
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 5931–5949

Research Article

Some new coupled fixed point theorems in ordered
partial b-metric spaces

Hedong Li, Feng Gu∗

Institute of Applied Mathematics and Department of Mathematics, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China.

Communicated by X. Qin

Abstract
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1. Introduction

Fixed point theory of nonlinear operators in metric spaces finds a lot of applications in convex opti-
mization problems, see [13, 21, 27] and the references therein. In 1993, Czerwik [7] introduced the concept
of the b-metric space. In 1994, Matthews [18] introduced the notion of partial metric spaces. After that,
many researches have dealt with fixed point theories for various contraction mappings in b-metric spaces
[5, 8, 15, 16, 22, 25, 26] and partial metric spaces [2, 3]. By combining these, Shukla [26] introduced a new
generalization of metric space called partial b-metric space which was paid widespread attention immedi-
ately. Also, in [19] a modified version of partial b-metric space was introduced and many useful lemmas
could be proved right away. Since then, several authors obtained more helpful results in this space [10, 19].

On the other hand, since the ordered set was introduced, many authors got many fixed point theorems
in ordered metric space. In 2006, Bhaskar and Lakshmikantham [9] introduced the notion of a coupled
fixed point and used the mixed monotone property to prove some coupled fixed point theorems. Three

∗Corresponding author
Email addresses: 375885597@qq.com (Hedong Li), gufeng_99@sohu.com (Feng Gu)

Received 2016-04-12



H. D. Li, F. Gu, J. Nonlinear Sci. Appl. 9 (2016), 5931–5949 5932

years later, Lakshmikantham and Ćirić [14] introduced the new concepts of coupled coincidence and coupled
common fixed and used a mixed g-monotone property to prove some coupled common fixed point theorems
which extended Bhaskar and Lakshmikantham’s result from one mapping F : X ×X → X to two mapping
F : X × X → X and g : X → X. Subsequently, many authors got a variety of coupled coincidence and
coupled fixed point theorems in ordered metric spaces [11, 17, 20].

Recently, Aghajani and Arab [4] introduced a generalized contractive mapping with the altering distance
functions and proved a new coupled common fixed point theorems in ordered b-metric space. Also, a number
of articles on the topic of coupled fixed point theorems were obtained in ordered b-metric space and ordered
partial metric space [1, 6, 23, 24]. But in ordered partial b-metric spaces, there are almost no research of
them. In this paper, we use a more generalized contractive mapping to prove some coupled coincidence and
coupled common fixed point theorems in ordered partial b-metric spaces. An example is provided to support
our new results. The results presented in this paper extend and improve several well-known comparable
results.

2. Preliminaries and definitions

First, we introduce some basic definitions and concepts as the following.

Definition 2.1 ([7]). A b-metric on nonempty set X is a mapping d : X ×X → R+ such that for some real
number s ≥ 1 and for all x, y, z ∈ X,

(1) x = y ⇔ d(x, y) = 0;

(2) d(x, y) = d(y, x);

(3) d(x, y) ≤ s[d(x, z) + d(z, y)].

A b-metric space is a pair (X, d) such that X is a nonempty set and d is a b-metric on X. The number s is
called the coefficient of (X, d).
It is obvious that a b-metric space with coefficient s = 1 is a metric space. There are examples of b-metric
spaces which are not metric spaces (see, e.g., Akkouchi [5]).

Definition 2.2 ([18]). A partial metric on a nonempty set X is a function p : X ×X −→ R+ such that for
all x, y, z ∈ X:

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);

(p2) p(x, x) ≤ p(x, y);

(p3) p(x, y) = p(y, x);

(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X. If p is
a partial metric on X, then function dp : X ×X → R+ given by

dp(x, y) := 2p(x, y)− p(x, x)− p(y, y),

is ordinary equivalent metric on X.

Definition 2.3 ([19]). Let X be a nonempty set and s ≥ 1 be a given real number. A function pb : X×X →
R+ is a partial b-metric, if for all x, y, z ∈ X, the following conditions are satisfied:

(pb1) x = y ⇐⇒ pb(x, x) = pb(x, y) = pb(y, y);
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(pb2) pb(x, x) ≤ pb(x, y);

(pb3) pb(x, y) = pb(y, x);

(pb4) pb(x, y) ≤ s[pb(x, z) + pb(z, y)− pb(z, z)] +
(
1−s
2

)
(pb(x, x) + pb(y, y)).

The pair (X, pb) is called a partial b-metric space.

Example 2.4 ([26]). Let X = R+, q > 1 be a constant, and pb : X ×X → R+ be defined by

pb(x, y) = [max{x, y}]q + |x− y|q, for all x, y ∈ X.

Obviously, (X, pb) is a partial b-metric space with the coefficient s = 2q−1, but it is neither a partial
metric space nor a b-metric space.

Other examples of partial b-metric can be constructed thank to the following propositions.

Proposition 2.5 ([26]). Let X be a nonempty set and let p be a partial metric and d be a b-metric with the
coefficient s ≥ 1 on X. Then the function pb : X ×X → R+ defined by pb(x, y) = p(x, y) + d(x, y), for all
x, y ∈ X is a partial b-metric on X with the coefficient s.

Proposition 2.6 ([26]). Let (X, p) be a partial metric space and q ≥ 1. Then (X, pb) is a partial b-metric
space with the coefficient s = 2q−1, where pb is defined by pb(x, y) = [p(x, y)]q.

Proposition 2.7 ([19]). Every partial b-metric pb defines a b-metric dpb, where

dpb(x, y) = 2pb(x, y)− pb(x, x)− pb(y, y), for all x, y ∈ X.

Definition 2.8 ([19]). Let (X, pb) be a partial b-metric space with coefficient s ≥ 1. Let {xn} be any
sequence in X and x ∈ X. Then

(i) the sequence {xn} is said to be pb-converges to x, if limn→∞ pb(xn, x) = pb(x, x),

(ii) the sequence {xn} is said to be pb-Cauchy sequence in (X, pb), if limn,m→∞ pb(xn, xm) exists and is
finite.

(iii) (X, pb) is said to be a pb-complete partial b-metric space, if for every Cauchy sequence {xn} in X,
there exists x ∈ X such that

lim
n,m→∞

pb(xn, xm) = lim
n→∞

pb(xn, x) = pb(x, x).

Thank to [19], we have the following important lemmas.

Lemma 2.9 ([19]).

(1) A sequence {xn} is a pb-Cauchy sequence in a partial b-metric space (X, pb), if and only if it is a
b-Cauchy sequence in the b-metric space (X, dpb).

(2) A partial b-metric space (X, pb) is pb-complete, if and only if the b-metric space (X, dpb) is b-complete.
Moreover, limn→∞ dpb(x, xn) = 0, if and only if

lim
n,m→∞

pb(xn, xm) = lim
n→∞

pb(xn, x) = pb(x, x).

Lemma 2.10 ([19]). Let (X, pb) be a partial b-metric space with the coefficient s ≥ 1 and suppose that {xn}
and {yn} are convergent to x and y, respectively. Then we have

1

s2
pb(x, y)− 1

s
pb(x, x)− pb(y, y) ≤ lim inf

n→∞
pb(xn, yn) ≤ lim sup

n→∞
pb(xn, yn)

≤ spb(x, x) + s2pb(y, y) + s2pb(x, y).
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In particular, if pb(x, y) = 0, then we have limn→∞ dpb(xn, yn) = 0. Moreover, for each z ∈ X, we have

1

s
pb(x, z)− pb(x, x) ≤ lim inf

n→∞
pb(xn, z) ≤ lim sup

n→∞
pb(xn, z)

≤ spb(x, z) + spb(x, x).

In particular, if pb(x, x) = 0, then we have

1

s
pb(x, z) ≤ lim inf

n→∞
pb(xn, z) ≤ lim sup

n→∞
pb(xn, z) ≤ spb(x, z).

Definition 2.11 ([9]). An element (x, y) ∈ X × X is called a coupled fixed point of the mapping F :
X ×X → X, if F (x, y) = x and F (y, x) = y.

Definition 2.12 ([14]). An element (x, y) ∈ X × X is called a coupled coincidence point of the mapping
F : X × X → X and g : X → X, if F (x, y) = gx and F (y, x) = gy, and in this case, (gx, gy) is called a
coupled point of coincidence.

Definition 2.13 ([1]). An element (x, x) ∈ X × X is called a common fixed point of the mapping F :
X ×X → X and g : X → X, if F (x, x) = gx = x.

Definition 2.14 ([14]). Let X be a nonempty set. Then we say that the mappings F : X ×X → X and
g : X → X are commutative, if gF (x, y) = F (gx, gy).

Definition 2.15 ([9]). Let (X,�) be a partially ordered set and F : X × X → X. The mapping F is
said to have the mixed monotone property, if F (x, y) is monotone non-decreasing in x and is monotone
non-increasing in y, that is, for any x, y ∈ X, we have

x1, x2 ∈ X, x1 � x2 ⇒ F (x1, y) � F (x2, y),

and
y1, y2 ∈ X, y1 � y2 ⇒ F (x, y1) � F (x, y2).

Definition 2.16 ([14]). Let (X,�) be a partially ordered set and F : X ×X → X and g : X → X. The
mapping F is said to have the mixed g-monotone property, if F (x, y) is monotone g-nondecreasing in its
first argument and is monotone g-nonincreasing in its second argument, that is, for any x, y ∈ X, we have

x1, x2 ∈ X, g(x1) � g(x2) ⇒ F (x1, y) � F (x2, y),

and
y1, y2 ∈ X, g(y1) � g(y2) ⇒ F (x, y1) � F (x, y2).

Definition 2.17 ([12]). A function ψ : [0,∞)→ [0,∞) is called an altering distance function, if the following
properties are satisfied:

1. ψ is continuous and nondecreasing;

2. ψ(t) = 0, if and only if t = 0.

3. Main results

Theorem 3.1. Let (X,�, pb) be a ordered partial b-metric space. Let F : X×X → X and g : X → X be two
mappings and F has the mixed g-monotone property with g. Suppose that there exists an altering distance
function ψ and θ : [0,∞)10 → [0,∞) is continuous with θ(t1, t2, · · · , t10) = 0 implies t1 = t2 = t5 = t6 = 0
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such that
ψ (spb(F (x, y), F (u, v))) ≤ ψ (M(x, y, u, v))−Θ(x, y, u, v) (3.1)

for all (x, y), (u, v) ∈ X ×X with g(x) � g(u) and g(y) � g(v), where

M(x, y, u, v) = max


pb(gx, gu), pb(gy, gv), pb(gx, F (x, y)),

pb(gy, F (y, x)), pb(gu,F (u,v))
2s , pb(gv,F (v,u))

2s ,
pb(gx,F (u,v))+pb(gu,F (x,y))

2s , pb(gy,F (v,u))+pb(gv,F (y,x))
2s

 ,

and

Θ(x, y, u, v) = θ

 pb(gx, gu), pb(gy, gv), pb(gx, F (x, y)), pb(gy, F (y, x)),
pb(gu, F (u, v)), pb(gv, F (v, u)), pb(gx, F (u, v)),
pb(gy, F (v, u)), pb(gu, F (x, y)), pb(gv, F (y, x))

 .

Further, suppose F (X × X) ⊂ g(X) and g(X) is a pb-complete subspace of (X, pb). Also suppose that X
satisfies the following properties:

(i) if a non-decreasing sequence {xn} in X converges to x ∈ X, then xn � x for all n ∈ N;

(ii) if a non-increasing sequence {yn} in X converges to y ∈ X, then yn � y for all n ∈ N.

If there exists (x0, y0) ∈ X ×X such that gx0 � F (x0, y0) and gy0 � F (y0, x0), then F and g have a coupled
coincidence point.

Proof. By the given condition, there exists (x0, y0) ∈ X ×X such that gx0 � F (x0, y0) and gy0 � F (y0, x0).
Since F (X×X) ⊂ g(X), we can define (x1, y1) ∈ X×X such that gx1 = F (x0, y0) and gy1 = F (y0, x0), then
gx0 � F (x0, y0) = gx1 and gy0 � F (y0, x0) = gy1. Going on in this way, we can construct two sequences
{xn} and {yn} in X such that

gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn), ∀ n ≥ 0. (3.2)

Now we prove that
gxn � gxn+1 and gyn � gyn+1, ∀ n ≥ 0.

We will use the mathematical induction. The conclusion holds for n = 0, suppose it holds for some
n > 0. Since F has the mixed g-monotone property, g(xn) � g(xn+1) and g(yn) � g(yn+1), from (3.2) we
have {

gxn+1 = F (xn, yn) � F (xn+1, yn) � F (xn+1, yn+1) = gxn+2, ∀ n ≥ 0,
gyn+1 = F (yn, xn) � F (yn+1, xn) � F (yn+1, xn+1) = gyn+2, ∀ n ≥ 0.

Thus, by the mathematical induction, we conclude that{
gx0 � gx1 � gx2 � · · · � gxn � gxn+1 � · · · ,
gy0 � gy1 � gy2 � · · · � gyn � gyn+1 � · · · .

(3.3)

From (3.2), (3.3), (3.1), and the property of ψ we have

ψ (pb(gxn, gxn+1)) ≤ ψ (spb(gxn, gxn+1)) = ψ (spb(F (xn−1, yn−1), F (xn, yn)))

≤ ψ (M(xn−1, yn−1, xn, yn))−Θ(xn−1, yn−1, xn, yn), (3.4)

where

M(xn−1, yn−1, xn, yn)

= max


pb(gxn−1, gxn), pb(gyn−1, gyn), pb(gxn−1, F (xn−1, yn−1)),

pb(gyn−1, F (yn−1, xn−1)),
pb(gxn,F (xn,yn))

2s , pb(gyn,F (yn,xn))
2s ,

pb(gxn−1,F (xn,yn))+pb(gxn,F (xn−1,yn−1))
2s ,

pb(gyn−1,F (yn,xn))+pb(gyn,F (yn−1,xn−1))
2s


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= max


pb(gxn−1, gxn), pb(gyn−1, gyn), pb(gxn−1, gxn),
pb(gyn−1, gyn), pb(gxn, gxn+1), pb(gyn, gyn+1),

pb(gxn−1,gxn+1)+pb(gxn,gxn)
2s , pb(gyn−1,gyn+1))+pb(gyn,gyn)

2s

 (3.5)

= max

{
pb(gxn−1, gxn), pb(gyn−1, gyn), pb(gxn, gxn+1), pb(gyn, gyn+1),

pb(gxn−1,gxn+1)+pb(gxn,gxn)
2s , pb(gyn−1,gyn+1))+pb(gyn,gyn)

2s

}
.

and

Θ(xn−1, yn−1, xn, yn) = θ

 pb(gxn−1, gxn), pb(gyn−1, gyn), pb(gxn−1, gxn),
pb(gyn−1, gyn), pb(gxn, gxn+1), pb(gyn, gyn+1),

pb(gxn−1, gxn+1), pb(gxn, gxn), pb(gyn−1, gyn+1), pb(gyn, gyn)

 .

It follows from (pb4) that

pb(gxn−1, gxn+1) + pb(gxn, gxn)

2s
≤ spb(gxn−1, gxn) + spb(gxn, gxn+1) + (1− s)pb(gxn, gxn)

2s

≤ spb(gxn−1, gxn) + spb(gxn, gxn+1)

2s
(3.6)

≤ max{pb(gxn−1, gxn), pb(gxn, gxn+1)}.

Similarly, we can show that

pb(gyn−1, gyn+1) + pb(gyn, gyn)

2s
≤ spb(gyn−1, gyn) + spb(gyn, gyn+1) + (1− s)pb(gyn, gyn)

2s

≤ spb(gyn−1, gyn) + spb(gyn, gyn+1)

2s
(3.7)

≤ max{pb(gyn−1, gyn), pb(gyn, gyn+1)}.

By substituting (3.6) and (3.7) into (3.5), we obtain

M(xn−1, yn−1, xn, yn) = max {pb(gxn−1, gxn), pb(gxn, gxn+1), pb(gyn−1, gyn), pb(gyn, gyn+1)}
= max {δn−1, δn} , (3.8)

where
δn = max{pb(gxn, gxn+1), pb(gyn, gyn+1)}.

By combining (3.4) and (3.8), we get

ψ (pb(gxn, gxn+1)) ≤ ψ (max {δn−1, δn})−Θ(xn−1, yn−1, xn, yn). (3.9)

By the same way as above, we can show that

M(yn−1, xn−1, yn, xn) = max {δn−1, δn} ,

and

ψ (pb(gyn, gyn+1)) ≤ ψ (M(yn−1, xn−1, yn, xn))−Θ(yn−1, xn−1, yn, xn)

= ψ (max {δn−1, δn})−Θ(yn−1, xn−1, yn, xn), (3.10)

where

Θ(yn−1, xn−1, yn, xn) = θ

 pb(gyn−1, gyn), pb(gxn−1, gxn), pb(gyn−1, gyn),
pb(gxn−1, gxn), pb(gyn, gyn+1), pb(gxn, gxn+1),

pb(gyn−1, gyn+1), pb(gyn, gyn), pb(gxn−1, gxn+1), pb(gxn, gxn)

 .
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Next we prove that δn ≤ δn−1 for all n ∈ N. In fact, suppose that δn−1 < δn, then δn > 0 (otherwise,
δn−1 < δn = 0, which is a contradiction). We consider the following two cases.

Case 1. max{δn−1, δn} = δn = pb(gxn, gxn+1) > 0.
By (3.9) we have

ψ (pb(gxn, gxn+1)) ≤ ψ (pb(gxn, gxn+1))−Θ(xn−1, yn−1, xn, yn),

which means Θ(xn−1, yn−1, xn, yn) = 0. By the properties of θ, we can find pb(gxn, gxn+1) = 0, which is a
contradiction.
Case 2. max{δn−1, δn} = δn = pb(gyn, gyn+1) > 0.

By (3.10) we have

ψ (pb(gyn, gyn+1)) ≤ ψ (pb(gyn, gyn+1))−Θ(yn−1, xn−1, yn, xn),

which means Θ(yn−1, xn−1, yn, xn) = 0. By the properties of θ we can find pb(gyn, gyn+1) = 0, which is a
contradiction.

Therefore, we have δn ≤ δn−1 for all n ∈ N holds, thus the sequence {δn} is a non-increasing sequence of
nonnegative real number, and so, there exists δ ≥ 0 such that

lim
n→∞

δn = δ.

Since ψ(max{x, y}) = max{ψ(x), ψ(y)}, from (3.9) and (3.10) we have

ψ(δn) = max{ψ(pb(gxn, gxn+1)), ψ(pb(gyn, gyn+1))}
≤ ψ(δn−1)−min {Θ(xn−1, yn−1, xn, yn),Θ(yn−1, xn−1, yn, xn)} . (3.11)

By taking the upper limit as n→∞ in (3.11), we have

ψ(δ) ≤ ψ(δ)− lim inf
n→∞

min {Θ(xn−1, yn−1, xn, yn),Θ(yn−1, xn−1, yn, xn)}

≤ ψ(δ)−min
{

lim inf
n→∞

Θ(xn−1, yn−1, xn, yn), lim inf
n→∞

Θ(yn−1, xn−1, yn, xn)
}
.

Therefore,
lim inf
n→∞

Θ(xn−1, yn−1, xn, yn) = 0 or lim inf
n→∞

Θ(yn−1, xn−1, yn, xn) = 0.

Hence, by using the properties of θ, we get

lim inf
n→∞

pb(gxn, gxn+1) = 0 and lim inf
n→∞

pb(gyn, gyn+1) = 0.

So,
δ = lim inf

n→∞
δn = lim inf

n→∞
max{pb(gxn, gxn+1), pb(gyn, gyn+1)} = 0.

That is
lim
n→∞

pb(gxn, gxn+1) = 0 and lim
n→∞

pb(gyn, gyn+1) = 0. (3.12)

From (pb2) and (3.12), we have

lim
n→∞

pb(gxn, gxn) = 0 and lim
n→∞

pb(gyn, gyn) = 0. (3.13)

Next we prove that {gxn}, {gyn} are pb-Cauchy sequences in g(X). For this, we have to show that
{gxn}, {gyn} are b-Cauchy sequences in (g(X), dpb). In other words, we need to show that for every ε > 0,
there exists k ∈ N such that for all m,n ≥ k,

max{dpb(gxm, gxn), dpb(gym, gyn)} < ε.
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Suppose to the contrary, there exists ε > 0 for which we can find subsequences {gxmi}, {gxni} of {gxn}
and {gymi}, {gyni} of {gyn} such that ni is the smallest index for which

ni > mi > i, max{dpb(gxmi , gxni), dpb(gymi , gyni)} ≥ ε. (3.14)

That is,
max{dpb(gxmi , gxni−1), dpb(gymi , gyni−1)} < ε. (3.15)

From the definition of dpb , (3.12) and (3.13) we obtain

lim
n→∞

dpb(gxn, gxn+1) = 2 lim
n→∞

pb(gxn, gxn+1)− lim
n→∞

pb(gxn, gxn)− lim
n→∞

pb(gxn+1, gxn+1)

= 0.

Similarly, we have limn→∞ dpb(gyn, gyn+1) = 0. To sum up, we get

lim
n→∞

dpb(gxn, gxn+1) = 0 and lim
n→∞

dpb(gyn, gyn+1) = 0. (3.16)

By using the triangle inequality, we get

dpb(gxmi , gxni) ≤ sdpb(gxmi , gxni−1) + sdpb(gxni−1, gxni), (3.17)

and
dpb(gymi , gyni) ≤ sdpb(gymi , gyni−1) + sdpb(gyni−1, gyni). (3.18)

Hence from (3.14), (3.17) and (3.18), we have

ε ≤ max{dpb(gxmi , gxni), dpb(gymi , gyni)}
≤ smax{dpb(gxmi , gxni−1), dpb(gymi , gyni−1)}

+ smax{dpb(gxni−1, gxni), dpb(gyni−1, gyni)}. (3.19)

By taking the lower limit as i→∞ in (3.19) and using (3.15), (3.16), we have

ε ≤ lim inf
i→∞

max{dpb(gxmi , gxni), dpb(gymi , gyni)}

≤ s lim inf
i→∞

max{dpb(gxmi , gxni−1), dpb(gymi , gyni−1)} (3.20)

≤ s lim sup
i→∞

max{dpb(gxmi , gxni−1), dpb(gymi , gyni−1)} ≤ sε.

Also, by using (3.15) and (3.16), taking the upper limit as i→∞ in (3.19), we obtain

ε ≤ lim sup
i→∞

max{dpb(gxmi , gxni), dpb(gymi , gyni)} ≤ sε. (3.21)

By the triangle inequality, we have

dpb(gxmi , gxni) ≤ sdpb(gxmi , gxmi+1) + sdpb(gxmi+1, gxni), (3.22)

and
dpb(gymi , gyni) ≤ sdpb(gymi , gymi+1) + sdpb(gymi+1, gyni). (3.23)

Therefore, from (3.14), (3.22) and (3.23), we have

ε ≤ max{dpb(gxmi , gxni), dpb(gymi , gyni)}
≤ smax{dpb(gxmi , gxmi+1), dpb(gymi , gymi+1)}

+ smax{dpb(gxmi+1, gxni), dpb(gymi+1, gyni)}.
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By taking the upper limit as i→∞ in the above inequality, and using (3.16), we have

ε

s
≤ lim sup

i→∞
max{dpb(gxmi+1, gxni), dpb(gymi+1, gyni)}. (3.24)

Again, by the triangle inequality we have

dpb(gxmi+1, gxni−1) ≤ sdpb(gxmi+1 , gxmi) + sdpb(gxmi , gxni−1), (3.25)

and
dpb(gymi+1, gyni−1) ≤ sdpb(gymi+1 , gymi) + sdpb(gymi , gyni−1). (3.26)

From the inequality (3.25), (3.26) and (3.15), we have

max{dpb(gxmi+1, gxni−1), dpb(gymi+1, gyni−1)} ≤ smax{dpb(gxmi+1, gxmi), dpb(gymi+1, gymi)}
+ smax{dpb(gxmi , gxni−1), dpb(gymi , gyni−1)}

< smax{dpb(gxmi+1, gxmi), dpb(gymi+1, gymi)}+ sε.

By taking the upper limit as i→∞ in the above inequality, and using (3.16), we get

lim sup
i→∞

max{dpb(gxmi+1, gxni−1), dpb(gymi+1, gyni−1)} ≤ sε. (3.27)

On the other hand, because of the definition of dpb and (3.16), we have

lim inf
i→∞

dpb(gxmi , gxni−1) = 2 lim inf
i→∞

pb(gxmi , gxni−1), (3.28)

and
lim inf
i→∞

dpb(gymi , gyni−1) = 2 lim inf
i→∞

pb(gymi , gyni−1). (3.29)

Hence, from (3.28), (3.29) and (3.20), we obtain

ε

s
≤ lim inf

i→∞
max{dpb(gxmi , gxni−1), dpb(gymi , gyni−1)}

= 2 lim inf
i→∞

max{pb(gxmi , gxni−1), pb(gymi , gyni−1)} ≤ ε.

Thus, we get
ε

2s
≤ lim inf

i→∞
max{pb(gxmi , gxni−1), pb(gymi , gyni−1)} ≤

ε

2
. (3.30)

Similarly, from (3.15), (3.21), (3.24), (3.27) and definition of dpb , we can show that

lim sup
i→∞

max{pb(gxmi , gxni−1), pb(gymi , gyni−1)} ≤
ε

2
, (3.31)

lim sup
i→∞

max{pb(gxmi , gxni), pb(gymi , gyni)} ≤
sε

2
, (3.32)

ε

2s
≤ lim sup

i→∞
max{pb(gxmi+1, gxni), pb(gymi+1, gyni)}, (3.33)

lim sup
i→∞

max{pb(gxmi+1, gxni−1), pb(gymi+1, gyni−1)} ≤
sε

2
. (3.34)

By using (3.1) with (x, y) = (xmi , ymi) and (u, v) = (xni−1, yni−1), we get

ψ (spb(gxmi+1, gxni)) = ψ (spb(F (xmi , ymi), F (xni−1, yni−1)))

≤ ψ (M(xmi , ymi , xni−1, yni−1))−Θ(xmi , ymi , xni−1, yni−1) (3.35)
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where

M(xmi , ymi , xni−1, yni−1)

= max


pb(gxmi , gxni−1), pb(gymi , gyni−1), pb(gxmi , F (xmi , ymi)),

pb(gymi , F (ymi , xmi)),
pb(gxni−1,F (xni−1,yni−1))

2s ,
pb(gyni−1,F (yni−1,xni−1))

2s ,
pb(gxmi ,F (xni−1,yni−1))+pb(gxni−1,F (xmi ,ymi ))

2s ,
pb(gymi ,F (yni−1,xni−1))+pb(gyni−1,F (ymi ,xmi ))

2s


= max


pb(gxmi , gxni−1), pb(gymi , gyni−1), pb(gxmi , gxmi+1),
pb(gymi , gymi+1), pb(gxni−1, gxni), pb(gyni−1, gyni),

pb(gxmi ,gxni )+pb(gxni−1,gxmi+1)

2s ,
pb(gymi ,gyni )+pb(gyni−1,gymi+1)

2s

 ,

and

Θ(xmi , ymi , xni−1, yni−1) = θ

 pb(gxmi , gxni−1), pb(gymi , gyni−1), pb(gxmi , gxmi+1), pb(gymi , gymi+1),
pb(gxni−1, gxni), pb(gyni−1, gyni), pb(gxmi , gxni),

pb(gymi , gyni), pb(gxni−1, gxmi+1), pb(gyni−1, gymi+1)

 .

Similarly, we have

ψ (spb(gymi+1, gyni)) = ψ (spb(F (ymi , xmi), F (yni−1, xni−1)))

≤ ψ (M(ymi , xmi , yni−1, xni−1))−Θ(ymi , xmi , yni−1, xni−1), (3.36)

where

M(ymi , xmi , yni−1, xni−1) = max


pb(gxmi , gxni−1), pb(gymi , gyni−1), pb(gxmi , gxmi+1),
pb(gymi , gymi+1), pb(gxni−1, gxni), pb(gyni−1, gyni),

pb(gxmi ,gxni )+pb(gxni−1,gxmi+1)

2s ,
pb(gymi ,gyni )+pb(gyni−1,gymi+1)

2s


= M(xmi , ymi , xni−1, yni−1),

and

Θ(ymi , xmi , yni−1, xni−1) = θ

 pb(gymi , gyni−1), pb(gxmi , gxni−1), pb(gymi , gymi+1), pb(gxmi , gxmi+1),
pb(gyni−1, gyni), pb(gxni−1, gxni), pb(gymi , gyni),

pb(gxmi , gxni), pb(gyni−1, gymi+1), pb(gxni−1, gxmi+1)

 .

By combining (3.35) and (3.36), we have

ψ(smax{pb(gxmi+1, gxni), pb(gymi+1, gyni)}) = max{ψ(spb(gxmi+1, gxni)), ψ(spb(gymi+1, gyni))}
≤ ψ(M(xmi , ymi , xni−1, yni−1))

−min {Θ(xmi , ymi , xni−1, yni−1),Θ(ymi , xmi , yni−1, xni−1)} .

By taking the upper limit as i→∞ in the above inequality and using (3.12), (3.31), (3.32), (3.33) and
(3.34), we have

ψ
(ε

2

)
= ψ

(
s · ε

2s

)
≤ ψ(s lim sup

i→∞
max{pb(gxmi+1, gxni), pb(gymi+1, gyni)})

≤ ψ
(

max

{
ε

2
,
ε

2
, 0, 0, 0, 0,

sε
2 + sε

2

2s
,
sε
2 + sε

2

2s

})
− lim inf

i→∞
min

{
Θ(xmi , ymi , xni−1, yni−1),
Θ(ymi , xmi , yni−1, xni−1)

}
= ψ

(ε
2

)
−min

{
lim inf
i→∞

Θ(xmi , ymi , xni−1, yni−1), lim inf
i→∞

Θ(ymi , xmi , yni−1, xni−1)

}
,

which implies that

lim inf
i→∞

Θ(xmi , ymi , xni−1, yni−1) = 0 or lim inf
i→∞

Θ(ymi , xmi , yni−1, xni−1) = 0.
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Hence, by using the properties of θ, we get

lim inf
i→∞

pb(gxmi , gxni−1) = 0 and lim inf
i→∞

pb(gymi , gyni−1) = 0,

which is a contradiction to (3.30). Thus, {gxn}, {gyn} are b-Cauchy sequences in (g(X), dpb). By Lemma
2.9, {gxn}, {gyn} are pb-Cauchy sequences in (g(X), pb). Since g(X) is pb-complete subspace of (X, pb), there
exist gx, gy ∈ g(X), such that {gxn} and {gyn} pb-converges to gx and gy, respectively. By using Lemma
2.9 again, we have

lim
n→∞

pb(gxn, gx) = lim
n,m→∞

pb(gxn, gxm) = pb(gx, gx), (3.37)

lim
n→∞

pb(gyn, gy) = lim
n,m→∞

pb(gyn, gym) = pb(gy, gy).

Since {gxn} is b-Cauchy sequence in (X, dpb), so limn,m→∞ dpb(gxn, gxm) = 0. By using

dpb(gxn, gxm) = 2pb(gxn, gxm)− pb(gxn, gxn)− pb(gxm, gxm),

and (3.13) we obtain that limn,m→∞ pb(gxn, gxm) = 0. Thus, it follows from (3.37) that

lim
n→∞

pb(gxn, gx) = lim
n,m→∞

pb(gxn, gxm) = pb(gx, gx) = 0. (3.38)

On using similar steps as above we can show that

lim
n→∞

pb(gyn, gy) = lim
n,m→∞

pb(gyn, gym) = pb(gy, gy) = 0. (3.39)

By (3.3) and the properties (i) and (ii), we have gxn � gx, gyn � gy for all n ∈ N . From (3.1), we have

ψ (spb(gxn+1, F (x, y))) = ψ (spb(F (xn, yn), F (x, y)))

≤ ψ (M(xn, yn, x, y))−Θ(xn, yn, x, y), (3.40)

where

M(xn, yn, x, y) = max


pb(gxn, gx), pb(gyn, gy), pb(gxn, gxn+1),

pb(gyn, gyn+1),
pb(gx,F (x,y))

2s , pb(gy,F (y,x))
2s ,

pb(gxn,F (x,y))+pb(gx,gxn+1)
2s , pb(gyn,F (y,x))+pb(gy,gyn+1)

2s

 , (3.41)

and

Θ(xn, yn, x, y) = θ

 pb(gxn, gx), pb(gyn, gy), pb(gxn, gxn+1), pb(gyn, gyn+1),
pb(gx, F (x, y)), pb(gy, F (y, x)), pb(gxn, F (x, y)),
pb(gyn, F (y, x)), pb(gx, gxn+1), pb(gy, gyn+1)

 .

By taking the upper limit as n→∞ in (3.41), and using (3.12), (3.38), (3.39) and Lemma 2.10, we obtain

lim sup
n→∞

M(xn, yn, x, y) ≤ max

{
0, 0, 0, 0,

pb(gx, F (x, y))

2s
,
pb(gy, F (y, x))

2s
,

spb(gx, F (x, y)) + 0

2s
,
spb(gy, F (y, x)) + 0

2s

}
≤ max {pb(gx, F (x, y)), pb(gy, F (y, x))} . (3.42)

By using Lemma 2.10, (3.42) and the properties of ψ, and taking the upper limit as n → ∞ in (3.40),
we obtain

ψ (pb(gx, F (x, y))) = ψ

(
s · pb(gx, F (x, y))

s

)
≤ ψ

(
s lim sup

n→∞
pb(gxn+1, F (x, y))

)
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= lim sup
n→∞

ψ (spb(gxn+1, F (x, y))) (3.43)

≤ lim sup
n→∞

ψ (M(xn, yn, x, y)))− lim inf
n→∞

Θ(xn, yn, x, y)

≤ ψ (max {pb(gx, F (x, y)), pb(gy, F (y, x))})
− lim inf

n→∞
Θ(xn, yn, x, y).

Similarly, we can show that

ψ (pb(gy, F (y, x))) ≤ ψ (max {pb(gx, F (x, y)), pb(gy, F (y, x))})− lim inf
n→∞

Θ(yn, xn, y, x), (3.44)

where

Θ(yn, xn, y, x) = θ

 pb(gyn, gy), pb(gxn, gx), pb(gyn, gyn+1), pb(gxn, gxn+1),
pb(gy, F (y, x)), pb(gx, F (x, y)), pb(gyn, F (y, x)),
pb(gxn, F (x, y)), pb(gy, gyn+1), pb(gx, gxn+1)

 .

By combining (3.43) and (3.44) we obtain

ψ(max{pb(gx, F (x, y)), pb(gy, F (y, x))}) = max{ψ(pb(gx, F (x, y))), ψ(pb(gy, F (y, x)))}
≤ ψ (max {pb(gx, F (x, y)), pb(gy, F (y, x))})
−min{lim inf

n→∞
Θ(xn, yn, x, y), lim inf

n→∞
Θ(yn, xn, y, x)}.

Accordingly, we get

lim inf
n→∞

Θ(xn, yn, x, y) = 0 or lim inf
n→∞

Θ(yn, xn, y, x) = 0.

By using the properties of θ, we get gx = F (x, y) and gy = F (y, x). That is, (x, y) is a coupled
coincidence point of the mappings F and g.

Remark 3.2. The contractive conditions of Theorem 3.1 is new. As far as now, no author has investigated the
problems. Theorem 3.1 improves and extends several well-known comparable results from b-metric spaces
and partial metric spaces to ordered partial b-metric spaces.

Corollary 3.3. Let (X,�, pb) be a ordered partial b-metric space. Let F : X × X → X and g : X → X
be two mappings and F has the mixed g-monotone property with g. Suppose that there exists an altering
distance function ψ and φ : [0,∞)→ [0,∞) is continuous with φ(t) = 0 implies t = 0 such that

ψ (spb(F (x, y), F (u, v))) ≤ ψ (M(x, y, u, v))− φ (M(x, y, u, v))

for all (x, y), (u, v) ∈ X ×X with g(x) � g(u) and g(y) � g(v), where

M(x, y, u, v) = max


pb(gx, gu), pb(gy, gv), pb(gx, F (x, y)),

pb(gy, F (y, x)), pb(gu,F (u,v))
2s , pb(gv,F (v,u))

2s ,
pb(gx,F (u,v))+pb(gu,F (x,y))

2s , pb(gy,F (v,u))+pb(gv,F (y,x))
2s

 .

Further, suppose F (X × X) ⊂ g(X) and g(X) is a pb-complete subspace of (X, pb). Also, suppose that X
satisfies the following properties:

(i) if a non-decreasing sequence xn in X converges to x ∈ X, then xn � x for all n ∈ N;

(ii) if a non-increasing sequence yn in X converges to y ∈ X, then yn � y for all n ∈ N.

If there exists (x0, y0) ∈ X ×X such that gx0 � F (x0, y0) and gy0 � F (y0, x0), then F and g have a coupled
coincidence point.
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Proof. Take

θ(t1, t2, · · · , t10) = φ

(
max

{
t1, t2, t3, t4,

t5
2s
,
t6
2s
,
t7 + t8

2s
,
t9 + t10

2s

})
,

in Theorem 3.1, then Corollary 3.3 holds.

Remark 3.4. Corollary 3.3 improves and extends Theorem 2.2 in [4] from ordered b-metric space to ordered
partial b-metric space.

Corollary 3.5. Let (X,�, pb) be a pb-complete ordered partial b-metric space. Let F : X × X → X be
a mapping and F has the mixed monotone property on X. Suppose that there exists an altering distance
function ψ and φ : [0,∞)→ [0,∞) is continuous with φ(t) = 0 implies t = 0 such that

ψ (spb(F (x, y), F (u, v))) ≤ ψ (M(x, y, u, v))− φ (M(x, y, u, v))

for all (x, y), (u, v) ∈ X ×X with x � u and y � v, where

M(x, y, u, v) = max


pb(x, u), pb(y, v), pb(x, F (x, y)),

pb(y, F (y, x)), pb(u,F (u,v))
2s , pb(v,F (v,u))

2s ,
pb(x,F (u,v))+pb(u,F (x,y))

2s , pb(y,F (v,u))+pb(v,F (y,x))
2s

 .

Further, suppose that X satisfies the following properties:

(i) if a non-decreasing sequence xn in X converges to x ∈ X, then xn � x for all n ∈ N;

(ii) if a non-increasing sequence yn in X converges to y ∈ X, then yn � y for all n ∈ N.

If there exists (x0, y0) ∈ X × X such that x0 � F (x0, y0) and y0 � F (y0, x0), then F has a coupled fixed
point.

Proof. It suffices to take g = Ix in Corollary 3.3.

Remark 3.6. Corollary 3.5 improves and extends Corollary 2.3 in [4] from ordered b-metric space to ordered
partial b-metric space.

Corollary 3.7. Let (X,�, pb) be a ordered partial b-metric space. Let F : X ×X → X and g : X → X be
two mappings and F has the mixed g-monotone property with g. Suppose that there exists k ∈ [0, 1) such
that

pb(F (x, y), F (u, v)) ≤ k

s
max


pb(gx, gu), pb(gy, gv), pb(gx, F (x, y)),

pb(gy, F (y, x)), pb(gu,F (u,v))
2s , pb(gv,F (v,u))

2s ,
pb(gx,F (u,v))+pb(gu,F (x,y))

2s , pb(gy,F (v,u))+pb(gv,F (y,x))
2s


for all (x, y), (u, v) ∈ X × X with g(x) � g(u) and g(y) � g(v). Further, suppose F (X × X) ⊂ g(X) and
g(X) is a pb-complete subspace of (X, pb). Also, suppose that X satisfies the following properties:

(i) if a non-decreasing sequence xn in X converges to x ∈ X, then xn � x for all n ∈ N;

(ii) if a non-increasing sequence yn in X converges to y ∈ X, then yn � y for all n ∈ N.

If there exists (x0, y0) ∈ X ×X such that gx0 � F (x0, y0) and gy0 � F (y0, x0), then F and g have a coupled
coincidence point.

Proof. It suffices to take

θ(t1, t2, · · · , t10) = (1− k) max

{
t1, t2, t3, t4,

t5
2s
,
t6
2s
,
t7 + t8

2s
,
t9 + t10

2s

}
,

and ψ(t) = t in Theorem 3.1.
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Corollary 3.8. Let (X,�, pb) be a ordered partial b-metric space. Let F : X ×X → X and g : X → X be
two mappings and F has the mixed g-monotone property with g. Suppose that there exist non-negative real
numbers α1, α2, · · · , α10 with

α1 + α2 + α3 + α4 + 2s(α5 + α6 + α7 + α8 + α9 + α10) < 1,

such that

spb(F (x, y), F (u, v)) ≤ α1pb(gx, gu) + α2pb(gy, gv) + α3pb(gx, F (x, y)) + α4pb(gy, F (y, x))

+ α5pb(gu, F (u, v)) + α6pb(gv, F (v, u)) + α7pb(gx, F (u, v)) (3.45)

+ α8pb(gu, F (x, y)) + α9pb(gy, F (v, u)) + α10pb(gv, F (y, x))

for all (x, y), (u, v) ∈ X × X with g(x) � g(u) and g(y) � g(v). Further, suppose F (X × X) ⊂ g(X) and
g(X) is a pb-complete subspace of (X, pb). Also, suppose that X satisfies the following properties:

(i) if a non-decreasing sequence xn in X converges to x ∈ X, then xn � x for all n ∈ N;

(ii) if a non-increasing sequence yn in X converges to y ∈ X, then yn � y for all n ∈ N.

If there exists (x0, y0) ∈ X ×X such that gx0 � F (x0, y0) and gy0 � F (y0, x0), then F and g have a coupled
coincidence point.

Proof. By noting that αi, i = 1, 2, · · · , 10 are non-negative real numbers, from (3.45) we have

spb(F (x, y), F (u, v)) ≤ α1pb(gx, gu) + α2pb(gy, gv) + α3pb(gx, F (x, y)) + α4pb(gy, F (y, x))

+ α5pb(gu, F (u, v)) + α6pb(gv, F (v, u)) + α7pb(gx, F (u, v))

+ α8pb(gu, F (x, y)) + α9pb(gy, F (v, u)) + α10pb(gv, F (y, x))

≤ kmax


pb(gx, gu), pb(gy, gv), pb(gx, F (x, y)),

pb(gy, F (y, x)), pb(gu,F (u,v))
2s , pb(gv,F (v,u))

2s ,
pb(gx,F (u,v))+pb(gu,F (x,y))

2s , pb(gy,F (v,u))+pb(gv,F (y,x))
2s

 ,

where
k = α1 + α2 + α3 + α4 + 2s(α5 + α6 + α7 + α8 + α9 + α10) < 1.

From Corollary 3.7, we can find that F and g have a coupled coincidence point.

Corollary 3.9. Let (X,�, pb) be a ordered partial b-metric space. Let F : X ×X → X and g : X → X be
two mappings and F has the mixed g-monotone property with g. Suppose that there exists k ∈ [0, 1) such
that

pb(F (x, y), F (u, v)) ≤ k

s
max {pb(gx, gu), pb(gy, gv)}

for all (x, y), (u, v) ∈ X × X with g(x) � g(u) and g(y) � g(v). Further, suppose F (X × X) ⊂ g(X) and
g(X) is a pb-complete subspace of (X, pb). Also, suppose that X satisfies the following properties:

(i) if a non-decreasing sequence xn in X converges to x ∈ X, then xn � x for all n ∈ N;

(ii) if a non-increasing sequence yn in X converges to y ∈ X, then yn � y for all n ∈ N.

If there exists (x0, y0) ∈ X ×X such that gx0 � F (x0, y0) and gy0 � F (y0, x0), then F and g have a coupled
coincidence point.

Proof. Since

pb(F (x, y), F (u, v)) ≤ k

s
max {pb(gx, gu), pb(gy, gv)}

≤ k

s
max


pb(gx, gu), pb(gy, gv), pb(gx, F (x, y)),

pb(gy, F (y, x)), pb(gu,F (u,v))
2s , pb(gv,F (v,u))

2s ,
pb(gx,F (u,v))+pb(gu,F (x,y))

2s , pb(gy,F (v,u))+pb(gv,F (y,x))
2s

 .
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From Corollary 3.7, we can find that F and g have a coupled coincidence point.

Corollary 3.10. Let (X,�, pb) be a ordered partial b-metric space. Let F : X ×X → X and g : X → X
be two mappings and F has the mixed g-monotone property with g. Suppose that there exists k ∈ [0, 1) such
that

pb(F (x, y), F (u, v)) ≤ k

2s
(pb(gx, gu) + pb(gy, gv))

for all (x, y), (u, v) ∈ X × X with g(x) � g(u) and g(y) � g(v). Further, suppose F (X × X) ⊂ g(X) and
g(X) is a pb-complete subspace of (X, pb). Also, suppose that X satisfies the following properties:

(i) if a non-decreasing sequence xn in X converges to x ∈ X, then xn � x for all n ∈ N;

(ii) if a non-increasing sequence yn in X converges to y ∈ X, then yn � y for all n ∈ N.

If there exists (x0, y0) ∈ X ×X such that gx0 � F (x0, y0) and gy0 � F (y0, x0), then F and g have a coupled
coincidence point.

Proof. Since

pb(F (x, y), F (u, v)) ≤ k

2s
(pb(gx, gu) + pb(gy, gv)) ≤ k

s
max {pb(gx, gu), pb(gy, gv)} .

From Corollary 3.9, we can find that F and g have a coupled coincidence point.

Remark 3.11. If we define g = Ix, s = 1, in Corollaries 3.9 and 3.10, then we can get some new results, which
improve and extend Theorem 2.2 in [9], and Corollary 2 in [6] from ordered partial metric space to ordered
partial b-metric space. These results also extend and generalize the corresponding results of [11, 17, 20].

Now we give an example to show the usability of Theorem 3.1.

Example 3.12. Let X = [0, 1] with usual ordering. Define pb(x, y) = (max{x, y})2. Then (X,�, pb) is a
complete ordered partial b-metric space with coefficient s = 2.

Next we define

F (x, y) =
1

3
x(1− y), and g(x) =

2

3
x for all x, y ∈ X,

ψ(t) = t, and θ(t1, t2, · · · , t10) =
1

3
max

{
t1, t2, · · · , t6,

t7 + t8
2s

,
t9 + t10

2s

}
.

Clearly, F has the mixed g-monotone property with g and F (X ×X) ⊂ g(X). Otherwise,

pb(F (x, y), F (u, v)) =

(
max

{
1

3
x(1− y),

1

3
u(1− v)

})2

= max

{
1

9
x2(1− y)2,

1

9
u2(1− v)2

}
,

M(x, y, u, v) = max


pb(gx, gu), pb(gy, gv), pb(gx, F (x, y)),

pb(gy, F (y, x)), pb(gu,F (u,v))
2s , pb(gv,F (v,u))

2s ,
pb(gx,F (u,v))+pb(gu,F (x,y))

2s , pb(gy,F (v,u))+pb(gv,F (y,x))
2s


= max

{
4
9x

2, 49u
2, 49y

2, 49v
2, 19x

2(1− y)2, 19u
2(1− v)2,

1
9
y2(1−x)2

4 ,
1
9
v2(1−u)2

4 ,
4
9
x2+ 4

9
u2

4 ,
4
9
y2+ 4

9
v2

4

}
=

4

9
max

{
x2, u2, y2, v2

}
,

Θ(x, y, u, v) =
1

3
M(x, y, u, v) =

4

27
max

{
x2, u2, y2, v2

}
.
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Therefore,

ψ (M(x, y, u, v))−Θ(x, y, u, v) =
2

3
· 4

9
max

{
x2, u2, y2, v2

}
=

8

27
max

{
x2, u2, y2, v2

}
.

Then

ψ (spb(F (x, y), F (u, v))) = max

{
2

9
x2(1− y)2,

2

9
u2(1− v)2

}
≤ max

{
2

9
x2,

2

9
u2
}

≤ 2

9
max

{
x2, u2, y2, v2

}
≤ 8

27
max

{
x2, u2, y2, v2

}
= ψ (M(x, y, u, v))−Θ(x, y, u, v).

At last, define x0 = 0, y0 = 0, then gx0 � F (x0, y0) and gy0 � F (y0, x0). So, the conditions of Theorem
3.1 are all satisfied. Since F (0, 0) = g(0) and F (0, 0) = g(0), (0, 0) is the coupled coincidence point of F and
g.

4. Uniqueness of common fixed points

In this section we prove the existence and uniqueness of common fixed point. If (X,�) is a partially
ordered set, first we define product space X ×X with a partial order relation in the following way. For all
(x, y), (u, v) ∈ X ×X,

(x, y) � (u, v)⇐⇒ x � u, y � v.

We say that (x, y) and (u, v) are comparable, if (x, y) � (u, v) or (x, y) � (u, v).

Theorem 4.1. In addition to hypotheses of Theorem 3.1, suppose that for every (x, y) and (x∗, y∗) in
X × X, there exists (u, v) ∈ X × X such that (F (u, v), F (v, u)) is comparable to (F (x, y), F (y, x)) and to
(F (x∗, y∗), F (y∗, x∗)). Also we assume that F commutes with g. Then F and g have a unique common fixed
point, that is, there exists x ∈ X such that x = gx = F (x, x).

Proof. From Theorem 3.1, there exists at least a coupled coincidence point. Suppose (x, y) and (x∗, y∗)
are coupled coincidence points of F and g, that is, gx = F (x, y), gy = F (y, x), gx∗ = F (x∗, y∗) and gy∗ =
F (y∗, x∗). Next we prove gx = gx∗, gy = gy∗. By the assumptions, there exists (u, v) ∈ X ×X such that
(F (u, v), F (v, u)) is comparable to (F (x, y), F (y, x)) and to (F (x∗, y∗), F (y∗, x∗)). Without loss of generality,
we can assume that

(F (x, y), F (y, x)) � (F (u, v), F (v, u)), (F (x∗, y∗), F (y∗, x∗)) � (F (u, v), F (v, u)). (4.1)

Put u0 = u, v0 = v and choose u1, v1 ∈ X such that g(u1) = F (u0, v0) and g(v1) = F (v0, u0). By
continuing this process, we can define sequences {gun}, {gvn} such that

gun+1 = F (un, vn) and gvn+1 = F (vn, un), ∀ n ≥ 0.

Since

(F (x, y), F (y, x)) = (gx, gy),

(F (u, v), F (v, u)) = (gu1, gv1).
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By using (4.1) we have gx � gu1 and gy � gv1. By using the mixed g-monotone property, we have

gx = F (x, y) � F (u1, y) � F (u1, v1) = gu2,

gy = F (y, x) � F (v1, x) � F (v1, u1) � gv2.

By going on this, we can show that gx � gun and gy � gvn, for all n ≥ 1. Thus from (3.1) we have

ψ (spb(gx, gun+1)) = ψ (spb(F (x, y), F (un, vn)))

≤ ψ (M(x, y, un, vn))−Θ(x, y, un, vn),

where

M(x, y, un, vn) = max


pb(gx, gun), pb(gy, gvn), pb(gx, F (x, y)),

pb(gy, F (y, x)), pb(gun,F (un,vn))
2s , pb(gvn,F (vn,un))

2s ,
pb(gx,F (un,vn))+pb(gun,F (x,y))

2s , pb(gy,F (vn,un))+pb(gvn,F (y,x))
2s


= max


pb(gx, gun), pb(gy, gvn), pb(gx, F (x, y)),

pb(gy, F (y, x)), pb(gun,gun+1)
2s , pb(gvn,gvn+1)

2s ,
pb(gx,gun+1)+pb(gun,F (x,y))

2s , pb(gy,gvn+1)+pb(gvn,F (y,x))
2s

 .

It follows from (pb4) that

pb(gun, gun+1)

2s
≤ spb(gx, gun) + spb(gx, gun+1)

2s
≤ max{pb(gx, gun), pb(gx, gun+1)}.

Similarly, we can show that

pb(gvn, gvn+1)

2s
≤ max{pb(gy, gvn), pb(gy, gvn+1)}.

Therefore

M(x, y, un, vn) ≤ max {pb(gx, gun), pb(gy, gvn), pb(gx, gun+1), pb(gy, gvn+1)}
= max {γn−1, γn} ,

where γn = max{pb(gx, gun+1), pb(gy, gvn+1)}. Hence

ψ (spb(gx, gun+1)) ≤ ψ (max {γn−1, γn})−Θ(x, y, un, vn), (4.2)

where

Θ(x, y, un, vn) = θ

 pb(gx, gun), pb(gy, gvn), pb(gx, F (x, y)), pb(gy, F (y, x)),
pb(gun, F (un, vn)), pb(gvn, F (vn, un)), pb(gx, F (un, vn)),
pb(gun, F (x, y)), pb(gy, F (vn, un), pb(gvn, F (y, x)))

 ,

Similarly,
ψ (spb(gy, gvn+1)) ≤ ψ (max {γn−1, γn})−Θ(y, x, vn, un), (4.3)

where

Θ(y, x, vn, un) = θ

 pb(gy, gvn), pb(gx, gun), pb(gy, F (y, x)), pb(gx, F (x, y)),
pb(gvn, F (vn, un)), pb(gun, F (un, vn)), pb(gy, F (vn, un)),
pb(pb(gvn, F (y, x)), pb(gx, F (un, vn), pb(gun, F (x, y)))

 .

In the same way of Theorem 3.1 (Case 1 and Case 2), we can prove that γn ≤ γn−1 for all n ∈ N holds.
Therefore, the sequence {γn} is a non-increasing sequence of nonnegative real number, and so, there exists
γ ≥ 0 such that limn→∞ γn = γ. Next we prove γ = 0.
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By combining (4.2) and (4.3), we get

ψ(γn) ≤ ψ(sγn) ≤ ψ(γn−1)−min

{
Θ(x, y, un, vn),
Θ(y, x, vn, un)

}
. (4.4)

By taking the upper limit as n→∞ in (4.4), we have

ψ(γ) ≤ ψ(γ)−min

{
lim infn→∞Θ(x, y, un, vn),
lim infn→∞Θ(y, x, vn, un)

}
.

So,
lim inf
n→∞

Θ(x, y, un, vn) = 0, or lim inf
n→∞

Θ(y, x, vn, un) = 0.

Hence, by using the properties of θ, we get

lim inf
n→∞

pb(gx, gun) = 0, and lim inf
n→∞

pb(gy, gvn) = 0.

That is,
γ = lim inf

n→∞
γn−1 = max{lim inf

n→∞
pb(gx, gun), lim inf

n→∞
pb(gy, gvn)} = 0,

which concludes
lim
n→∞

pb(gx, gun+1) = 0, and lim
n→∞

pb(gy, gvn+1) = 0. (4.5)

In the same way, we can get

lim
n→∞

pb(gx
∗, gun+1) = 0, and lim

n→∞
pb(gy

∗, gvn+1) = 0. (4.6)

From (4.5) and (4.6), we have

pb(gx, gx
∗) ≤ lim

n→∞
spb(gx, gun+1) + lim

n→∞
spb(gun+1, gx

∗) = 0.

That is gx = gx∗. Similarly, gy = gy∗. This implies the uniqueness of coupled coincidence point. On
the other hand, (y, x) is also the coupled coincidence point of F and g. So, gx = gy.

Define t = gx. By the commutativity of F and g, we have

gt = g(gx) = gF (x, y) = F (gx, gy) = F (t, t).

Thus, (gt, gt) is a coupled coincidence point. It follows that gt = gx = t, that is, t = gt = F (t, t).
Therefore, (t, t) is a common fixed point of F and g. Finally, we prove the uniqueness, assume that (s, s)
is another common fixed point, that is s = gs = F (s, s). Since (gs, gs) is a coupled coincidence point of F
and g, we have gs = gt, that is s = t, which is the desired result.
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