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1. Introduction

In Section 2 we present new Lefschetz fixed point theorems for multivalued maps in extension type spaces.
In particular for extension spaces of type GNES, GANES, GMNES and GMANES and for maps which
are general compact absorbing contractions or general approximative compact absorbing contractions. These
results improve those in the literature; see [1-3, 5-6, 8-11, 14-19] and the references therein. Our results
were motivated in part from ideas in [2, 3, 9, 11-12, 16-19].

For a subset K of a topological space X, we denote by CovX (K) the set of all coverings of K by open
sets of X (usually we write Cov (K) = CovX (K)). Given a map F : X → 2X (nonempty subsets of X)
and α ∈ Cov (X), a point x ∈ X is said to be an α–fixed point of F if there exists a member U ∈ α such
that x ∈ U and F (x) ∩ U 6= ∅. Given two maps single valued f, g : X → Y and α ∈ Cov (Y ), f and g
are said to be α–close if for any x ∈ X there exists Ux ∈ α containing both f(x) and g(x). We say f
and g are α-homotopic if there is a homotopy hh : X → Y (0 ≤ t ≤ 1) joining f and g such that for each
x ∈ X the values ht(x) belong to a common Ux ∈ α for all t ∈ [0, 1].

The following result can be found in [4, Lemma 1.2 and 4.7].
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Theorem 1.1. Let X be a regular topological space and F : X → 2X an upper semicontinuous map with
closed values. Suppose there exists a cofinal family of coverings θ ⊆ CovX (F (X)) such that F has an
α–fixed point for every α ∈ θ. Then F has a fixed point.

Remark 1.2. From Theorem 1.1 in proving the existence of fixed points in uniform spaces for upper
semicontinuous compact maps with closed values (see [16, 17]) it suffices [5 pp. 298] to prove the existence
of approximate fixed points (since open covers of a compact set A admit refinements of the form {U [x] :
x ∈ A} where U is a member of the uniformity [13 pp. 199] so such refinements form a cofinal family of
open covers). Note also uniform spaces are regular (in fact completely regular) [7 pp. 431] (see also [7 pp.
434]). Note in Theorem 1.1 if F is compact valued then the assumption that X is regular can be removed.

Let X, Y and Γ be Hausdorff topological spaces. A continuous single valued map p : Γ→ X is called
a Vietoris map (written p : Γ⇒ X) if the following two conditions are satisfied:
(i). for each x ∈ X, the set p−1(x) is acyclic
(ii). p is a perfect map i.e. p is closed and for every x ∈ X the set p−1(x) is nonempty and compact.

Let D(X,Y ) be the set of all pairs X
p⇐ Γ

q→ Y where p is a Vietoris map and q is continuous. We

will denote every such diagram by (p, q). Given two diagrams (p, q) and (p′, q′), where X
p′⇐ Γ′

q′→ Y , we
write (p, q) ∼ (p′, q′) if there are maps f : Γ→ Γ′ and g : Γ′ → Γ such that q′ ◦f = q, p′ ◦f = p, q ◦g = q′

and p ◦ g = p′. The equivalence class of a diagram (p, q) ∈ D(X,Y ) with respect to ∼ is denoted by

φ = {X p⇐ Γ
q→ Y } : X → Y

or φ = [(p, q)] and is called a morphism from X to Y . We let M(X,Y ) be the set of all such morphisms.
For any φ ∈M(X,Y ) a set φ(x) = q p−1 (x) where φ = [(p, q)] is called an image of x under a morphism
φ.

Consider vector spaces over a field K. Let E be a vector space and f : E → E an endomorphism. Now
let N(f) = {x ∈ E : f (n)(x) = 0 for some n} where f (n) is the nth iterate of f , and let Ẽ = E\N(f).
Since f(N(f)) ⊆ N(f) we have the induced endomorphism f̃ : Ẽ → Ẽ. We call f admissible if dim Ẽ <∞;
for such f we define the generalized trace Tr(f) of f by putting Tr(f) = tr(f̃) where tr stands for the
ordinary trace.

Let f = {fq} : E → E be an endomorphism of degree zero of a graded vector space E = {Eq}. We call
f a Leray endomorphism if (i). all fq are admissible and (ii). almost all Ẽq are trivial. For such f we
define the generalized Lefschetz number Λ(f) by

Λ(f) =
∑
q

(−1)q Tr (fq).

Let H be the C̆ech homology functor with compact carriers and coefficients in the field of rational
numbers K from the category of Hausdorff topological spaces and continuous maps to the category of
graded vector spaces and linear maps of degree zero. Thus H(X) = {Hq(X)} is a graded vector space,
Hq(X) being the q–dimensional C̆ech homology group with compact carriers of X. For a continuous map
f : X → X, H(f) is the induced linear map f? = {f? q} where f? q : Hq(X)→ Hq(X).

With C̆ech homology functor extended to a category of morphisms (see [10 pp. 364]) we have the
following well known result (note the homology functor H extends over this category i.e. for a morphism

φ = {X p⇐ Γ
q→ Y } : X → Y

we define the induced map
H (φ) = φ? : H(X)→ H(Y )

by putting φ? = q? ◦ p−1? ).

Recall the following result [8 pp. 227].
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Theorem 1.3. If φ : X → Y and ψ : Y → Z are two morphisms (here X, Y and Z are Hausdorff
topological spaces) then

(ψ ◦ φ)? = ψ? ◦ φ?.

Two morphisms φ, ψ ∈ M(X,Y ) are homotopic (written φ ∼ ψ) provided there is a morphism χ ∈
M(X× [0, 1], Y ) such that χ(x, 0) = φ(x), χ(x, 1) = ψ(x) for every x ∈ X (i.e. φ = χ ◦ i0 and ψ = χ ◦ i1,
where i0, i1 : X → X × [0, 1] are defined by i0(x) = (x, 0), i1(x) = (x, 1)). Recall the following result [9,
pp. 231]: If φ ∼ ψ then φ? = ψ?.

Let φ : X → Y be a multivalued map (note for each x ∈ X we assume φ(x) is a nonempty subset of

Y ). A pair (p, q) of single valued continuous maps of the form X
p← Γ

q→ Y is called a selected pair of φ
(written (p, q) ⊂ φ) if the following two conditions hold:
(i). p is a Vietoris map
and
(ii). q (p−1(x)) ⊂ φ(x) for any x ∈ X.

Definition 1.4. A upper semicontinuous map φ : X → Y is said to be strongly admissible [9, 10] (and we
write φ ∈ Ads(X,Y )) provided there exists a selected pair (p, q) of φ with φ(x) = q (p−1(x)) for x ∈ X.

Definition 1.5. A map φ ∈ Ads(X,X) is said to be a Lefschetz map if for each selected pair (p, q) ⊂ φ
with φ(x) = q (p−1(x)) for x ∈ X the linear map q? p

−1
? : H(X) → H(X) (the existence of p−1? follows

from the Vietoris Theorem) is a Leray endomorphism.

When we talk about φ ∈ Ads it is assumed that we are also considering a specified selected pair (p, q)
of φ with φ(x) = q (p−1(x)).

Remark 1.6. In fact since we specify the pair (p, q) of φ it is enough to say φ is a Lefschetz map if
φ? = q? p

−1
? : H(X) → H(X) is a Leray endomorphism. However for the examples of φ, X known in the

literature [9] the more restrictive condition in Definition 1.2 works. We note [9, pp 227] that φ? does not
depend on the choice of diagram from [(p, q)], so in fact we could specify the morphism.

If φ : X → X is a Lefschetz map as described above then we define the Lefschetz number (see [9, 10])
Λ (φ) (or ΛX (φ)) by

Λ (φ) = Λ(q? p
−1
? ).

If we do not wish to specify the selected pair (p, q) of φ then we would consider the Lefschetz set Λ (φ) =
{Λ(q? p

−1
? ) : φ = q (p−1)}.

Definition 1.7. A Hausdorff topological space X is said to be a Lefschetz space (for the class Ads) provided
every compact φ ∈ Ads(X,X) is a Lefschetz map and Λ(φ) 6= 0 implies φ has a fixed point.

Definition 1.8. A upper semicontinuous map φ : X → Y with closed values is said to be admissible (and
we write φ ∈ Ad(X,Y )) provided there exists a selected pair (p, q) of φ.

Definition 1.9. A map φ ∈ Ad(X,X) is said to be a Lefschetz map if for each selected pair (p, q) ⊂ φ
the linear map q? p

−1
? : H(X)→ H(X) (the existence of p−1? follows from the Vietoris Theorem) is a Leray

endomorphism.

If φ : X → X is a Lefschetz map, we define the Lefschetz set Λ (φ) (or ΛX (φ)) by

Λ (φ) =
{

Λ(q? p
−1
? ) : (p, q) ⊂ φ

}
.

Definition 1.10. A Hausdorff topological space X is said to be a Lefschetz space (for the class Ad) provided
every compact φ ∈ Ad(X,X) is a Lefschetz map and Λ(φ) 6= {0} implies φ has a fixed point.

Remark 1.11. Many examples of Lefschetz spaces (for the class Ad or Ads) can be found in [1, 2, 8-12,
14-19]. For example in [8, 14, 18] the extension space ES(compact) or the neighborhood extension space
NES(compact) are Lefschetz spaces (for the class Ad or Ads).
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2. Asymptotic Fixed Point Theory

By a space we mean a Hausdorff topological space. Let X be a space and F ∈ Ad(X,X). We say
X ∈ GNES (w.r.t. Ad) if there exists a Lefschetz space (for the class Ad) U , a single valued continuous
map r : U → X and a compact valued map Φ ∈ Ad(X,U) with rΦ = idX .

Remark 2.1. This corrects a slight inaccuracy in the definition in [16] for Ad maps (this was corrected
in [17]). In fact the definition in [16] is correct provided we restate (see below) the main result in [16].
In [16] we say X ∈ GNES (w.r.t. Ad and F ) (here X is a space and F ∈ Ad(X,X)) if there exists a
Lefschetz space (for the class Ad) U , a single valued continuous map r : U → K and a compact valued map
Φ ∈ Ad(K,U) with rΦ = idK (here K = F (X)). Note for any selected pair (p, q) of F then (p, q) ⊂ F |K
so F |K ∈ Ad(K,K); here p, q : p−1(K) → K are given by p(z) = p(z), q(z) = q(z) for z ∈ p−1(K). The
proof in [16] (the reasoning is word for word the same as in [16] except F is replaced by F |K and E′′ = K ′)
immediately guarantees that if X ∈ GNES (w.r.t. Ad and F ) and F |K is compact then if (α, β) is a
selected pair for F |K then β? α

−1
? is a Leray endomorphism and so Λ (F |K) is well defined. In addition if

Λ (F |K) 6= {0} then F |K has a fixed point. Also we note that in the definition of GNES (w.r.t. Ad and
F ), F ∈ Ad(X,X) could be replaced by F : X → 2X with F |K ∈ Ad(K,K).

Let X ∈ GNES (w.r.t. Ad) and F ∈ Ad(X,X) a compact map. Let (p, q) be a selected pair for F .
In [16] we showed (the proof is word for word the same as in [16] with K replaced by X in one place (there
K = F (X))) that q? p

−1
? is a Leray endomorphism and so Λ (F ) is well defined. In addition we showed if

Λ (F ) 6= {0} then F has a fixed point.

Remark 2.2. From the proof in [16] we see that we can replace the condition that U is a Lefschetz space
with the assumption that the compact map ΦF r ∈ Ad(U,U) is a Lefschetz map and Λ(ΦF r) 6= {0}
implies ΦF r has a fixed point.

Let X be a Hausdorff topological space. A map F ∈ Ad(X,X) is said to be a general compact absorbing
contraction (written F ∈ GCAC(X,X) or F ∈ GCAC(X)) if there exists Y ⊆ X such that

(i). F (Y ) ⊆ Y ;

(ii). F |Y ∈ Ad(Y, Y ) (automatically satisfied) is a compact map with Y ∈ GNES (w.r.t. Ad);

(iii). for any selected pair (p, q) of F , q′′? (p′′)−1? : H(X,Y )→ H(X,Y ) is a weakly nilpotent endomorphism
(here p′′, q′′ : (Γ, p−1(Y ))→ (X,Y ) are given by p′′(u) = p(u) and q′′(u) = q(u)).

Remark 2.3. Of course condition (ii) above could be replaced by the more general abstract assumption
that F |Y ∈ Ad(Y, Y ) is a Lefschetz map and if Λ(F |Y ) 6= {0} then F |Y has a fixed point.

Remark 2.4. For a discussion on compact absorbing contractions see the papers [2, 3, 11, 16, 17] and the
books [9, Section 42] and [12, Section 15.5]. For example a single valued generalized compact absorbing
contraction with respect to h as defined in [3, 11] and the obvious extension to admissible maps are particular
examples of generalized compact absorbing contractions in this paper; for admissible maps the obvious
extension of a generalized compact absorbing contraction with respect to G (here G ∈ Ad(X,X)) is if (iii)
above is replaced by: for every compact K ⊂ X there exists an integer n = nK such that Fn(G(K)) ⊂ Y
(or G(Fn(K)) ⊂ Y and F (G−1(Y )) ⊂ G−1(Y )) and there exists a selected pair (α, β) of G such that
β? α

−1
? : H(X,Y )→ H(X,Y ) is an epimorphism (or β? α

−1
? : H(X,Y )→ H(X,Y ) is an monomorphism).

Theorem 2.5. Let X be a Hausdorff topological space and F ∈ GCAC(X,X). Then Λ (F ) is well defined
and if Λ (F ) 6= {0} then F has a fixed point.

Proof. Let Y be as described above. Let (p, q) be a selected pair for F so in particular q p−1(Y ) ⊆ F (Y ).
Consider F |Y and let q′, p′ : p−1(Y ) → Y be given by p′(u) = p(u) and q′(u) = q(u). Notice (p′, q′) is
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a selected pair for F |Y . Now since Y ∈ GNES (w.r.t. Ad) then as mentioned above q′? (p′)−1? is a Leray
endomorphism. Now (iii) and [9, Property 11.8, pp 53] guarantees that q′′? (p′′)−1? is a Leray endomorphism
and Λ (q′′? (p′′)−1? ) = 0. Also [9, Property 11.5, pp 52] guarantees that q? p

−1
? is a Leray endomorphism (with

Λ (q? p
−1
? ) = Λ (q′? (p′)−1? )) so Λ (F ) is well defined.

Next suppose Λ (F ) 6= {0}. Then there exists a selected pair (p, q) of F with Λ (q? p
−1
? ) 6= 0. Let

(p′, q′) be as described above with Λ (q? p
−1
? ) = Λ (q′? (p′)−1? ). Then Λ (q′? (p′)−1? ) 6= 0 so since Y ∈ GNES

(w.r.t. Ad) there exists x ∈ Y with x ∈ F |Y (x) i.e. x ∈ F x.

Let X be a space and F ∈ Ad(X,X). We say X ∈ GANES (w.r.t. Ad) if for each α ∈ CovX (X)
there exists a Lefschetz space (for the class Ad) Uα, a single valued continuous map rα : Uα → X and a
compact valued map Φα ∈ Ad(X,Uα) such that rα Φα : X → X and i : X → X are α-close (by this we
mean for each x ∈ X there exists Vx ∈ α with rα Φα(x) ∈ Vx and x = i(x) ∈ Vx) and α-homotopic.

Remark 2.6. This corrects a slight inaccuracy in the definition in [16] for Ad maps (this was corrected in
[17]). In fact the definition in [16] is correct provided we restate (see below) the main result in [16]. In [16]
we say X ∈ GANES (w.r.t. Ad and F ) (here X is a space and F ∈ Ad(X,X)) if for each α ∈ CovX (K)
(here K = F (X)) there exists a Lefschetz space (for the class Ad) Uα, a single valued continuous map
rα : Uα → K and a compact valued map Φα ∈ Ad(K,Uα) such that rα Φα : K → K and i : K → K are
α-close (by this we mean for each x ∈ K there exists Vx ∈ α with rα Φα(x) ∈ Vx and x = i(x) ∈ Vx) and
α-homotopic. The proof in [16] (the reasoning is word for word the same as in [16] except F is replaced by
F |K and E′′ = K ′) immediately guarantees that if X ∈ GANES (w.r.t. Ad and F ) is a uniform space
and F |K is compact then if (α, β) is a selected pair for F |K then β? α

−1
? is a Leray endomorphism and

so Λ (F |K) is well defined. In addition if Λ (F |K) 6= {0} then F |K has a fixed point. Also we note that
in the definition of GANES (w.r.t. Ad and F ), F ∈ Ad(X,X) could be replaced by F : X → 2X with
F |K ∈ Ad(K,K).

Now assume X ∈ GANES (w.r.t. Ad) is a uniform space and F ∈ Ad(X,X) is a compact map. Let
(p, q) be a selected pair for F . In [16] we showed (the proof is word for word the same as in [16] with F (X)
replaced by X) that q? p

−1
? is a Leray endomorphism and so Λ (F ) is well defined. In addition we showed

if Λ (F ) 6= {0} then F has a fixed point.

Remark 2.7. From the proof in [16] we see that we can replace the condition that Uα is a Lefschetz space
for each α ∈ CovX (X) with the assumption that for each α ∈ CovX (X) the compact map Φα F rα ∈
Ad(Uα, Uα) is a Lefschetz map and Λ(Φα F rα) 6= {0} implies Φα F rα has a fixed point.

Remark 2.8. In the definition of GANES (w.r.t. Ad) it is easy to see (see [16]) that one could replace
the assumption that rα Φα : X → X and i : X → X are α-close and α-homotopic with the assumption
that rα Φα : X → 2X and i : X → X are strongly α-close (by this we mean for each x ∈ X there exists
Vx ∈ α with rα Φα(x) ⊆ Vx and x = i(x) ∈ Vx) and (rα)? (q1α)? (p1α)−1? = i? for any selected pair (p1α, q

1
α)

of Φα. Also as in Remark 2.5 in the definition of GANES (w.r.t. Ad and F ) it is easy to see that one
could replace the assumption that rα Φα : K → K and i : K → K are α-close and α-homotopic with the
assumption that rα Φα : K → 2K and i : K → K are strongly α-close (by this we mean for each x ∈ K
there exists Vx ∈ α with rα Φα(x) ⊆ Vx and x = i(x) ∈ Vx) and (rα)? (q1α)? (p1α)−1? = i? for any selected
pair (p1α, q

1
α) of Φα.

Let X be a Hausdorff topological space. A map F ∈ Ad(X,X) is said to be a general approximative
compact absorbing contraction (written F ∈ GACAC(X,X) or F ∈ GACAC(X)) if there exists Y ⊆ X
such that

(i). Y is a uniform space and F (Y ) ⊆ Y ;

(ii). F |Y ∈ Ad(Y, Y ) (automatically satisfied) is a compact map with Y ∈ GANES (w.r.t. Ad);

(iii). for any selected pair (p, q) of F , q′′? (p′′)−1? : H(X,Y )→ H(X,Y ) is a weakly nilpotent endomorphism
(here p′′, q′′ : (Γ, p−1(Y ))→ (X,Y ) are given by p′′(u) = p(u) and q′′(u) = q(u)).
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The same reasoning as in Theorem 2.5 establishes the following result (the only difference in the proof
is that GNES is replaced by GANES in two places).

Theorem 2.9. Let X be a Hausdorff topological space and F ∈ GACAC(X,X). Then Λ (F ) is well defined
and if Λ (F ) 6= {0} then F has a fixed point.

Now we discuss a more general situation considered in [17]. Let X be a space and F ∈ Ad(X,X). We
say X ∈ GMNES (w.r.t. Ad and F ) if there exists a Lefschetz space (for the class Ad) U , a compact map
Φ ∈ Ad(U,X), a compact valued map Ψ ∈ Ad(X,U) with Φ Ψ (x) ⊆ F (x) for x ∈ X, and such that if
(p, q) is a selected pair of F then there exists a selected pair (p1, q1) of Φ and a selected pair (p′, q′) of
Ψ with (q1)? (p1)

−1
? (q′)? (p′)−1? = q? p

−1
? .

Now assume X ∈ GMNES (w.r.t. Ad and F ) and F ∈ Ad(X,X). Let (p, q) be a selected pair for
F . In [17] we showed that q? p

−1
? is a Leray endomorphism and so Λ (F ) is well defined. In addition we

showed if Λ (F ) 6= {0} then F has a fixed point.

Remark 2.10. From the proof in [17] we see that we can replace the condition that U is a Lefschetz space
with the assumption that the compact map Ψ Φ ∈ Ad(U,U) is a Lefschetz map and Λ(Ψ Φ) 6= {0} implies
Ψ Φ has a fixed point.

Remark 2.11. Suppose we change the above definition as follows. We say X ∈ GMNES (w.r.t. Ad
and F ) (here X is a space and F ∈ Ad(X,X)) if there exists a Lefschetz space (for the class Ad) U , a
compact map Φ ∈ Ad(U,K), a compact valued map Ψ ∈ Ad(K,U) with Φ Ψ (x) ⊆ F (x) for x ∈ K (here
K = F (X)), and such that if (p, q) is a selected pair of F |K then there exists a selected pair (p1, q1) of
Φ and a selected pair (p′, q′) of Ψ with (q1)? (p1)

−1
? (q′)? (p′)−1? = q? p

−1
? . The proof in [17] (the reasoning

is word for word the same as in [17] except F is replaced by F |K and E′′ = K ′) immediately guarantees
that if X ∈ GMNES (w.r.t. Ad and F ) then if (α, β) is a selected pair for F |K then β? α

−1
? is a Leray

endomorphism and so Λ (F |K) is well defined. In addition if Λ (F |K) 6= {0} then F |K has a fixed point.
Also we note that in the definition of GMNES (w.r.t. Ad and F ), F ∈ Ad(X,X) could be replaced by
F : X → 2X with F |K ∈ Ad(K,K).

Let X be a Hausdorff topological space. A map F ∈ Ad(X,X) is said to be a general absorbing
contraction (written F ∈ GAC(X,X) or F ∈ GAC(X)) if there exists Y ⊆ X such that

(i). F (Y ) ⊆ Y ;

(ii). F |Y ∈ Ad(Y, Y ) (automatically satisfied) with Y ∈ GMNES (w.r.t. Ad and F |Y );

(iii). for any selected pair (p, q) of F , q′′? (p′′)−1? : H(X,Y )→ H(X,Y ) is a weakly nilpotent endomorphism
(here p′′, q′′ : (Γ, p−1(Y ))→ (X,Y ) are given by p′′(u) = p(u) and q′′(u) = q(u)).

Theorem 2.12. Let X be a Hausdorff topological space and F ∈ GAC(X,X). Then Λ (F ) is well defined
and if Λ (F ) 6= {0} then F has a fixed point.

Proof. Let Y be as described above. Let (p, q) be a selected pair for F . Consider F |Y and let q′, p′ :
p−1(Y ) → Y be given by p′(u) = p(u) and q′(u) = q(u). Now since Y ∈ GMNES (w.r.t. Ad and F |Y )
then q′? (p′)−1? is a Leray endomorphism. Now (iii) guarantees that q′′? (p′′)−1? is a Leray endomorphism and
Λ (q′′? (p′′)−1? ) = 0. Thus q? p

−1
? is a Leray endomorphism (with Λ (q? p

−1
? ) = Λ (q′? (p′)−1? )) so Λ (F ) is well

defined. Next suppose Λ (F ) 6= {0}. Then there exists a selected pair (p, q) of F with Λ (q? p
−1
? ) 6= 0. Let

(p′, q′) be as described above with Λ (q? p
−1
? ) = Λ (q′? (p′)−1? ). Then Λ (q′? (p′)−1? ) 6= 0 so since Y ∈ GMNES

(w.r.t. Ad and F |Y ) there exists x ∈ Y with x ∈ F |Y (x) i.e. x ∈ F x.

Let X be a space and F ∈ Ad(X,X). We say X ∈ GMANES (w.r.t. Ad and F ) if for each α ∈
CovX (X) there exists a Lefschetz space (for the class Ad) Uα, a compact map Φα ∈ Ad(Uα, X), a compact
valued map Ψα ∈ Ad(X,Uα) such that for each x ∈ Uα and y ∈ Φα (x) with x ∈ Ψα (y) there exists
Ux,y ∈ α with y ∈ Ux,y and F (y)∩Ux,y 6= ∅ and such that if (p, q) is a selected pair of F then there exists a
selected pair (p1,α, q1,α) of Φα and a selected pair (p′α, q

′
α) of Ψα with (q1,α)? (p1,α)−1? (q′α)? (p′α)−1? = q? p

−1
? .
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Now assume X ∈ GMANES (w.r.t. Ad and F ) is a uniform space and F ∈ Ad(X,X) is a compact
map. Let (p, q) be a selected pair for F . In [17] we showed that q? p

−1
? is a Leray endomorphism and so

Λ (F ) is well defined. In addition we showed if Λ (F ) 6= {0} then F has a fixed point.

Remark 2.13. From the proof in [17] we see that we can replace the condition that Uα is a Lefschetz
space for each α ∈ CovX (X) with the assumption that for each α ∈ CovX (X) the compact map Ψα Φα ∈
Ad(Uα, Uα) is a Lefschetz map and Λ(Ψα Φα) 6= {0} implies Ψα Φα has a fixed point.

Remark 2.14. Suppose we change the above definition as follows. We say X ∈ GMANES (w.r.t. Ad
and F ) (here X is a space and F ∈ Ad(X,X)) if for each α ∈ CovX (K) there exists a Lefschetz space
(for the class Ad) Uα, a compact map Φα ∈ Ad(Uα,K), a compact valued map Ψα ∈ Ad(K,Uα) (here
K = F (X)) such that for each x ∈ Uα and y ∈ Φα (x) with x ∈ Ψα (y) there exists Ux,y ∈ α with
y ∈ Ux,y and F |K (y)∩Ux,y 6= ∅ and such that if (p, q) is a selected pair of F |K then there exists a selected
pair (p1,α, q1,α) of Φα and a selected pair (p′α, q

′
α) of Ψα with (q1,α)? (p1,α)−1? (q′α)? (p′α)−1? = q? p

−1
? . The

proof in [17] (the reasoning is word for word the same as in [17] except F is replaced by F |K and E′′ = K ′)
immediately guarantees that if X ∈ GMANES (w.r.t. Ad and F ) is a uniform space and F |K is compact
then if (α, β) is a selected pair for F |K then β? α

−1
? is a Leray endomorphism and so Λ (F |K) is well

defined. In addition if Λ (F |K) 6= {0} then F |K has a fixed point. Also we note that in the definition of
GMANES (w.r.t. Ad and F ), F ∈ Ad(X,X) could be replaced by F : X → 2X with F |K ∈ Ad(K,K).

Let X be a Hausdorff topological space. A map F ∈ Ad(X,X) is said to be a general approximative
absorbing contraction (written F ∈ GAAC(X,X) or F ∈ GAAC(X)) if there exists Y ⊆ X such that

(i). Y is a uniform space and F (Y ) ⊆ Y ;

(ii). F |Y ∈ Ad(Y, Y ) (automatically satisfied) is a compact map with Y ∈ GMANES (w.r.t. Ad and
F |Y );

(iii). for any selected pair (p, q) of F , q′′? (p′′)−1? : H(X,Y )→ H(X,Y ) is a weakly nilpotent endomorphism
(here p′′, q′′ : (Γ, p−1(Y ))→ (X,Y ) are given by p′′(u) = p(u) and q′′(u) = q(u)).

The same reasoning as in Theorem 2.5 establishes the following result.

Theorem 2.15. Let X be a Hausdorff topological space and F ∈ GAAC(X,X). Then Λ (F ) is well defined
and if Λ (F ) 6= {0} then F has a fixed point.

Remark 2.16. In all the results in this section it is possible to replace the admissible maps Ad with
permissible maps P provided some technical assumptions are added (see [16, 17]).

Remark 2.17. It is very easy to extend the fixed point theory in [15, Section 4] using the definitions and
results in this section. We leave the details to the reader.
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Systems and Applications, 16 (2007), 1–12.

[2] R.P. Agarwal and D.O’Regan, Fixed point theory for compact absorbing contractive admissible type maps, Appli-
cable Analysis, 87 (2008), 497–508.

[3] J. Andres and L. Gorniewicz, Fixed point theorems on admissible multiretracts applicable to dynamical systems,
Fixed Point Theory, 12 (2011), 255–264.

[4] H. Ben-El-Mechaiekh, The coincidence problem for compositions of set valued maps, Bull. Austral. Math. Soc.,
41 (1990), 421–434.

[5] H. Ben-El-Mechaiekh, Spaces and maps approximation and fixed points, Jour. Computational and Appl. Mathe-
matics, 113 (2000), 283–308.

[6] H. Ben-El-Mechaiekh and P. Deguire, General fixed point theorems for non–convex set valued maps, C.R. Acad.
Sci. Paris, 312 (1991), 433–438.

[7] R. Engelking, General Topology, Heldermann Verlag , Berlin, (1989).
[8] G. Fournier and L. Gorniewicz, The Lefschetz fixed point theorem for multi-valued maps of non-metrizable spaces,

Fundamenta Mathematicae, 92 (1976), 213–222.



D. O’Regan, J. Nonlinear Sci. Appl. 7 (2014), 288–295 295

[9] L. Gorniewicz, Topological fixed point theory of multivalued mappings, Kluwer Acad. Publishers, Dordrecht,
(1999).

[10] L. Gorniewicz and A. Granas, Some general theorems in coincidence theory, J. Math. Pures et Appl., 60 (1981),
361–373.

[11] L. Gorniewicz and M. Slosarski, Fixed points of mappings in Klee admissible spaces, Control and Cybernetics,
36 (2007), 825–832.

[12] A. Granas and J. Dugundji, Fixed point theory, Springer , New York, (2003).
[13] J.L. Kelley, General Topology, D. Van Nostrand Reinhold Co., New York, (1955).
[14] D. O’Regan, Fixed point theory on extension type spaces and essential maps on topological spaces, Fixed Point

Theory and Applications, 2004 (2004), 13–20.
[15] D. O’Regan, Fixed point theory for compact absorbing contractions in extension type spaces, CUBO, 12 (2010),

199–215.
[16] D. O’Regan, Fixed point theory in generalized approximate neighborhood extension spaces, Fixed Point Theory,

12 (2011), 155–164.
[17] D. O’Regan, Lefschetz fixed point theorems in generalized neighborhood extension spaces with respect to a map,

Rend. Circ. Mat. Palermo, 59 (2010), 319–330.
[18] D. O’Regan, Fixed point theory for extension type maps in topological spaces, Applicable Analysis, 88 (2009),

301–308.
[19] D. O’Regan, Periodic points for compact absorbing contractions in extension type spaces, Commun. Appl. Anal.,

14 (2010), 1–11.


	1 Introduction
	2 Asymptotic Fixed Point Theory

