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Abstract

In this paper, we prove the Ulam stability of the following set-valued functional equation by employing the
direct method and the fixed point method, respectively,
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1. Introduction and Preliminaries

The investigation of the Ulam stability problems of functional equations originated from a question of
Ulam [19] concerning the stability of group homomorphisms, i.e.,

Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given ε > 0, does there exist a
δ > 0 such that if a function h : G1 → G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1,
then there is a homomorphism H : G1 → G2 such that d(h(x), H(x)) < ε for all x ∈ G1?
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The following year, Hyers [7] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hereafter, the theorem of Hyers was generalized by Aoki [1] for additive mappings and by Rassias
[14] for linear mappings by allowing an unbounded Cauchy difference. It should be pointed out that Ras-
sias’s work has a great influence on the development of the Ulam stability theory of functional equations.
Afterwards, Gǎvruta [6] generalized the Rassas’s theorem by using a general control function. Since then,
the Ulam stability of various types of functional equations has been widely and extensively studied. For
more details, the reader is referred to [5, 9, 15, 17].

As a generalization of the stability of single-valued functional equations, Lu and Park [11] initiated the
study of the Ulam stability of set-valued functional equations, in which the functional inequality is replaced
by an appropriate inclusion relation. In the following, various authors considered the Ulam stability problems
of several types of set-valued functional equations by using a similar method [12, 13]. Unlike the previous
approach, Kenary et al. [10] applied the Hausdorff metric defined on all closed convex subsets of a Banach
space to characterize the functional inequality and investigated the Ulam stability of several types of set-
valued functional equations by using a fixed point technique, which is used to deal with the stability of
single-valued functional equations. Recently, Jang et al. [8] and Chu et al. [3] further studied the Ulam
stability problems of some generalized set-valued functional equations in a similar way.

In [18], Shen and Lan constructed the following functional equation:
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they proved that the general solution of the preceding functional equation on an Abelian group is equivalent
to the solution of the classic quadratic functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y),

it is natural to say that the above functional equation constructed by Shen and Lan is a quadratic functional
equation.

Throughout this paper, unless otherwise stated, let X be a real vector space and Y be a Banach space
with the norm ‖ · ‖Y . We denote by Cb(Y ), Cc(Y ) and Ccb(Y ) the set of all closed bounded subsets of Y , the
set of all closed convex subsets of Y and the set of all closed convex bounded subsets of Y , respectively.

Let A and B be two nonempty subsets of Y , λ ∈ R. The addition and the scalar multiplication can be
defined as follows

A+B = {a+ b|a ∈ A, b ∈ B}, λA = {λa|a ∈ A}.
Furthermore, for the subsets A,B ∈ Cc(Y ), we write A⊕ B = A+B, where A+B denotes the closure

of A+B.
Generally, for arbitrary λ, µ ∈ R+, we can obtain that

λA+ λB = λ(A+B), (λ+ µ)A ⊆ λA+ µA.

In particular, if A is convex, then we have (λ+ µ)A = λA+ µA.
For A,B ∈ Cb(Y ), the Hausdorff distance between A and B is defined by

h(A,B) := inf{ε > 0|A ⊆ B + εS1, B ⊆ A+ εS1},

where S1 denotes the closed unit ball in Y , i.e., S1 = {y ∈ Y |‖y‖Y ≤ 1}. Since Y is a Banach space, it is
proved that (Ccb(Y ),⊕, h) is a complete metric semigroup [2]. R̊adström [16] proved that (Ccb(Y ),⊕, h) can
be isometrically embedded in a Banach space.

The main purpose of this paper is to establish the Ulam stability of the following quadratic set-valued
functional equation by employing the direct method and the fixed point method, respectively.
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The following are some properties of the Hausdorff distance.
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Lemma 1.1 (Castaing and Valadier [2]). For any A1, A2, B1, B2, C ∈ Ccb(Y ) and λ ∈ R+, the following
expressions hold
(i) h(A1 ⊕A2, B1 ⊕B2) ≤ h(A1, B1) + h(A2, B2);
(ii) h(λA1, λB1) = λh(A1, B1);
(iii) h(A1 ⊕ C,B1 ⊕ C) = h(A1, B1).

In the following, we recall an fundamental result in the fixed point theory to be used.

Lemma 1.2 (Diaz and Margolis [4]). Let (X, d) be a complete generalized metric space, i.e., one for which
d may assume infinite values. Suppose that J : X → X be a strictly contractive mapping with Lipschitz
constant L < 1. Then for every element x ∈ X, either

d(Jnx, Jn+1x) =∞

for all n ≥ 0 or there exists an n0 ∈ N such that
(i) d(Jnx, Jn+1x) <∞ for all n ≥ n0;
(ii) The sequence {Jnx} converges to a fixed point y∗ of J ;
(iii) y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0x, y) <∞};
(iv) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

2. Ulam stability of the quadratic set-valued functional equation (1.1): The direct method

In this section, we shall consider the Ulam stability of the set-valued equation (1.1) by employing the
direct method.

Theorem 2.1. Let ϕ : X3 → [0,∞) be a function such that

Φ(x, y, z) =
∞∑
k=0

1

4k
ϕ(2kx, 2ky, 2kz) <∞ (2.1)

for all x, y, z ∈ X. Suppose that f : X → Ccb(Y ) is the mapping with f(0) = {0} and satisfies
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≤ ϕ(x, y, z) (2.2)

for all x, y, z ∈ X. Then

Q(x) = lim
n→∞

f(2nx)

4n

exists for every x ∈ X and defines a unique quadratic mapping Q : X → Ccb(Y ) such that

h(f(x), Q(x)) ≤ 1

4
Φ(x, x, x) (2.3)

for all x ∈ X.

Proof. Putting y = z = x in (2.2). Since f(0) = {0}, by Lemma 1.1, we can get that

h
(1

4
f(2x), f(x)

)
≤ 1

4
ϕ(x, x, x) (2.4)

for all x ∈ X. Replacing x by 2n−1x and dividing by 4n−1 in (2.4), we have

h
( 1

4n
f(2nx),

1

4n−1
f(x)

)
≤ 1

4n
ϕ(2n−1x, 2n−1x, 2n−1x) (2.5)
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for all x ∈ X and n ∈ N. From (2.4) and (2.5), it follows that

h
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f(x),

1

4n
f(2nx)

)
≤

n∑
k=1

1

4k
ϕ(2k−1x, 2k−1x, 2k−1x) (2.6)

for all x ∈ X and n ∈ N. Now we claim that the sequence { 1
4n f(2nx)} is a Cauchy sequence in (Ccb(Y ), h).

Indeed, for all m,n ∈ N, by (2.6), we can obtain that
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1
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=
1

4m

n−1∑
k=0

1

4k+1
ϕ(2m+kx, 2m+kx, 2m+kx)

(2.7)

for all x ∈ X. From the condition (2.1), it follows that the last expression tends to zero as m → ∞.
Then, the sequence { 1

4n f(2nx)} is Cauchy. Therefore, the completeness of Ccb(Y ) implies that the following
expression is well-defined, that is, we can define

Q(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ X.
Next, we show that Q satisfies the set-valued equality (1.1). Replacing x, y, z by 2nx, 2ny, 2nz in (2.2),

respectively, and dividing both sides by 4n, we get

1

4n
h
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f
(
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x− y + z

2
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⊕ f
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x+

y − z
2

))
⊕ f(2n(x+ z)),

3f(2nx)⊕ 1

2
f(2ny)⊕ 3

2
f(2nz)

)
≤ 1

4n
ϕ(2nx, 2ny, 2nz).

By letting n→∞, since the right-hand side in the preceding expression tends to zero, we obtain that Q is
a quadratic set-valued mapping. Moreover, letting n→∞ in (2.6), we get the desired inequality (2.3).

To prove the uniqueness of Q. Assume that Q′ is another quadratic set-valued mapping satisfying the
inequality (2.3). Thus we can infer that

h(Q(x), Q′(x)) =
1

4n
h(Q(2nx), Q′(2nx))

≤ 1

4n
(h(Q(2nx), f(2nx)) + h(f(2nx)) +Q′(2nx))

≤ 2

4n+1
Φ(2nx, 2nx, 2nx).

It is easy to see from the condition (2.1) that the last expression tends to zero as n→∞. Then, we obtain
that Q(x) = Q′(x) for all x ∈ X. This completes the proof of the theorem.

Corollary 2.2. Let 0 < p < 2 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose that
f : X → Ccb(Y ) is a set-valued mapping with f(0) = {0} and satisfies

h
(
f
(
x− y + z

2

)
⊕ f

(
x+

y − z
2

)
⊕ f(x+ z), 3f(x)⊕ 1
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)
≤ θ(‖x‖p + ‖y‖p + ‖z‖p)
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for all x, y, z ∈ X. Then there exists a unique quadratic set-valued mapping Q : X → Ccb(Y ) that satisfies
the equality (1.1) and

h(f(x), Q(x)) ≤ 3θ‖x‖p

4− 2p

for all x ∈ X.

Proof. Letting ϕ(x, y, z) = θ(‖x‖p + ‖y‖p + ‖z‖p) and the result follows directly from Theorem 2.1.

Corollary 2.3. Let 0 < p < 2
3 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose that

f : X → Ccb(Y ) is a set-valued mapping with f(0) = {0} and satisfies

h
(
f
(
x− y + z

2

)
⊕ f

(
x+

y − z
2

)
⊕ f(x+ z), 3f(x)⊕ 1

2
f(y)⊕ 3

2
f(z)

)
≤ θ‖x‖p‖y‖p‖z‖p

for all x, y, z ∈ X. Then there exists a unique quadratic set-valued mapping Q : X → Ccb(Y ) that satisfies
the equality (1.1) and

h(f(x), Q(x)) ≤ θ‖x‖3p

4− 23p

for all x ∈ X.

Proof. Letting ϕ(x, y, z) = θ‖x‖p‖y‖p‖z‖p and the result follows directly from Theorem 2.1.

Theorem 2.4. Let ϕ : X3 → [0,∞) be a function such that

Ψ(x, y, z) =
∞∑
k=0

4kψ(2−kx, 2−ky, 2−kz) <∞ (2.8)

for all x, y, z ∈ X. Suppose that f : X → Ccb(Y ) is the mapping satisfying

h
(
f
(
x− y + z

2

)
⊕ f

(
x+

y − z
2

)
⊕ f(x+ z), 3f(x)⊕ 1

2
f(y)⊕ 3

2
f(z)

)
≤ ψ(x, y, z) (2.9)

for all x, y, z ∈ X. Then
Q(x) = lim

n→∞
4nf(2−nx)

exists for every x ∈ X and defines a unique quadratic mapping Q : X → Ccb(Y ) such that

h(f(x), Q(x)) ≤ Ψ
(x

2
,
x

2
,
x

2

)
(2.10)

for all x ∈ X.

Proof. Letting x = y = z = 0 in (2.9), we get f(0) = {0}, since the condition Ψ(0, 0, 0) =
∑∞

k=0 4kψ(0, 0, 0)
implies that ψ(0, 0, 0) = 0.

Setting y = z = x in (2.9), we have

h(4f(x), f(2x)) ≤ ψ(x, x, x) (2.11)

for all x ∈ X. Replacing x by x
2 in (2.11), we get

h
(

4f
(x

2

)
, f(x)

)
≤ ψ

(x
2
,
x

2
,
x

2

)
(2.12)

for all x ∈ X. Replacing x by x
2n−1 and multiplying both sides by 4n−1 in (2.12), we can obtain that

h
(

4nf
( x

2n

)
, 4n−1f(

x

2n−1
)
)
≤ 4n−1ψ

( x
2n
,
x

2n
,
x

2n

)
(2.13)
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for all x ∈ X and n ∈ N. Combing the inequalities (2.12) and (2.13) gives

h
(

4nf
( x

2n

)
, f(x)

)
≤

n−1∑
k=0

4kψ
( x

2k+1
,
x

2k+1
,
x

2k+1

)
(2.14)

for all x ∈ X and n ∈ N. The rest of the proof is analogous to the proof of Theorem 2.1.

Corollary 2.5. Let p > 2 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose that
f : X → Ccb(Y ) is a set-valued mapping satisfying

h
(
f
(
x− y + z

2

)
⊕ f

(
x+

y − z
2

)
⊕ f(x+ z), 3f(x)⊕ 1

2
f(y)⊕ 3

2
f(z)

)
≤ θ(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X. Then there exists a unique quadratic set-valued mapping Q : X → Ccb(Y ) that satisfies
the equality (1.1) and

h(f(x), Q(x)) ≤ 3θ‖x‖p

2p − 4

for all x ∈ X.

Proof. Letting ψ(x, y, z) = θ(‖x‖p + ‖y‖p + ‖z‖p) and the result follows directly from Theorem 2.4.

Corollary 2.6. Let p > 2
3 and θ ≥ 0 be real numbers, and let X be a real normed space. Suppose that

f : X → Ccb(Y ) is a set-valued mapping satisfying

h
(
f
(
x− y + z

2

)
⊕ f

(
x+

y − z
2

)
⊕ f(x+ z), 3f(x)⊕ 1

2
f(y)⊕ 3

2
f(z)

)
≤ θ‖x‖p‖y‖p‖z‖p

for all x, y, z ∈ X. Then there exists a unique quadratic set-valued mapping Q : X → Ccb(Y ) that satisfies
the equality (1.1) and

h(f(x), Q(x)) ≤ θ‖x‖3p

23p − 4

for all x ∈ X.

Proof. Letting ψ(x, y, z) = θ‖x‖p‖y‖p‖z‖p and the result follows directly from Theorem 2.4.

3. Ulam stability of the quadratic set-valued functional equation (1.1): The fixed point method

In this section, we will investigate the Ulam stability of the set-valued functional equation (1.1) by using
the fixed point technique.

Theorem 3.1. Let ϕ : X3 → [0,∞) be a function such that there exists a positive constant L < 1 satisfying

ϕ(2x, 2y, 2z) ≤ 4Lϕ(x, y, z) (3.1)

for all x, y, z ∈ X. Assume that f : X → Ccb(Y ) is a set-valued mapping with f(0) = {0} and satisfies the
inequality (2.2) for all x, y, z ∈ X. Then there exists a unique quadratic set-valued mapping Q defined by

Q(x) = limn→∞
f(2nx)

4n such that

h(f(x), Q(x)) ≤ 1

4(1− L)
ϕ(x, x, x) (3.2)

for all x ∈ X.
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Proof. Consider the set S = {g|g : X → Ccb(Y ), g(0) = {0}} and introduce the generalized metric d on S,
which is defined by

d(g1, g2) = inf{µ ∈ (0,∞)|h(g1(x), g2(x)) ≤ µϕ(x, x, x),∀x ∈ X},

where, as usual, inf ∅ = ∞. It can easily be verified that (S, d) is a complete generalized metric space (see
[10]).

Now, we define an operator T : S → S by

Tg(x) =
1

4
g(2x)

for all x ∈ X.
Let g1, g2 ∈ S be given such that d(g1, g2) = ε. Then

h(g1(x), g2(x)) ≤ εϕ(x, x, x)

for all x ∈ X. Thus, we can obtain that

h(Tg1(x), T g2(x)) = h
(1

4
g1(2x),

1

4
g2(2x)

)
=

1

4
h(g1(2x), g2(2x))

≤ 1

4
εϕ(2x, 2x, 2x)

≤ Lεϕ(x, x, x)

for all x ∈ X. Hence, d(g1, g2) = ε implies that d(Tg1, T g2) ≤ Lε. Therefore, we know that d(Tg1, T g2) ≤
Ld(g1, g2), which means that T is a strictly contractive mapping with the Lipschitz constant L < 1.
Moreover, we can infer from (2.4) that d(Tf, f) ≤ 1

4 . By Lemma 1.2, there exists a set-valued map-
ping Q : X → Ccb(Y ) satisfying the following:
(i) Q is a fixed point of T , i.e., 4Q(x) = Q(2x) for all x ∈ X. Further, Q is the unique fixed point of T in
the set {g ∈ S|d(f, g) <∞}, which means that there exists an η ∈ (0,∞) such that

h(f(x), Q(x)) ≤ ηϕ(x, x, x)

for all x ∈ X.
(ii) d(Tnf,Q)→ 0 as n→∞. Then we get

lim
n→∞

f(2nx)

4n
= Q(x)

for all x ∈ X.
(iii) d(f,Q) ≤ 1

1−Ld(f, Tf). Then we have d(f,Q) ≤ 1
4(1−L) , which implies the inequality (3.2) holds.

Finally, we replace x, y, z by 2nx, 2ny, 2nz in (2.2), respectively, and divide both sides by 4n, we obtain
that

1

4n
h
(
f
(

2n
(
x− y + z

2

))
⊕ f

(
2n
(
x+

y − z
2

))
⊕ f(2n(x+ z)),

3f(2nx)⊕ 1

2
f(2ny)⊕ 3

2
f(2nz)

)
≤ 1

4n
ϕ(2nx, 2ny, 2nz)

≤ 1

4n
· 4nLnϕ(x, y, z)

= Lnϕ(x, y, z).

Since L < 1, the last expression tends to zero as n → ∞. By (ii), we conclude that Q is a quadratic
set-valued mapping satisfying (1.1).
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Remark 3.2. Based on Theorem 3.1, the corollaries 2.2 and 2.3 can also be directly obtained by choosing
L = 2p−2 and L = 2p−

2
3 , respectively.

Theorem 3.3. Let ϕ : X3 → [0,∞) be a function such that there exists a positive constant L < 1 satisfying

ϕ(x, y, z) ≤ 1

4
Lϕ(2x, 2y, 2z) (3.3)

for all x, y, z ∈ X. Assume that f : X → Ccb(Y ) is a set-valued mapping with f(0) = {0} and satisfies the
inequality (2.2) for all x, y, z ∈ X. Then there exists a unique quadratic set-valued mapping Q defined by

Q(x) = limn→∞ 4nf
(

x
2n

)
such that

h(f(x), Q(x)) ≤ L

4(1− L)
ϕ(x, x, x) (3.4)

for all x ∈ X.

Proof. Let us consider the set S and introduce the generalized metric d on S given as in Theorem 3.1.
Define a mapping T : S → S by

Tg(x) = 4g
(x

2

)
for all x ∈ X. By a similar argument as in Theorem 3.1, we can obtain that T is a strictly contractive
mapping with the Lipschitz constant L. From (2.12) and the condition (3.3), we can infer that d(Tf, f) ≤ L

4 .
According to Lemma 1.2, there exists a set-valued mapping Q : X → Ccb(Y ) such that the following results
hold.
(i) Q is a fixed point of T , i.e., Q(x) = 4Q

(
x
2

)
for all x ∈ X. Moreover, Q is the unique fixed point of T in

the set {g ∈ S|d(g, f) <∞}, which means that there exists an η ∈ (0,∞) such that

h(f(x), Q(x)) ≤ ηϕ(x, x, x)

for all x ∈ X.
(ii) d(Tnf,Q)→ 0 as n→∞. Then we can obtain

lim
n→∞

4nf
( x

2n

)
= Q(x)

for all x ∈ X.
(iii) d(f,Q) ≤ 1

1−Ld(f, Tf). Then we get d(f,Q) ≤ L
4(1−L) and hence the inequality (3.4) holds.

Replacing x, y, z by 2−nx, 2−ny, 2−nz in (2.2), respectively, and multiplying both sides by 4n, we have

4nh
(
f
(

2−n
(
x− y + z

2

))
⊕ f

(
2−n

(
x+

y − z
2

))
⊕ f(2−n(x+ z)),

3f(2−nx)⊕ 1

2
f(2−ny)⊕ 3

2
f(2−nz)

)
≤ 4nϕ(2nx, 2ny, 2nz)

≤ 4n · 1

4n
Lnϕ(x, y, z)

= Lnϕ(x, y, z).

Since L < 1, the last expression tends to zero as n → ∞. By (ii), we conclude that Q is a quadratic
set-valued mapping satisfying (1.1).

Remark 3.4. In view of Theorem 3.3, the corollaries 2.5 and 2.6 can also be directly obtained by taking
L = 22−p and L = 2

2
3
−p, respectively.
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