (t)− [(Pxyn) (t) + (Qxzn) (t)−K] (yn+1 − yn) (t)

= [(Pxξ) + (Qxσ) +K] (x− yn) (t)

+ [(Pxyn) (t) + (Qxzn) (t)−K] (yn − yn+1) (t),

where yn ≤ ξ, σ ≤ x. Due to monotone-nondecreasing property of Px and monotone-nonincreasing property
of Qx, it follows that

p′n+1 ≤ [(Pxx) (t) + (Qxyn) (t) +K] pn(t)

+ [(Pxyn) (t) + (Qxzn) (t)−K] (pn+1 − pn) (t)

= [(Pxx) (t)− (Pxyn) (t)] pn(t)

+ [(Qxyn) (t)− (Qxzn) (t)] pn(t) + 2Kpn(t)

+ [(Pxyn) (t) + (Qxzn) (t)−K] pn+1(t)

≤ L1p
2
n + L2 (pn + rn) pn + 2Kpn

+ [(Pxyn) (t) + (Qxzn) (t)−K] pn+1(t)

≤
(
L1 +

3

2
L2

)
p2n +

1

2
L2r

2
n + 2Kpn

+ [(Pxyn) (t) + (Qxzn) (t)−K] pn+1

by the inequalities given in H2, H3. Moreover,

p′n+1 ≤Mpn+1 +

(
L1 +

3

2
L2

)
p2n +

1

2
L2r

2
n + 2Kpn,

where M = M1 +M2 −K and |Px(x)| ≤M1 and |Qx(x)| ≤M2. Now, Gronwall’s inequality implies

0 < pn+1 ≤
t∫

0

eM(t−s)
[(
L1 +

3

2
L2

)
p2n(s) +

1

2
L2r

2
n(s) + 2Kpn(s)

]
ds.

Let α = eMT

M

(
L1 + 3

2L2

)
, β = eMT

2M L2, γ = 2eMT

M K. Then, we reach the desired result for t ∈ J ,

max
J
|x− yn+1| ≤ αmax

J
|x− yn|2 + βmax

J
|zn − x|2 + γmax

J
|x− yn| ,

which shows semi-quadratic convergence.
In a similar way, by using similar computation, we arrive at

max
J
|zn+1 − x| ≤

eMT

M

[
1

2
L2 max

J
|x− yn|2 +

(
L1 +

3

2
L2

)
max
J
|zn − x|2

+2K max
J
|zn − x|

]
= ᾱmax

J
|x− yn|2 + β̄max

J
|zn − x|2 + γ̄max

J
|zn − x| ,

where ᾱ = eMT

2M L1, β̄ = eMT

M

(
3
2L1 + L2

)
, γ̄ = 2eMT

M K which completes the proof.
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Remark 3.2. Let (Px) (t) + (Qx) (t) ≡ 0 on J ; then we have the monotone method and the convergence is
linear.

Remark 3.3. Let (Qx) (t) + (Rx) (t) ≡ 0 on J ; then Theorem 3.1 reduces to Theorem (3.6.1) in [18], and
the convergence is quadratic.

Remark 3.4. Let (Rx) (t) ≡ 0 on J ; then Theorem 3.1 transforms into Theorem (3.7.1) in [18], and the
convergence is quadratic.
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