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Abstract

In this paper, we establish some new coupled fixed point theorems in ordered partial b-metric spaces.
Also, an example is provided to support our new results. The results presented in this paper extend and
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1. Introduction

Fixed point theory of nonlinear operators in metric spaces finds a lot of applications in convex opti-
mization problems, see [13, 21} 27] and the references therein. In 1993, Czerwik [7] introduced the concept
of the b-metric space. In 1994, Matthews [I8] introduced the notion of partial metric spaces. After that,
many researches have dealt with fixed point theories for various contraction mappings in b-metric spaces
[5, Bl [15], 16 22| 25 26] and partial metric spaces [2, B]. By combining these, Shukla [26] introduced a new
generalization of metric space called partial b-metric space which was paid widespread attention immedi-
ately. Also, in [I9] a modified version of partial b-metric space was introduced and many useful lemmas
could be proved right away. Since then, several authors obtained more helpful results in this space [10, [19].

On the other hand, since the ordered set was introduced, many authors got many fixed point theorems
in ordered metric space. In 2006, Bhaskar and Lakshmikantham [9] introduced the notion of a coupled
fixed point and used the mixed monotone property to prove some coupled fixed point theorems. Three
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years later, Lakshmikantham and Ciri¢ [14] introduced the new concepts of coupled coincidence and coupled
common fixed and used a mixed g-monotone property to prove some coupled common fixed point theorems
which extended Bhaskar and Lakshmikantham’s result from one mapping F': X x X — X to two mapping
F:XxX — X and g: X — X. Subsequently, many authors got a variety of coupled coincidence and
coupled fixed point theorems in ordered metric spaces [11], 17, 20].

Recently, Aghajani and Arab [4] introduced a generalized contractive mapping with the altering distance
functions and proved a new coupled common fixed point theorems in ordered b-metric space. Also, a number
of articles on the topic of coupled fixed point theorems were obtained in ordered b-metric space and ordered
partial metric space [I, 6, 23, 24]. But in ordered partial b-metric spaces, there are almost no research of
them. In this paper, we use a more generalized contractive mapping to prove some coupled coincidence and
coupled common fixed point theorems in ordered partial b-metric spaces. An example is provided to support
our new results. The results presented in this paper extend and improve several well-known comparable
results.

2. Preliminaries and definitions

First, we introduce some basic definitions and concepts as the following.

Definition 2.1 ([7]). A b-metric on nonempty set X is a mapping d : X x X — RT such that for some real
number s > 1 and for all z,y, z € X,

(1) r=Yy < d(l’,y) =0;
(2) d(z,y) = d(y, z);
(3) d(z,y) < sld(z, z) + d(z,y)].

A b-metric space is a pair (X, d) such that X is a nonempty set and d is a b-metric on X. The number s is
called the coefficient of (X, d).

It is obvious that a b-metric space with coefficient s = 1 is a metric space. There are examples of b-metric
spaces which are not metric spaces (see, e.g., Akkouchi [5]).

Definition 2.2 ([18]). A partial metric on a nonempty set X is a function p : X x X — R* such that for
all z,y,z € X:

(pl) z =y & p(z,x) = p(z,y) = p(y,y);
(p2) p(z,z) < p(z,y);
(p3) plz,y) = p(y, ®);
(p4) p(z,y) < p(z,2) +p(z,y) — p(2, 2).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X. If p is
a partial metric on X, then function dj, : X x X — R* given by

dp(2,y) = 2p(x,y) — p(z,z) — p(y, y),
is ordinary equivalent metric on X.

Definition 2.3 ([19]). Let X be a nonempty set and s > 1 be a given real number. A function py : X x X —
RT is a partial b-metric, if for all z,y, 2 € X, the following conditions are satisfied:

(pb1) = =y <= po(x,7) = po(z,9) = Po(y,9);
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(Pb2) po(@,2) < po(,y);

(Pv3) po(@,y) = po(y, 2);

(Pba) (@, y) < slpo(, 2) + po(z,y) = Pz, 2)] + (152) (0o, ) + po(y, 9))-

The pair (X, pp) is called a partial b-metric space.

Example 2.4 ([26]). Let X = R™", ¢ > 1 be a constant, and py : X x X — R be defined by

po(@,y) = [max{z, y}]* + |z —y|?, forall z,y € X.

Obviously, (X, pp) is a partial b-metric space with the coefficient s = 297!, but it is neither a partial
metric space nor a b-metric space.
Other examples of partial b-metric can be constructed thank to the following propositions.

Proposition 2.5 ([26]). Let X be a nonempty set and let p be a partial metric and d be a b-metric with the
coefficient s > 1 on X. Then the function py : X x X — RT defined by py(x,y) = p(x,y) + d(z,y), for all
z,y € X is a partial b-metric on X with the coefficient s.

Proposition 2.6 ([26]). Let (X,p) be a partial metric space and q > 1. Then (X, pp) is a partial b-metric
space with the coefficient s = 2971, where py is defined by py(z,y) = [p(x,y)]9.

Proposition 2.7 ([19]). Every partial b-metric p, defines a b-metric dy,, where

dp, (z,y) = 2pp(x,y) — po(z,2) — pu(y,y), forall x,y € X.

Definition 2.8 ([19]). Let (X,p,) be a partial b-metric space with coefficient s > 1. Let {x,} be any
sequence in X and z € X. Then

(i) the sequence {z,} is said to be py-converges to x, if lim, o0 pp(zn, ) = pp(x, ),

(ii) the sequence {zy} is said to be p,-Cauchy sequence in (X, pp), if limy, m—o0 Po(Zn, Tm) exists and is
finite.

(iii) (X, pp) is said to be a py-complete partial b-metric space, if for every Cauchy sequence {x,} in X,
there exists x € X such that

ml)i@gloopb(wn, Tm) = m py(zn, ) = py(z, ).

Thank to [19], we have the following important lemmas.
Lemma 2.9 ([19)).

(1) A sequence {x,} is a py-Cauchy sequence in a partial b-metric space (X, py), if and only if it is a
b-Cauchy sequence in the b-metric space (X, dp, ).

(2) A partial b-metric space (X, pp) is py-complete, if and only if the b-metric space (X, dp,) is b-complete.
Moreover, lim,,_,o0 dp, (x, ) = 0, if and only if
lm  pp(n, zp) = lim pp(an, z) = pp(z, x).
n,Mm—00 n—00
Lemma 2.10 ([19]). Let (X,pp) be a partial b-metric space with the coefficient s > 1 and suppose that {x,}
and {yn} are convergent to x and y, respectively. Then we have

1 1 . .
—o(x,y) — —pu(2,2) — py(y, y) < lminf py(2p, yn) < limsup pp(n, Yn)
S S n—o00

n—oo

< spy(z, @) + $°po(y, y) + s°po(, ).
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In particular, if py(z,y) = 0, then we have lim, o dp, (Zn, yn) = 0. Moreover, for each z € X, we have

1
—pp(z,2) — pp(x,x) < liminf py(zy, z) < limsup pp(2n, 2)
S n—o0 n—o0o

< Spb(xv Z) + Spb($> :L‘)

In particular, if py(z,x) = 0, then we have

1
—pp(z, z) < liminf py(zy, z) < limsup pp(xn, 2) < spp(z, 2).
S n—=oo n—00

Definition 2.11 ([9]). An element (z,y) € X x X is called a coupled fixed point of the mapping F' :
X xX — X,if F(z,y) =z and F(y,x) = y.

Definition 2.12 ([I4]). An element (z,y) € X x X is called a coupled coincidence point of the mapping
F:XxX—Xandg: X — X, if F(z,y) = gx and F(y,z) = gy, and in this case, (gz, gy) is called a
coupled point of coincidence.

Definition 2.13 ([I]). An element (z,z) € X x X is called a common fixed point of the mapping F' :
XxX—=>Xandg: X = X,if F(z,z) = gz = x.

Definition 2.14 ([I4]). Let X be a nonempty set. Then we say that the mappings F' : X x X — X and
g : X — X are commutative, if gF'(z,y) = F(gz, gy).

Definition 2.15 ([9]). Let (X, <) be a partially ordered set and F : X x X — X. The mapping F is
said to have the mixed monotone property, if F(z,y) is monotone non-decreasing in z and is monotone
non-increasing in y, that is, for any x,y € X, we have

XL1,T2 S X7 1 j Ty = F(xlvy) j F(:I:Zay)u

and
yi,y2 € X, y1 22 = F(x,y1) = F(x,y2).

Definition 2.16 ([14]). Let (X, <) be a partially ordered set and F' : X x X — X and g : X — X. The
mapping F' is said to have the mixed g-monotone property, if F(z,y) is monotone g-nondecreasing in its
first argument and is monotone g-nonincreasing in its second argument, that is, for any =,y € X, we have

z1,22 € X, g(x1) < g(xe) = F(z1,y) < F(z2,y),

and
1,92 € X, g(y1) 2 g9(y2) = F(z,y1) = F(z,y2).

Definition 2.17 ([12]). A function v : [0,00) — [0, 00) is called an altering distance function, if the following
properties are satisfied:

1. 9 is continuous and nondecreasing;

2. ¢(t) =0, if and only if t = 0.

3. Main results

Theorem 3.1. Let (X, =<,pp) be a ordered partial b-metric space. Let F: X x X — X and g: X — X be two
mappings and F' has the mixed g-monotone property with g. Suppose that there exists an altering distance
function v and 6 : [0,00)10 — [0,00) is continuous with O(ty,ta,--- ,t19) = 0 implies t; =ty = t5 = tg = 0
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such that
¥ (spp(F(2,y), F(u,v))) < ¢ (M(z,y,u,v)) — Oz, y,u,v) (3.1)
for all (x,y), (u,v) € X x X with g(x) < g(u) and g(y) = g(v), where

pu(g, gu), pu(gy, gv), po(9, F(2,7)),
M(f]f, y7 u7 'U) — max pb(glh F1(y7 .’IJ)), pb(gu,F(u,v)) pb(gv,F(v,u))

2s ) 2s )
Po (92, F (u,0))+po (gu, F(2,y)) - po(gy,F (v,u))+py(gv, F(y,2))
2s ) 2s

and
Po(92, gu), Po(9y, 9v), po(9z, F(,y)), b(9y, F(y, ),
@(JJ, Yy, u, ’l)) =0 pb(gua F(“a U))apb(gv> F(’U, U)),pb(gx, F(uv U))a
po(9y, F(v,w)), po(gu, F(z,y)), po(gv, F(y, x))
Further, suppose F(X x X) C g(X) and g(X) is a py-complete subspace of (X,pp). Also suppose that X
satisfies the following properties:

(i) if a non-decreasing sequence {x,} in X converges to x € X, then x,, < x for alln € N;
(ii) if a non-increasing sequence {yn} in X converges to y € X, then y, =y for all n € N.

If there exists (xo,y0) € X X X such that gro = F(xo,y0) and gyo = F(yo,x0), then F and g have a coupled
coincidence point.

Proof. By the given condition, there exists (zg,y0) € X x X such that gzg < F(x0,y0) and gyo = F(yo, x0)-
Since FI(X x X) C g(X), we can define (z1,y1) € X x X such that gx1 = F(x0,y0) and gy1 = F(yo, o), then
gro = F(x0,y0) = gx1 and gyo = F(yo,z0) = gy1. Going on in this way, we can construct two sequences
{z,,} and {y,} in X such that

gTn+1 = F(xnayn) and 9Yn+1 = F(yn,xn)v Vn=>0. (32)

Now we prove that
gTn =X gTpi1 and gyn = gynt1, Vn = 0.
We will use the mathematical induction. The conclusion holds for n = 0, suppose it holds for some
n > 0. Since F' has the mixed g-monotone property, g(x,) = g(zn+1) and g(yn) = g(Ynt1), from (3.2) we
have
{ gTn4+1 = F(meyTb) j F(xn-i-l)yn) j F(xn+17yn+1) = 9Tn+2, vVn Z 07
9Yn+1 = F(Yn, 2n) = F(Yn+1,%n) = F(Ynt1,Tnt1) = gYny2, ¥ n > 0.

Thus, by the mathematical induction, we conclude that

{g:rroﬁg:clﬁgaraj-'-jgxnjgxnﬂj---, (3.3)
Yo = gy1 = gy2 = - = GYn Z GYnt1 Z 0 .

From (3.2), (3.3), (3.1), and the property of ¥ we have

Y (Po(9Tns 9Tnt1)) < U (8P6(9Zns 9Tnt1)) = ¥ (8P6(F(Tn—1,Yn—1), F(Tn, Yn)))
< (M(xn—h Yn—1,Tn, yn)) - @(xn—ly Yn—1,Tn, yn)a (34)

where

M(wn_l,yn—hl"myn)

Po(9Tn—1,9Tn), P(GYn—1, 9Yn), Pb(9Tn—1, F(Tn—1,Yn-1)),

n, F(Zn,yn nF (Yn ,Tn
pb(gyn—l,F(yn_l,xn_l))7pb(gm S(m Y ))’pb(gy 2£y T ))7

2
Pb(9%n—1,F (%n,Yn)) +P6(9%n, F (Trn—1,Yn—1))

= max

2s )
P (9Yn—1,F (Yn,2n))+P6(9Yn , F (Yn—1,Tn—1))
2s
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Po(9Zn—1, 9%n), Pb(9Yn—1, 9Yn ), Pb(9Tn—1, gTn),

= max P(9Yn—159Yn)> Pb(9Tn, 9Tn11)s Po(9Yns GYnt1), (3.5)
pb(gafn—1,9xn+21)+pb(yxn,gfvn) pb(gyn—179yn+21))+pb(gynvgyn)
S ) s

B Po(9Tn—1,9%n), Po(9Yn—1, 9Yn)s Po(9Tn, 9Tn+1), Po(9Yns> GYn+1),
= max Pb(9%n—1,9%n+1)+Pb(9Zn,9%n)  Pb(9Yn—1,9Yn+1))+Pb(9Yn,9Yyn) :
2s ) 2s

and
Po(9Tn—1, 9Zn), Pb(9Yn—1, 9Yn ), Pb(9Tn—1, gTn),
@(l‘n—lv Yn—1,Tn, yn) =0 pb(gyn—h Qyn)vpb(gxm gxn+1)7pb(gyn7 gyn+1)7
Po(9%n1, 9Tni1), Po(9%n, 9Zn), Po(9Yn-1s 9Yni1)s Po(9Yn, GYn)

It follows from (pp4) that

Po(g%n—1, 9%nt1) + Po(9%n, 9Tn) _ 5Pb(9Tn—1,9%n) + 5Pb(92n, 9Tn11) + (1 = 8)Pb(9Tn, GTn)

2s 2s
sPo(9Tn—1, 9Tn) + SPb(gTn, 9Tn+1) (3.6)
< 55 .
< max{py(9Tn_1,9n), Pb(9Zn, gTni1)}-
Similarly, we can show that
Pb(9Yn—1, 9Yn+1) + Po(9Yn: 9Yn) _ 5Pb(9Yn—1,9Yn) + 5P6(9Yn, 9yn+1) + (1 = $)po(gYn, 9yn)
2s - 2s
< 3Po(9Yn—1, 9Yn) + 5P6(9Yn, gYn+1) (3.7)
2s
< max{py(9Yn—1, 9Yn), P6(9Yn> GYn+1)}-
By substituting (3.6 and (3.7)) into (3.5]), we obtain
M(Zn-1,Yn—1, Tn, Yn) = MaxX{Pp(9Tn—1, 9Tn), Po(9Tn, Tn+1), Po(9Yn—1, 9Yn)> Po(9Yn> 9Yn+1) }
= max{dp—_1,0n}, (3.8)
where
On = max{py(9Zn, 9Tn+1): Pb(9Yns GYn+1)}-
By combining (3.4) and ({3.8]), we get
%Z) (pb(gl'rh g$n+1)) S Q;Z) (maX {57171, 5n}) - @(.’Enfla Yn—1,Tn, yn) (39)
By the same way as above, we can show that
M(yn—b Tn—1yYn, xn) = max {(5n—17 (5n} s
and
TP (pb<gyn7 gyn—f—l)) < 1/) (M(yn—b Tn—1,Yn, xn)) - G(yn—h Tn—1,Yn, xn)
=t (max {0,—1,0n}) — O(Yn—1,Tn—1:Yns Tn), (3.10)
where

Po(9Yn—1,9Yn)s Po(9Zn—1, 9Zn), Po(9Yn—1, 9Yn),
O(Yn—1, Tn—1,Yn, Tn) =0 Po(9Zn—1, 9Zn), Pb(9Yns 9Yn+1), Po(9Tn, 9Tnt1),
Po(9Yn—1> 9Ynt1), P(9Yn> GYn)s Po(9Tn1, 9Zni1), Po(9Tn, 92n)
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Next we prove that 0, < 0,1 for all n € N. In fact, suppose that §,,_1 < J,, then §,, > 0 (otherwise,
Op—1 < 0, = 0, which is a contradiction). We consider the following two cases.

Case 1. max{0,—1,0n} = 0n = pp(9Tn, gTn+1) > 0.

By (3.9) we have
w (pb(gxmgxn-i-l)) S QID (pb(gxn,gxn-i-l)) - @(l‘n—lu Yn—1,Tn, yn)7

which means ©(z,—1,Yn—1,Tn,yn) = 0. By the properties of 8, we can find py(g2n, grn4+1) = 0, which is a
contradiction.

Case 2. max{d,—1,0n} = dn = Po(9Yn, gYn+1) > 0.

By (3.10]) we have
Y (P6(9Yn,> 9Yn+1)) < U (Po(9Yns 9Yn+1)) — OWUn—1, Tn—1, Yn, Tn),

which means O(yn—1,Zn—1,Yn,Tn) = 0. By the properties of § we can find py(gyn, gyn+1) = 0, which is a
contradiction.

Therefore, we have d,, < 0,1 for all n € N holds, thus the sequence {d,} is a non-increasing sequence of
nonnegative real number, and so, there exists § > 0 such that

lim §,, = 9.

n—oo

Since ¢(max{x,y}) = max{¢(x),¥(y)}, from and we have

Y(0n) = max{®(po(9Tn; 9Tn+1)), ¥ (Po(9Yn, 9Yn+1))}
< ¢(5n—1) — min {G(xn—la Yn—15Tn, yn)7 @(yn—h Tn—1,Yn, xn)} . (3'11)

By taking the upper limit as n — oo in (3.11]), we have
¢(5) < ¢(5) - hnrglogf min {®($n717 Yn—1, Tn, yn)7 @(ynfla Tn—1,Yn, xn)}

S ¢(5) — min {hm ll'lf @(l‘n,l, Yn—1yTn, yn)a llHi}lIlf @(ynfla Tn—1sYn, fl?n)} .

n—o0

Therefore,

liminf ©(xp—1, Yn—1, Tn,yYn) = 0 or liminf O(yp—1,Tn—1,Yn,Tn) = 0.
n—oo n—oo

Hence, by using the properties of 6, we get

lim inf py(g2n, g2pt1) = 0 and liminf py(gyn, gyn+1) = 0.
n—00 n—00

So,
0 = liminf §,, = lim inf maX{pb(g:En,g$n+1),pb(gyn, gyn—i—l)} =0.
n—oo n—oo
That is
lim py(gn, gTny1) =0 and  lim py(gyn, gyns1) = 0. (3.12)
n—oo n—0o0
From (pp2) and (3.12)), we have
lim py(g2n, gzn) =0 and  lim py(gyn, gyn) = 0. (3.13)
n—00 n—00

Next we prove that {gz,},{gyn} are p,-Cauchy sequences in g(X). For this, we have to show that
{92n}, {gyn} are b-Cauchy sequences in (g(X),d,,). In other words, we need to show that for every € > 0,
there exists £ € N such that for all m,n > k,

max{dyp, (§Zm, 9Tn), dp, (gYm, gyn)} < €.
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Suppose to the contrary, there exists ¢ > 0 for which we can find subsequences {gx, }, {g92n, } of {gz,}

and {g¥Ym, },{gyn,; } of {gyn} such that n; is the smallest index for which

ng; > mg; > ia max{dpb(g‘,rmiagxni)? dpb (gynggynl)} 2 g.

That is,
maX{dpb (Ql‘mi , g$m71)7 dpb (gymi , gynifl)} <e.

From the definition of dp,, (3.12)) and (3.13]) we obtain

lim dp, (92n, 9Tns1) = 2 im py(g2n, gTny1) — lim py(9en, g2n) — lim py(9Tni1, 9Tni1)
n—oo n—oo n—o0

n—oo

=0.
Similarly, we have lim;, ;o0 dp, (9Yn, gYn+1) = 0. To sum up, we get
Jlim_dy, (920, grni1) = 0 and  lim dp, (9yn, gynt1) = 0.
By using the triangle inequality, we get
dpb (gxml P g‘rnl) S Sdpb (ga;Wl1 3 gxni—l) + Sdpb (gxni—l, g&“m),

and
dpb(gymwgyni) < Sdpb(gymwgynz‘—l) =+ Sdpb(gym—lugyni)'

Hence from (3.14)), (3.17) and (3.18]), we have

3 S max{dpb (gxml 9 gxni)v dpb (gyml 9 gynz)}
<s max{dpb (gxmi , gl‘ni—l)v dpb (gymi , gyni—l)}
+s ma’x{dpb (gxni—la gxni), dpb (gyni—lv gynz)}

By taking the lower limit as ¢ — oo in (3.19) and using (3.15)), (3.16[), we have
€< ligiogf max{dp, (9Zm,, 9n, ), dp, (9Ym;> 9Yn,) }
<s hz.n_l)glf max{dpb (gmmi ) gxni_1)7 dpb (gymi ) gyni—l)}

S Shm Sup max{dpb (gxmiugxni—l)v dpb (gymzagynz—l)} S se.

1—>00

Also, by using (3.15)) and (3.16]), taking the upper limit as ¢ — oo in (3.19), we obtain

e < limsup max{dp, (9Zm,, 9Tn,), dp, (9Ym;> GYn,;) } < sc.

1—00
By the triangle inequality, we have
dpb(g$Mi7g$ni) < Sdpb (gxmngmi+1) + Sdpb (gxmi+1’ gxni)’

and
dpb (gymivgyni) < Sdpb(gymwgymrf—l) -+ Sdpb(gymri-lagym)'

Therefore, from (3.14)), (3.22) and (3.23]), we have
e < max{dp, (9Zm,, 9Tn, ) dp, (9Ym,> 9Yn,) }

<s max{dpb (gxmi ) gxmﬁ-l)v dpb (gymi ) gymz‘-i—l)}
+ smax{dyp, (9Zm,+1, 9%n, ), dp, (9Ymi 11, GYn;) }-

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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By taking the upper limit as ¢ — oo in the above inequality, and using (3.16)), we have

< limsup max{dpb (9Tm;+15 9Tn;), dp, (9Ymi+1> 9Yn;) }- (3.24)

e
S 1—00

Again, by the triangle inequality we have

dpb (gxmri-lvgxm—l) < Sdpb(gxmi+17gxmi) + Sdpb (gxmivgxm—l)a (3'25)

and
dpy, (9Ymi+15 9Yn;—1) < SApy (9Ymiyy > 9Ymi) + 5dpy, (9Yms> GYni—1)- (3.26)

From the inequality (3.25)), (3.26]) and (3.15)), we have

max{dp, (9Zm,+1, 9Tn;-1) dp, (9Ymi+1, GYn;—1)} < s max{dp, (9Tm;+1, 9Zm, ), dp, (9Ymi+1, 9Ym,) }
+s max{dpb (gwmi ) gxm‘—l)? dpb (gymi ) gym‘—l)}
<s max{dpb (gxm¢+17 gxmi), dpb (gymiJrl: gymz)} =+ se.

By taking the upper limit as ¢ — oo in the above inequality, and using (3.16)), we get

lim sup ma'X{dpb (gwmi—i-l, gxni—1)7 dpb (gymﬁ-l? gyni—l)} < se. (327)

1—00

On the other hand, because of the definition of dp, and (3.16|), we have

liminf dp, (9%, , 9n;—1) = 2liminf py(92m,, 9Tn,—1), (3.28)
71— 00 71— 00
and
lim inf dp, (9Ym,» 9Yn;—1) = 21iminf py(gym,, gYn,—1)- (3.29)
1— 00 71— 00

Hence, from (3.28)), (3.29)) and (3.20)), we obtain

< lim inf max{dp, (9Zm,, 9Tn,~1), dp, (9Ym;> GYn,—1)}

1—>00

= 2lim inf max{py(92m,, 92n;~1); Po(9Ym, 9Yn;—1)} < €.

9
S

Thus, we get
g . . g
o < liminf max{py(9Zm,, 9%n,~1), Po(9Ym.» 9Yni—1)} < - (3.30)
2s 1—00 2
Similarly, from (3.15)), (3.21), (3.24)), (3.27) and definition of d,,, we can show that
. e
lim sup max{py(9Tm,» 9%n,—1)s Po(9Ymss GYni—1)} < 5, (3.31)
. S
lim sup max{py(9Zm,, 9n,), Po(9Ym» 9yn;)} < —- (3.32)
1—00 2
€ .
55 < limsupmax{py(gm,+1, 9&n, ) Po(9Ymi+1, 9Yn: )} (3.33)
S i—00
. s€
lim sup max{py(9m;+1, 9n;—1), Po(9Ymi+1, 9Yni—1)} < - (3.34)
1—00

By using (3.1) with (z,y) = (m,, Ym,) and (u,v) = (Tn,—1, Yn,—1), We get

(0 (Spb(gxmi-f-l?gxm)) =1 (Spb(F(xmﬂymi)? F(xni—b ym‘—l)))
< ¢ (M(xmia Ym;y» Tny—1, ym—1>) - @(Ilﬁm“ Ymi» Tn;—1, ym—l) (335)
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where

M<$mi?ymi7xni—17 y”li—l)

Po(9Tm; > 9%n;—1)s Po(GYms > 9Yni—1)> Pb(9Tm, s F(Xm; s Ym,))s

Po(9%n;—1,F(Tn;—1,Yn;—1)) pb(gynFLF(ynlfl,wn,ﬂ))
= max Po(9Ymis F(Ym,, Tm,)), )

25
pb(gwmi,F(wni—1,yni—1))+pb(9xni—17F($mi7ym¢)) Pb(gymivF(yn,—l ’Inl—l))Jpr(gynl—l:F(ymi ,mmi))
2s ’ 2s

pb(gxm, 9 gxni—l)vpb(gymi 9 gyni—l)a pb(gxmz 9 gxmi+1)7

= max P6(9Ymss GYmit1)s P(9Tn,—1, 9%n,), Po(9Yni—1, GYn, ), ,
pb(gwmi,gmni)wb(gwniq7gwmi+1) Pb(9Ym; ,9Yn; )+ (gYn; —1,9Ym;+1)
2s 2s

and

pb(gmmiv gxnifl)a pb(gym, ) gyn¢71)7pb(gxmi ) g$m¢+1)apb(gymi 5 gym¢+1)a
@(xmia Ymyis Tn;—1, Z/ni—l) =0 pb(gxni—h gxni)upb(gy’ni—b gynz)7pb(gx’m,7 gx’nz)a
Po(9Ymis GYns)s Po(9Zn, -1, GTmi+1) Pb(9Yni—1: 9Ym,+1)

Similarly, we have

Y (sp6(9Ym,+15 9Yn;)) = ¥ (SPo(F (Ymys Tm,)s F(Yni—1, Tny—1)))

¢ ( (ymmxmmynzflvxnzfl)) @(ymmxmwymflaxM*l% (336)

where
pb(gxmiagwni—l)ypb(gym“gyni—l)vpb(gxmwgwmi'Fl)’
M(ymia Tm;s Yn;—1, l‘m*l) = max pb(gymm gym¢+1)7pb(gmnz*1’ gm"z) pb(gynlfl’ gynl)
(9T, 7gxni)+pb(gxni_1,gaﬁmi+l) P (9Ym; ,9Yn; ) +Pb(gYn; —1,9Ym,+1)
9s 2s
= M<xmi7 Ymi» Tn;—1, yni_l)’
and

pb(gymm gynifl)vpb(gxmw gl‘nifl),pb(gymiv gymri»l),pb(gxmi 3 gmm¢+1)7
@(ymw Tm;s Yn;—1, xni—l) =0 pb(gyni—h gyni)7pb(g$ni—17 gmnz)’pb(gymzﬂ gynz)?
pb(g«rmi, gxni)7pb(gyni—17 gymi+1)7pb(g$ni—l) gmmrﬁ-l)

By combining (3.35)) and (3.36)), we have

Y(s max{py(9Tm,;+1, 9Tn; ) Pb(9Ymi+1, GYn;) }) = max{(spy(9Tm;+1, 9%n;)), V(8P6(9Ym;+1, 9Yn;)) }
S T/J(M(l’m,a ym“ '1:711'—17 yni—l))

— min {@(xmwymwxm—lv yni_1)7 @(ymwxmwyni—lv xni_l)} .

By taking the upper limit as ¢ — oo in the above inequality and using (3.12)), (3.31)), (3.32), (3.33) and

(3.34), we have

g 3
(0 (5) =1 (8 25) < (s lim sup max{py(gTm,+1, 9Tn,; ), Po(9Ymi+1, 9Yn;) })
’L‘)OO

€€ 5t% 5+% O (T Ymi> Try—15 Yni—1)
< 515,0,0,0,0, 22, 2_—2 5 | —liminf mi ms> Ymis Tni—1s Yni—1),
=V (maX{Q 2 2s 2s lgég i O (Y, s Tmis Yni—1 Tn;—1)

€
= (§> min {hmlnf@(mmz, Ymis Trg—1s Yni—1), hmmf@(yml,:cmz, ynz_l,xnl_l)}

1—00

which implies that

liminf ©(Tm,, Ym,s Tn;—1, Yn,—1) = 0 or liminf O(ym,, Tm,, Yn,—1, Tn;—1) = 0.
1—00 1— 00
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Hence, by using the properties of 6, we get
hmlnfpb(gxmlagiﬂnb—l) - 0 and hmlnfpb(gym“gynz_l) = 07
1—00 1—00

which is a contradiction to (3.30). Thus, {gz,},{gyn} are b-Cauchy sequences in (g(X),dp,). By Lemma
{9z}, {gyn} are pp-Cauchy sequences in (g(X), pp). Since g(X) is pp-complete subspace of (X, py), there
exist gx, gy € g(X), such that {gz,} and {gy,} ps-converges to gz and gy, respectively. By using Lemma
2.9 again, we have
lim py(gzn, gz) = lim py(gzn, 92m) = po(9, 92), (3.37)
n—00 n,m—00
im py(gyn, gy) = Lm  py(gyn. 9ym) = po(9y, 9y)-
n—00 n,m—00
Since {gz,} is b-Cauchy sequence in (X, dp,), so limy, 1m0 dp, (9Zn, gTm) = 0. By using
dp, (9%, gTm) = 206(9n, 9Tm) — Po(9Zn, 9Tn) — Po(9Tm, gTm),
and (3.13]) we obtain that limy, y—c0 Pb(92n, gTm) = 0. Thus, it follows from (3.37) that
lim py(g2n, gz) = lim_ py(gzn, g2m) = po(gz, gz) = 0. (3.38)
n—00 n,M—00

On using similar steps as above we can show that
m py(gyn, gy) = Lm py(gyn, gym) = pe(gy, 9y) = 0. (3.39)
n—00 n,M—00

By (3.3) and the properties (i) and (ii), we have gz, < gz, gy, = gy for all n € N. From (3.1)), we have

(0 (spb(gan,F(x,y))) = w(spb(F(xnayn)vF(xay)))

<Y (M (0, Yns T, Y)) — O(Tns Yns T, Y), (3.40)
where
Pu(9%n, 92), Po(9Yn, 9Y)s Po (90, 9Tni1),
F F
M (2, yn, T, y) = max P(GYns GYni1), pb(gxés(x,y)), pb(gy,zs(y,x)), 7 (3.41)
pb(grn,F(m,y)%erb(gw,gmnH) pb(gyn,F(yﬁm)%erb(gy,gynH)
s ’ s
and

P6(9%n, 9), Po(GYn> 9Y), Pb(9Tn, 9Tn41): Pb(9Yn, 9Yn+1),
O(xp, Yn,,y) =0 (g, F(x,y)), po(gy, F(y, x)), po(g92n, F(z,y)),
Po(9Yn, F(y, ), po(9, 9Zn+1), Pb(9Ys 9Ynt1)

By taking the upper limit as n — oo in (3.41)), and using (3.12), (3.38)), (3.39) and Lemma we obtain

F F
hmsupM(xn,yn,x,wgmax{o,o,o,o,p”(gg”’ 9) gy o)

n—o0 2s 2s ’
spy(g, F(z,y)) +0 spy(gy, F(y,x)) +0
25 ’ 2s
< max {py(9z, F(z,y)), po(9y, F (y,2))} - (3.42)

By using Lemma (3.42) and the properties of v, and taking the upper limit as n — oo in (3.40)),

we obtain

(0 (pb(gx, F(l‘, y)))

" (S . pb(gaf,F(x,y))>

S

< (s lim sup pp (9241, F (2, y)))

n—oo
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— limsup ) (sps(gns1, F(.1)) (3.43)

n—o0

< limsup ¢ (M (2, Yn, z,y))) — liminf O(zp, yn, z, y)
n—o0

n—oo

< Q;Z) (maX{pb(ngF(xay))vpb(gva(yax))})
— liminf ©(xy, yn, x, y).

n—oo

Similarly, we can show that

1/} (pb(gva(yvx))) < (maX {pb(g:c, F(l‘a y))vpb(gyv F(ya :E))}) - hmlnf@(yn, $n,y,x), (344)

n—o0

where
Po(9Yn> 9Y)s Po(9Zn> 9), Po(9Yn> 9Yn+1), Po(9Tn, 9Tni1),
O(Yn»Tp,y,x) =0 po(9y, F(y,2)), po(gz, F'(,Y)), po(gyn, F(y, x)),
Pu(9Tn, F(2,9)), po(9Ys 9Yn+1), Po(9, 9Tny1)

By combining (3.43]) and (3.44) we obtain

¢(max{pb(gx,F(x,y)),pb(gy,F(y,x))}) = max{w(pb(g:v,F(x,y))),1[)(pb(gy,F(y,:U)))}
< (max{pb(g$aF(J:?y))vpb(gyaF(ya IL‘))})

— min{lim inf ©(z,,, yn, x, y), liminf O(y,, zn, y, z)}.
n—oo n—o0
Accordingly, we get

liminf O (2, yn, z,y) = 0 or liminf O(y,, x,,y,x) = 0.
n—oo

n—oo

By using the properties of 0, we get gr = F(z,y) and gy = F(y,z). That is, (z,y) is a coupled
coincidence point of the mappings F' and g. O

Remark 3.2. The contractive conditions of Theorem [3.1]is new. As far as now, no author has investigated the
problems. Theorem improves and extends several well-known comparable results from b-metric spaces
and partial metric spaces to ordered partial b-metric spaces.

Corollary 3.3. Let (X,=,pp) be a ordered partial b-metric space. Let F': X x X — X and g: X — X
be two mappings and F has the mized g-monotone property with g. Suppose that there exists an altering
distance function ¥ and ¢ : [0,00) — [0,00) is continuous with ¢(t) = 0 implies t = 0 such that

& (spp(F(2,y), F(u,0))) < ¢ (M(z,y,u,0)) = ¢ (M(2,y,u,v))

for all (x,y), (u,v) € X x X with g(x) < g(u) and g(y) = g(v), where

po(g, gu), pu(gy, gv), pe(9, F(2,)),
Py

M (x,y,u,v) = max po(gy, F(y,x)), el v Fow)
pb(gm,F(u,v));-pb(guﬁF(fE,y)) pb(gy,F(v,U));rpb(gv,F(ym))

Further, suppose F(X x X) C g(X) and g(X) is a pp-complete subspace of (X,py). Also, suppose that X
satisfies the following properties:

(i) if a non-decreasing sequence x,, in X converges to x € X, then x, < x for all n € N;
(ii) if a non-increasing sequence y, in X converges toy € X, then y, =y for alln € N.

If there exists (zo,y0) € X x X such that gxo = F(xo,y0) and gyo = F(yo,x0), then F and g have a coupled
coincidence point.
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Proof. Take
ts te tr+1ts tog+ti0
O(t1,ta,- -+ ,t19) = t1,to,t3,t4, —, —
( 1,02, ) 10) ¢<max{ 1,102,034, 25" 25" 925 25 }) )
in Theorem then Corollary [3.3] holds. O

Remark 3.4. Corollary [3.3| improves and extends Theorem 2.2 in [4] from ordered b-metric space to ordered
partial b-metric space.

Corollary 3.5. Let (X,=,py) be a pp-complete ordered partial b-metric space. Let F : X x X — X be
a mapping and I has the mized monotone property on X. Suppose that there exists an altering distance
function v and ¢ : [0,00) — [0,00) is continuous with ¢(t) = 0 implies t = 0 such that

(0 (spb(F(x,y),F(u,v))) < (M(:L‘,y,u, U)) - d)(M(x,y,u, U))

for all (z,y), (u,v) € X x X with x < u and y = v, where

po(x,u), pu(y, v), po(, F(x,y)),
pb(.% F(y, :C)), Pb(ué’(uﬂ))) : ]Db(vJ;(v,U))7
(o (u:0) (. () §b<y,F(v,u>>2+pi(uF(y,:c»

M(z,y,u,v) = max

Further, suppose that X satisfies the following properties:

(1) if a non-decreasing sequence x,, in X converges to x € X, then x,, < x for all n € N;

ii) if a non-increasing sequence y, in X converges toy € X, then y, = or alln € N.
g Y q Y Y Y

If there exists (xg,y0) € X x X such that xog 2 F(x0,y0) and yo = F(yo,x0), then F has a coupled fixed
point.

Proof. Tt suffices to take g = I, in Corollary O

Remark 3.6. Corollary improves and extends Corollary 2.3 in [4] from ordered b-metric space to ordered
partial b-metric space.

Corollary 3.7. Let (X, =<,pp) be a ordered partial b-metric space. Let F: X x X — X and g: X — X be
two mappings and F has the mized g-monotone property with g. Suppose that there exists k € [0,1) such
that

po(97, gu), po(9y, gv), po(gz, F (2, ),

po(F(z,y), F(u,0)) < © max gy, Fly, x)), eleellwol) plovFlv.u),
s P (g2, F (u,))+pp(gu,F(z,y)) ’ pu(gy,F (v,u)+py (9v,F (y,2))

2s 2s
for all (z,y), (u,v) € X x X with g(x) = g(u) and g(y) = g(v). Further, suppose F(X x X) C g(X) and
9(X) is a pp-complete subspace of (X, pp). Also, suppose that X satisfies the following properties:

(1) if a non-decreasing sequence x,, in X converges to x € X, then x,, < x for all n € N;
(ii) if a non-increasing sequence y, in X converges to y € X, then y, =y for alln € N.

If there exists (xo,y0) € X X X such that gro = F(xo,y0) and gyo = F(yo,x0), then F and g have a coupled
coincidence point.

Proof. 1t suffices to take

ts tg tr+ty tg+t
9(t17t2,"'7t10):(1—k)max{t1,t2,t3,t47 5 6 lrtls lo 10}7

25"2s" 25 | 2s
and 1 (t) =t in Theorem O
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Corollary 3.8. Let (X, =<,py) be a ordered partial b-metric space. Let F: X x X — X and g: X — X be
two mappings and F has the mized g-monotone property with g. Suppose that there exist non-negative real
numbers oy, o, -+ , a9 with

a1 + ag + as + ayg + 2s(as + ag + ar + ag + ag + agg) < 1,
such that
spo(F' (2, y), F(u,v)) < a1pp(gz, gu) + azps(gy, gv) + aspe(9e, F(z,y)) + aaps(gy, F(y, )
+ aspy(gu, F(u,v)) + aspp(gv, F(v,u)) + arpp(gz, F(u,v)) (3.45)
+ agpb(QU, F(l’, y)) + agpb(gy7 F<U7 U)) + alopb(gpv F(y7 x))

for all (z,y), (u,v) € X x X with g(z) < g(u) and g(y) = g(v). Further, suppose F(X x X) C g(X) and
9(X) is a py-complete subspace of (X,py). Also, suppose that X satisfies the following properties:

(i) if a non-decreasing sequence z,, in X converges to x € X, then x,, < x for alln € N;
(ii) if a non-increasing sequence y, in X converges toy € X, then y, =y for alln € N.

If there exists (zo,y0) € X x X such that gxo = F(xo,y0) and gyo = F(yo,x0), then F and g have a coupled
coincidence point.

Proof. By noting that o, i = 1,2,--- , 10 are non-negative real numbers, from ([3.45) we have
spo(F(2,y), F(u,v)) < a1pp(gz, gu) + aopp(gy, gv) + aspy(gz, F(2,y)) + cupy(gy, F(y, v))
+ aspy(gu, F(u,v)) + aspp(gv, F(v,u)) + arpp(gz, F(u, v))
+ Oégpb(gU, F($7 y)) + a9pb(gy7 F(’U, u)) + alopb(gva F(ya I’))
P9z, gu), po(9y, gv), po(gz, F (2, ),

F(u, JF(v,
< kmax pb(g(% F(y7 :L’))7 Pb(gu2s(u v)) 7 py(gv 28(1} u)) 7 ,
Db (9$7F(u7v));‘pb(gu,F(x,y)) pb(gy,F(v,u));pb(gv7F(y7x))
S ) s
where
k’:041+Od2+0£3+Oé4+28(045+a6+a7+a8+a9+a10) < 1.
From Corollary we can find that F' and g have a coupled coincidence point. ]

Corollary 3.9. Let (X, =<,pp) be a ordered partial b-metric space. Let F: X x X — X and g: X — X be
two mappings and F has the mized g-monotone property with g. Suppose that there exists k € [0,1) such
that

PP, 9), F(u,0)) < mas ({9, 9u), ploy,90))

for all (z,y), (u,v) € X x X with g(x) = g(u) and g(y) = g(v). Further, suppose F(X x X) C g(X) and
9(X) is a pp-complete subspace of (X, py). Also, suppose that X satisfies the following properties:

(1) if a non-decreasing sequence x,, in X converges to x € X, then x, < x for all n € N;
(ii) if a non-increasing sequence y, in X converges toy € X, then y, =y for alln € N.

If there exists (xo,y0) € X X X such that gro = F(xo,y0) and gyo = F(yo,x0), then F and g have a coupled
coincidence point.

Proof. Since

po(F(z,y), F(u,v)) < g max {py (97, gu), pp(9y, gv) }

po(gz, gu), pe(gy, gv), po(9, F (2, 7)),

k
< Y max o9y, F(y, 7)), Pb(gubFs(u,U))’ Pb(gvi(%u))?
s Py (97, F (u,0))+pp (9u, F(z,y))  po(gy,F (v,u))+ps(9v,F (y,7))

2s 2s



H. D. Li, F. Gu, J. Nonlinear Sci. Appl. 9 (2016), 5931-5949 5945

From Corollary we can find that F' and g have a coupled coincidence point. O

Corollary 3.10. Let (X, =,pp) be a ordered partial b-metric space. Let F: X x X — X and g : X — X
be two mappings and F has the mized g-monotone property with g. Suppose that there exists k € [0,1) such
that

k
po(E(2,y), Fu,0)) < 5-(po(g, gu) +po(gy, gv))
for all (z,y), (u,v) € X x X with g(z) < g(u) and g(y) = g(v). Further, suppose F(X x X) C g(X) and
9(X) is a py-complete subspace of (X, py). Also, suppose that X satisfies the following properties:

(i) if a non-decreasing sequence x,, in X converges to x € X, then x, < x for all n € N;

(ii) if a non-increasing sequence y, in X converges toy € X, then y, =y for alln € N.

If there exists (xo,y0) € X X X such that gro = F(xo,y0) and gyo = F(yo,x0), then F and g have a coupled
coincidence point.

Proof. Since

po(F(z,y), F(u,v)) < %(m(gw,gw + o9y, gv)) < %max {po(gz, 9u), po(gy, gv)} -

From Corollary we can find that F' and g have a coupled coincidence point. O

Remark 3.11. If we define g = I,,, s = 1, in Corollaries[3.9]and then we can get some new results, which
improve and extend Theorem 2.2 in [9], and Corollary 2 in [6] from ordered partial metric space to ordered
partial b-metric space. These results also extend and generalize the corresponding results of [111 [17) 20].

Now we give an example to show the usability of Theorem
Example 3.12. Let X = [0,1] with usual ordering. Define py(z,y) = (max{z,y})?. Then (X, =<,p) is a

complete ordered partial b-metric space with coefficient s = 2.
Next we define

1 2
F(z,y)=-z(1—vy), and g(x)= 3% for all z,y € X,

3
1 tr +ts tg+ tig
t) =1t d 0(t1,to, - ,t = - t1,t2,- -+ ,t .
¢() ; all (17 2, 710) Smax{ 1,02, » U6, 95 ' 25

Clearly, F' has the mixed g-monotone property with g and F(X x X) C g(X). Otherwise,

). Pl ) = (o { 300 =), gu1 - >}) — max { 50— %, o0 - 02

po(g, gu), pu(gy, gv), po(9, F (2, 7)),

7F ) 7F )
M (z,y,u,v) = max gy, F(y, z)), 2elowl o)) plgv.Flow),
pb(ngF(uvv))+pb(gu7F(xvy)) pb(gy,F(v,u))erb(gv,F(y,x))
2s ) 2s
a2 40 37, 02, BP0 ), BP0~ )
= max éyz(lf:v)Q évz(lfu)Q %x2+%u2 %y2+%1)2
4 ’ 4 ) 4 ’ 4
= é111a><;{:l:2,u Y20 },
9
4
O(z,y,u,v) = =M (z,y,u,v) = 77 max{xQ,UQ,y2,v2}
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Therefore,
v (M(z,y,u,v)) — O(z,y,u,v) = ; . gmax{x2,u2,y2,02} = %max{m2,u2,y2,v2}.
Then
Y (spp(F(z,y), F(u,v))) = max {3332(1 —y)?, %uQ(l B U)Q}
< max {3x2, 3u2}
< g max {x27 uz, y2, v2}
< ;%max {xQ,u2,y2,v2}

=1 (M(z,y,u,v)) - @(m,y,u,v).

At last, define xg = 0,yo = 0, then gzg < F(xo,y0) and gyo = F(yo,zo). So, the conditions of Theorem
are all satisfied. Since F'(0,0) = g(0) and F(0,0) = ¢(0), (0,0) is the coupled coincidence point of F' and
g.

4. Uniqueness of common fixed points

In this section we prove the existence and uniqueness of common fixed point. If (X, <) is a partially
ordered set, first we define product space X x X with a partial order relation in the following way. For all
(z,9), (u,v) € X x X,

(z,y) 2 (u,v) <=z 2 u, y = v.

We say that (z,y) and (u,v) are comparable, if (z,y) < (u,v) or (z,y) = (u,v).
Theorem 4.1. In addition to hypotheses of Theorem [3.1, suppose that for every (x,y) and (z*,y*) in
X x X, there exists (u,v) € X x X such that (F(u,v), F(v,u)) is comparable to (F(x,y), F(y,z)) and to

(F(x*,y*), F(y*,x*)). Also we assume that F' commutes with g. Then F and g have a unique common fized
point, that is, there exists x € X such that v = gr = F(x,z).

Proof. From Theorem there exists at least a coupled coincidence point. Suppose (x,y) and (z*,y*)
are coupled coincidence points of F' and g, that is, gr = F(z,y),9y = F(y,z),gz* = F(z*,y*) and gy* =
F(y*,z*). Next we prove gz = gz*, gy = gy*. By the assumptions, there exists (u,v) € X x X such that
(F(u,v), F(v,u)) is comparable to (F'(x,y), F(y,x)) and to (F(x*,y*), F(y*, «*)). Without loss of generality,
we can assume that

(F(z,y), Fy, 2)) 2 (F(u, ), Fv,u)), (F(z%,y%), F(y*, 2")) 2 (F(u,v), F(v,u)). (4.1)

Put up = u,v9 = v and choose u1,v; € X such that g(u;) = F(ug,vo9) and g(v1) = F(vg,up). By
continuing this process, we can define sequences {guy,}, {gv,} such that

Junt1 = F(up,v,) and gu,y1 = F(vp,uy), ¥V n > 0.
Since

(F(z,y), F(y,z)) = (92, 9y),
(F(u7 v),F(v,u)) = (guhgvl)'
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By using (4.1]) we have gx < gu; and gy > gv;. By using the mixed g-monotone property, we have

= F(u1,v1) = gua,
i F(v,u1) = go.
By going on this, we can show that gx < gu, and gy = gv,, for all n > 1. Thus from (3.1 we have

¥ (spp(92, gunt1)) = ¥ (spp(F (2, y), F(un,vn)))
<Y (M(z,y,up,vy)) — O(x,y, Up, vp),

where

o(9, gun), po(9y, gvn), po(9z, F(2,y)),
M(z,y, tn, vy) = max (gy, Fy,z)), P (gUn, F'(un,vn))  po(gun,F(vn,un))

2s ) 2s )
Db (92, F (un,vn))+Pb(gun, F(2,4))  pb(9Y,F (Vnsun))+P6(gvn, F (y,2))
2s ) 2s

Po(9, gun), po(9Y; gvn), py(9, F(2,y)),
— max m(gy, F(y,z)), Pb(gUn,gUnt1) Pb(gUn,gUn+1)

2s ’ 2s )
Pb(9%,9Un+1)+Pp (gun, F(2,y))  Pb(9Y,99n+1)+Pb(gvn,F(y,7))
2s ) 2s

It follows from (pps) that
Pb(gUn; GUn+1) _ SPb(9T, gun) + P69, gUn+1)
2s - 2s
< max{py(g2, gun), Po(9, gun+1)}-

Similarly, we can show that

pb(gvmganrl)

P < max{py(9y, gvn), Po(9Y, gUn+1)}-

Therefore

M(z,y, up,vn) < max {py(g, gun), Pb(9Y, gUn), Po(9T, gUnt1), Po(9Y; gUn+1)}
= Imax {fyn_h ’Yn} bl

where v, = max{py(9z, gun+1), Ps(9y, gun+1)}. Hence

Y (spp(9T, gun+1)) < P (max {yn—1,Vn}) — O(z,y, Un, vn), (4.2)

where
(9, gun), po(gy, gvn), po(g9z, F(x,y)), po(9y, F(y,x)),
®(x7y>un7vn) =0 pb(gunaF(un7vn))>pb(gvn7F(Unaun))7pb(g$’F(un7vn))’ 5
Po(gun, F(x,v)), po(9y, F(vn, un), po(gn, F(y,T)))
Similarly,

w (Spb(gya gvn+1)) S w (maX {Wn*h F}/n}) - ®(y7 X, Un, Un), (43)

where

Po(9y, gvn), po(97, gun), pe(gy, F(y, x)), po(9, F (2, 1)),
@(y, L, Un, un) =0 pb(gvm F('Um Un))apb(gum F(Um Un))7pb(.gya F('Uny un))a
Po(po(gon, F(y, @), 2o (92, F (un, vn ), po(gun, F(2,y)))
In the same way of Theorem (Case 1 and Case 2), we can prove that v, < v,_1 for all n € N holds.

Therefore, the sequence {7,} is a non-increasing sequence of nonnegative real number, and so, there exists
~v > 0 such that lim, . v, = 7. Next we prove v = 0.
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By combining (4.2)) and (4.3)), we get

() < $ls7m) < Vln-1) - mm{ Ottty ) } | (4.4)

(y7 T, Un, un)

By taking the upper limit as n — oo in (4.4)), we have

6(0) < 0(0) —in { o OBt o)

liminf, o0 O(y, z, Un, uy)

So,

liminf ©(z,y, up,vy,) =0, or liminfO(y,z,v,,u,) =0.
n—oo n—o0

Hence, by using the properties of 6, we get
lim inf py(gz, gu,) = 0, and liminf py(gy, gv,) = 0.
n—oo n—oo

That is,

v = liminf v,y = max{lim inf py(gz, gun), lim inf py(gy, gv,)} = 0,
n—oo n—oo n—oo

which concludes
lim py(g92, guny1) =0, and  lim py(gy, gvnt1) = 0. (4.5)
n—o0 n—0o0

In the same way, we can get
lim py(gx™, gup+1) =0, and lim py(gy™, gvnt+1) = 0. (4.6)
n—o00 n—o0
From (4.5) and (4.6, we have
po(g7, gz*) < lim spy(gz, gunt1) + im spy(gunt1, gz*) = 0.
n—o0o n—oo

That is gx = gz*. Similarly, gy = gy*. This implies the uniqueness of coupled coincidence point. On
the other hand, (y,z) is also the coupled coincidence point of F' and g. So, gz = gy.
Define t = gz. By the commutativity of ' and g, we have

gt = g(gx) = gF(z,y) = F(gz, gy) = F(t,1).

Thus, (gt, gt) is a coupled coincidence point. It follows that gt = gz = t, that is, t = gt = F(t,t).
Therefore, (t,t) is a common fixed point of F' and g. Finally, we prove the uniqueness, assume that (s, s)
is another common fixed point, that is s = gs = F(s, s). Since (gs, gs) is a coupled coincidence point of F’
and g, we have gs = gt, that is s = ¢, which is the desired result. O
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