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Abstract

In this paper, we introduce a new concept on a complete generalized D∗-metric space by using the concept
of generalized D∗-metric space (D∗-cone metric space) called ∇∗∗-distance and, by using the concept of the
∇∗∗-distance we prove some new fixed point theorems in complete partially ordered generalized D∗-metric
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1. Introduction

The study of metric fixed point theory has been researched extensively in the past decades, since fixed
point theory plays a fundamental role in mathematics and applied sciences, such as optimization, mathe-
matical models, and economic theories. The Banach fixed point theorem for contraction mappings has been
generalized and extended in many directions, (see [1, 4-6, 8-12, 15]). The concept of cone metric spaces
is a generalization of metric spaces, where each pair of points is assigned to a member of a real Banach
space with a cone. This cone naturally induces a partial order in the Banach spaces. In recent times, fixed
point theory has developed rapidly in partially ordered metric spaces such as Nieto and Lopez [12, 14],
Ran and Reurings [17] and Petruşel and Rus [16] presented some new results for contractions in partially
ordered metric spaces. The main idea in [12, 14, 17] involves combining the ideas of an iterative technique
in the contraction mapping principle with those in the monotone technique. Sedghi et. al., [18] have been
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introduced the concept of D∗-metric space which as a probable modification of the definition of D-metric
introduced by Dhage, [7]. Afterwards, many authors [13, 20-21] proved some fixed point theorems in these
spaces. In [3], AL. Jumaili and Yang, used the concept of a D∗-metric space and introduced a new concept
of the ∇∗-distance on a complete D∗-metric space and proved some fixed point theorems in partially ordered
D∗-metric space. Recently, Aage and Salunke, [2] generalized the concept of D∗-metric space by replacing
R by a real Banach space in D∗-metric spaces. The purpose of this paper is to introduce a new concept
called ∇∗∗-distance on a complete generalized D∗-metric space which is a generalization of the concept of
∇∗-distance which is proposed by AL. Jumaili and Yang [3], by replacing the set of real numbers by an
ordered Banach space. By using the concepts of generalized D∗-metric space and ∇∗∗-distance, we prove
some new fixed point theorems in complete partially ordered generalized D∗-metric space, which is the main
result of our paper.

2. Preliminaries

Let E be a real Banach space and P a subset of E. P is called a cone if and only if:

(a) P is closed, non-empty and P 6= {0},
(b) ax+ by ∈ P for all x, y ∈ P and non-negative real numbers a, b,

(c) P
⋂

(−P ) = {0}.

Given a cone P ⊂ E, we define a partial ordering ≤ on E with respect to P by x ≤ y if and only if y−x ∈ P .
We shall write x � y if y − x ∈ intP , where intP denotes the interior of P . A cone P is called normal if
there is a number K > 0 such that for all x, y ∈ E, 0 ≤ x ≤ y implies ‖ x ‖≤ K ‖ y ‖.
In the following we always suppose that E is a Banach space, P is a cone in E with intP 6= {0} and ≤ is a
partial ordering with respect to P .

Now, we state the definitions of generalized D∗-metric, ∇∗∗-distance and prove a lemma. For more
information on D∗-metrics and generalized D∗-metric, we refer the reader to [2] and [18] respectively.

Definition 2.1. ([2]) Let X be a non empty set. A generalized D∗-metric on X is a function, D∗: X ×
X ×X → E that satisfies the following conditions for all x, y, z, a ∈ X:

(a) D∗(x, y, z) ≥ 0,

(b) D∗(x, y, z) = 0 if and only if x = y = z,

(c) D∗(x, y, z) = D∗(p{x, y, z}),(symmetry) where p is a permutation function,

(d) D∗(x, y, z) ≤ D∗(x, y, a) +D∗(a, z, z) .

Then the function D∗ is called a generalized D∗-metric (D∗-cone metric) and the pair (X,D∗) is called a
generalized D∗-metric space (D∗-cone metric space).

Definition 2.2. ([2]) Let (X,D∗) be a generalized D∗-metric space then:

(a) A sequence {xn} in X is said to be Cauchy sequence. If for every c in E with 0� c, there is N such
that for all m,n, l > N , D∗(xm, xn, xl)� c.

(b) If every Cauchy sequence in X is convergent in X, then X is called a complete generalized D∗-metric.

(c) A sequence {xn} in X is said to be converges to point x ∈ X. If for every c ∈ E with 0 � c there is
N such that for all m,n > N , D∗(xm, xn, x)� c, and a point x is the limit of {xn} and denoted this
by xn → x (n→∞).
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Proposition 2.3. ([2]) If (X,D∗) is a generalized D∗-metric space, then for all x, y ∈ X, we have
D∗(x, x, y) = D∗(x, y, y).

Remark 2.4. ([2]) If un ≥ 0 then u ≥ 0. Thus if un ≤ vn in P then, limun ≤ lim vn, provided limit exist.

Lemma 2.5. ([2]) Let (X,D∗) be a generalized D∗-metric space, P be a normal cone with normal constant
K. Let {xn} be a sequence in X. Then {xn} converges to x if and only if D∗(xm, xn, x)→ 0, (m,n→∞).

Lemma 2.6. ([2]) Let (X,D∗) be a generalized D∗-metric space, P be a normal cone with normal constant
K. Let {xn} be a sequence in X. If {xn} converges to x and {xn} converges to y, then x = y. That is the
limit of {xn}, if exists, is unique.

Lemma 2.7. ([2]) Let (X,D∗) be a generalized D∗-metric space, {xn} be a sequence in X. If {xn} converges
to x, then {xn} is a Cauchy sequence.

Lemma 2.8. ([2]) Let (X,D∗) be a generalized D∗ metric space and P be a normal cone with normal
constant K. Let {xn} be a sequence in X. Then {xn} is a Cauchy sequence if and only if D∗(xm, xn, xl)→ 0,
(m,n, l→∞).

Lemma 2.9. ([2]) Let (X,D∗) be a generalized D∗-metric space and P be a normal cone with normal
constant K. Let {xm}, {yn}, and {zl} be three sequences in X such that, xm → x, yn → y and zl → z, then
D∗(xm, yn, zl)→ D∗(x, y, z), (m,n, l→∞).

3. ∇∗∗-distance on a generalized D∗-metric space (X,D∗)

Now, we introduce the concept of ∇∗∗-distance on a generalized D∗-metric space (X,D∗), which is a
generalization of the concept of ∇∗-distance which is proposed by AL. Jumaili and Yang [3]. We start with
a definition of ∇∗∗-distance.

Definition 3.1. Let (X,D∗) be a generalized D∗-metric space. Then a function, ∇∗∗: X3 → E is called
∇∗∗-distance on X if the following conditions are satisfied:

((∆1)) ∇∗∗(x, x, y) ≥ 0 for all x, y ∈ X;

((∆2)) ∇∗∗(x, y, z) ≤ ∇∗∗(x, y, a) +∇∗∗(a, z, z) for all x, y, z, a ∈ X;

((∆3)) For all x, y ∈ X and n ≥ 1, if ∇∗∗(x, y, zn) ≤ δ for some δ = δx ∈ P and ∇∗∗(x, zn, y) ≤ β for some
β = βx ∈ P then, ∇∗∗(x, y, z) ≤ δ and ∇∗∗(x, z, y) ≤ β respectively, whenever {zn} is a sequence in X
converges to point z ∈ X;

((∆4)) For each c ∈ E with 0� c, there exists e ∈ E with 0� e such that,
∇∗∗(x, y, a)� e and ∇∗∗(a, z, z)� e imply D∗(x, y, z)� c.

Remark 3.2. Let (X,D∗) be a D∗-metric space, E = R+, P = [0,∞) and (∆3) is replaced with the following
condition:
(For any x, y ∈ X,∇∗∗(x, y, .),∇∗∗(x, ., y) : X → R+ are lower semi-continuous), then the ∇∗∗-distance
is a ∇∗-distance on X which is proposed by AL. Jumaili and Yang [3]. Moreover, it is easy to see that,
if ∇∗∗(x, y, .),∇∗∗(x, ., y) are lower semi-continuous, then (∆3) holds. Thus, it is obvious that every ∇∗-
distance is a ∇∗∗-distance if (X,D∗) is a D∗-metric space, E = R+, P = [0,∞), but the converse do not
hold. Therefore, the ∇∗∗-distance is a generalization of the ∇∗-distance.
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Example 3.3. Let E = R2 and P = {(x, y) ∈ E : x, y ≥ 0}, X = R, we consider the generalized D∗-metric
and defined a mapping, D∗: X3 → E by:
D∗(x, y, z) = (| x− y | + | y− z | + | x− z |, α(| x− y | + | y− z | + | x− z |)) where α ≥ 0 is a constant (see
[2]). Then the mapping, ∇∗∗: X3 → E which defined by: ∇∗∗(x, y, z) =| z−x | + | x− y | for all x, y, z ∈ R
is a ∇∗∗-distance on R.

Proof. The proofs of parts (∆1) , (∆2) and (∆3) are immediate. Now, we prove (∆4), let c ∈ E with 0� c
be given and put e = c

3 .
Suppose that ∇∗∗(x, y, a)� e and ∇∗∗(a, z, z)� e, then we have, | x−a |� e, | y−a |� e and | a− z |� e,
which imply that,
D∗(x, y, z) ≤ ∇∗∗(x, y, a) +∇∗∗(a, z, z) =| x − a | + | y − a | + | a − z |� e + e + e = 3e = c. This shows
that ∇∗∗ satisfies (∆4) and hence ∇∗∗ is a ∇∗∗-distance.

Example 3.4. Let (X,D∗) be a generalized D∗-metric space and P be a normal cone. Let D∗: X3 → E
defined by:

D∗(x, y, z) = d(x, y) + d(y, z) + d(z, x)

for all x, y, z ∈ X. Then ∇∗∗ = D∗ is a ∇∗∗-distance on X.

Proof. The proofs of a parts (∆1) and (∆2) are direct. By Lemma 2.9 we have that (∆3) holds, let c ∈ E
with 0 � c be given and put e = c

2 . Suppose that ∇∗∗(x, y, a) � e and ∇∗∗(a, z, z) � e, then we have,
D∗(x, y, z) ≤ ∇∗∗(x, y, a) +∇∗∗(a, z, z), which implies that D∗(x, y, z) ≤ e + e = 2e = c. This shows that
∇∗∗ satisfies (∆4) and hence ∇∗∗ is a ∇∗∗-distance.

Example 3.5. Let (X,D∗) be a generalized D∗-metric space. Then the mapping ∇∗∗ : X ×X ×X → E
defined by: ∇∗∗(x, y, z) = t, for all x, y, z ∈ X is a ∇∗∗-distance on X, where t is a positive real number.

Proof. The proofs of (∆1) and (∆2) are immediate, Lemma 2.9 show that a part (∆3) holds, now to show
(∆4), for each c ∈ E with 0� c, put e = c

2 . If ∇∗∗(x, y, a)� e and ∇∗∗(a, z, z)� e, imply that,

D∗(x, y, z) ≤ ∇∗∗(x, y, a) +∇∗∗(a, z, z)� e+ e = 2e = c.

Example 3.6. Let (X,D∗) be a generalized D∗-metric space and P be a normal cone. Let D∗: X3 → E
defined by:

D∗(x, y, z) = max{d(x, y), d(y, z), d(z, x)}

for all x, y, z ∈ X. Then ∇∗∗ = D∗ is a ∇∗∗-distance on X.

Proof. In fact, the proofs of (∆1) and (∆2) are obvious immediate. Lemma 2.9 shows that a part (∆3)
holds, let c ∈ E with 0 � c be given and put e = c

2 . If ∇∗∗(x, y, a) � e and ∇∗∗(a, z, z) � e, we have,
d(x, a)� e, d(y, a)� e, d(a, z)� e and d(y, z)� e, respectively, which imply that,

D∗(x, y, z) ≤ ∇∗∗(x, y, a) +∇∗∗(a, z, z)� e+ e = 2e = c.

This shows that D∗ satisfies (∆4) and hence D∗ is a ∇∗∗-distance.

Example 3.7. Let (X,D∗) be a generalized D∗-metric space and P be a normal cone. Let D∗: X3 → E
defined by: D∗(x, y, z) = {d(u, y), d(u, z), d(u, x)} for all x, y, z ∈ X where u ∈ X is a fixed. Then ∇∗∗ = D∗

is a ∇∗∗-distance on X.
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Proof. The proofs of (∆1) and (∆3) immediate. Since D∗(u, y, z) ≤ D∗(u, y, a) +D∗(a, z, z) this means,

∇∗∗(x, y, z) ≤ ∇∗∗(x, y, a) +∇∗∗(a, z, z),

this shows that (∆2) holds.
Now, let c ∈ E with 0� c be given and put e = c

2 . Suppose that ∇∗∗(x, y, a)� e and

∇∗∗(a, z, z)� e

then we have, D∗(x, y, z) ≤ D∗(u, y, a) + D∗(a, z, z) = ∇∗∗(x, y, a) + ∇∗∗(a, z, z) � e + e = 2e = c. This
shows that (∆4) holds. Thus ∇∗∗ is a ∇∗∗-distance.

Lemma 3.8. Let (X,D∗) be a generalized D∗-metric space and ∇∗∗ be a ∇∗∗-distance on X. Let {xn} and
{yn} be a sequences in X, {δn} and {βn} be a sequences in P converging to zero and let x, y, z, a ∈ X. Then
the following hold:

(a) If ∇∗∗(y, y, xn) ≤ δn and ∇∗∗(xn, z, z) ≤ βn for n ∈ N , then D∗(y, y, z)� c and y = z,

(b) If ∇∗∗(yn, ym, xn) ≤ δn and ∇∗∗(xn, z, z) ≤ βn for any m > n ∈ N , then D∗(yn, ym, z) Converges to 0
and hence {yn} converges to z,

(c) If ∇∗∗(xn, xm, xl) ≤ δn for any n,m, l ∈ N with n ≤ m ≤ l, then {xn} is a D∗-Cauchy Sequence in X,

(d) If ∇∗∗(xn, xm, a) ≤ δn for any n ∈ N , then {xn} is a D∗-Cauchy sequence in X.

Proof. First, we prove a part (b). Let c ∈ E with 0 � c be given. Then there exists λ > 0 such that
c−x ∈ intP for all x ∈ P with ‖ x ‖< λ. From the definition of ∇∗∗-distance, there exists e ∈ E with 0� e
such that ∇∗∗(u, v, a)� e and ∇∗∗(a, z, z)� e imply D∗(u, v, z)� c. Since a sequences are {δn} and {βn}
converges to zero, there exists a positive integer n0 such that ‖ δn ‖< λ and ‖ βn ‖< λ for all n ≥ n0 and so
c− δn ∈ intP and c− βn ∈ intP (i.e.) δn � c and βn � c for all n ≥ n0. Therefore by (∆4) with e = c, for
all m > n ≥ n0, we have, ∇∗∗(yn, ym, xn) � δn � c,∇∗∗(xn, z, z) � βn � c, and hence D∗(yn, ym, z) � c
thus we obtain {yn} converges to z. It follows from (b) that (a) holds.

Now we will prove part (c). Let c ∈ E with 0� c be given. As in the proof of part (b), choose e ∈ E with
0� e. Then there exists a positive integer n0. Such that ∇∗∗(xn, xm, xn+1)� δn � e,∇∗∗(xn+1, xl, xl)�
δn+1 � e for any l ≥ m > n ≥ n0, therefore D∗(xn, xm, xl) � c. This implies that {xn} is a D∗-Cauchy
sequence in X. Since a part (d) is a special case of a part (c). So as in the proof of (c), we can prove (d).This
completes the proof.

Definition 3.9. Let (X,D∗)→ (X∗, D∗∗) be generalized D∗-metric spaces, then a function f : X → X∗ is
said to be D∗-continuous at a point x ∈ X (see [2]), if and only if it is D∗-sequentially continuous at x, that
is, whenever {xn} is D∗-convergent to x we have {f(xn)} is D∗-convergent to f(x).

Remark 3.10. X is said to be ∇∗∗-bounded if there is a constant M > 0 such that, ∇∗∗(x, y, z) ≤M for all
x, y, z ∈ X.

4. Fixed point theorems and ∇∗∗-distance in a complete partially ordered generalized D∗-
metric spaces

In this section, we prove some new fixed point theorems by using the concept of ∇∗∗-distance in a
complete partially ordered generalized D∗-metric space.
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Definition 4.1. ([19]) Suppose (X,≤) is a partially ordered set and T : X → X is a mapping of X into
itself. We say that T is non-decreasing if for x, y ∈ X, x ≤ y implies T (x) ≤ T (y).

Theorem 4.2. Let (X,≤) be a partially ordered set and suppose that (X,D∗) is a complete generalized
D∗-metric space and P is a normal cone with normal constant K. Let ∇∗∗ is a ∇∗∗-distance on X and
T : X → X be a non-decreasing mapping with respect to ≤. Let X be ∇∗∗-bounded.
Suppose that for all x ≤ Tx and w ∈ X there exists h ∈ [0, 1) such that, ∇∗∗(Tx, T 2

x , Tw) ≤ h∇∗∗(x, Tx, w).
Also, inf{‖ ∇∗∗(x, y, x) ‖ + ‖ ∇∗∗(x, y, Tx) ‖ + ‖ ∇∗∗(x, T 2

x , y) ‖: x ≤ Tx} > 0 for every x, y ∈ X with
y 6= Ty. If there is an x0 ∈ X with x0 ≤ Tx0, then T has a fixed point. Moreover, if v = Tv, then,
∇∗∗(v, v, v) = 0.

Proof. We will discuss two cases (a) Tx0 = x0, (b)Tx0 6= x0.
(a) If Tx0 = x0, then x0 is a fixed point of T and the proof in this case finished.
(b) Suppose that Tx0 6= x0. Since x0 ≤ Tx0 and T is non-decreasing mapping, we obtain:

x0 ≤ Tx0 ≤ T 2
x0
≤ ..... ≤ Tn

x0
≤ Tn+1

x0
≤ .....

For all n ∈ N and t ≥ 0,

∇∗∗(Tn
x0
, Tn+1

x0
, Tn+t

x0
) ≤ h∇∗∗(Tn−1

x0
, Tn

x0
, Tn+t−1

x0
) ≤ ..... ≤ hn∇∗∗(x0, Tx0 , T

t
x0

).

Thus, for any l > m > n in which m = n+ k and l = m+ t(t, k ∈ N), we have:

∇∗∗(Tn
x0
, Tm

x0
, T l

x0
)

≤ ∇∗∗(Tn
x0
, Tm

x0
, Tn+1

x0
) +∇∗∗(Tn+1

x0
, T l

x0
, T l

x0
)

≤ ∇∗∗(Tn
x0
, Tm

x0
, Tn+1

x0
) +∇∗∗(Tn+1

x0
, Tm+1

x0
, Tn+2

x0
) +∇∗∗(Tn+2

x0
, T l

x0
, T l

x0
)

≤ ∇∗∗(Tn
x0
, Tm

x0
, Tn+1

x0
) +∇∗∗(Tn+1

x0
, Tm+1

x0
, Tn+2

x0
)

+∇∗∗(Tm−2
x0

, Tm
x0
, Tm−1

x0
) +∇∗∗(Tm−1

x0
, T l

x0
, T l

x0
)

≤
∑m−1

j=n Mhj ≤ ( hn

1−h)M .

By part (c) of Lemma 3.8, {Tn
x0
} is a D∗-Cauchy sequence in X. Since (X,D∗) is a complete general-

ized D∗-metric space, then, there exists a point z ∈ X such that {Tn
x0
} converges to z, i.e., (Tn

x0
→ z) as

n→∞. Let n ∈ N be a fixed point. Then, by condition (∆3), for m > n we have,

∇∗∗(Tn
x0
, Tm

x0
, z) ≤ lim

p→∞
inf∇∗∗(Tn

x0
, Tm

x0
, T p

x0
) ≤ (

hn

1− h
)M

and for l ≥ n, we get:

∇∗∗(Tn
x0
, z, T l

x0
) ≤ lim

p→∞
inf∇∗∗(Tn

x0
, Tm

x0
, T p

x0
) ≤ (

hn

1− h
)M.

Since P is a normal cone with normal constant K, we have:

‖ ∇∗∗(Tn
x0
, Tm

x0
, T l

x0
) ‖≤ (

Khn

1− h
) ‖M ‖

and for m > n we obtain:

‖ ∇∗∗(Tn
x0
, Tm

x0
, z) ‖≤ limp→∞ inf{‖ ∇∗∗(Tn

x0
, Tm

x0
, T p

x0) ‖} ≤ (Khn

1−h ) ‖M ‖ and for l ≥ n, we get:

‖ ∇(Tn
x0
, z, T l

x0
) ‖≤ limp→∞ inf{‖ ∇∗∗(Tn

x0
, Tm

x0
, T p

x0) ‖} ≤ (Khn

1−h ) ‖M ‖.

Suppose that Tz 6= z. Since Tn
x0
≤ Tn+1

x0
, then by hypothesis, we have:
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0 ≤ inf{‖ ∇∗∗(Tn
x0
, z, Tn

x0
) ‖ + ‖ ∇∗∗(Tn

x0
, z, Tn+1

x0
) ‖ + ‖ ∇∗∗(Tn

x0
, Tn+2

x0
, z)|| : n ∈ N}

≤ inf{(Khn

1−h ) ‖M ‖ +(Khn

1−h ) ‖M ‖ +(Khn

1−h ) ‖M ‖: n ∈ N}

= inf{3(Khn

1−h ) ‖M ‖: n ∈ N} = 0.

This is a contradiction. Thus, we obtain Tz = z. Now suppose that, Tv = v holds. Then we have,

∇∗∗(v, v, v) = ∇∗∗(Tv, T 2
v , T

3
v ) ≤ h∇∗∗(v, Tv, T 2

v ) = h∇∗∗(v, v, v),

therefore we get ∇∗∗(v, v, v) = 0. This completes the proof.

Theorem 4.3. Let (X,≤) be a partially ordered set and suppose that (X,D∗) is a complete generalized
D∗-metric space and P is a normal cone with normal constant K. Let ∇∗∗ is a ∇∗∗-distance on X and
T : X → X be a non-decreasing mapping with respect to ≤. Let X be ∇∗∗-bounded. Assume that there exists
an h ∈ [0, 1) such that ∇∗∗(Tx, T 2

x , Tw) ≤ h∇∗∗(x, Tx, w) for all x ≤ Tx and w ∈ X. Suppose that either of
the following conditions hold:

(a) If Ty 6= y, then,
inf{‖ ∇∗∗(x, y, x) ‖ + ‖ ∇∗∗(x, y, Tx) ‖ + ‖ ∇∗∗(x, T 2

x , y) ‖: x ≤ Tx} > 0, for every x ∈ X,

(b) If {xn} and {Txn} convergent sequences to y and ∇∗∗(v, w, .) = ∇∗∗(w, v, .) for every v, w ∈ X, then
Ty = y,

(c) T is continuous mapping and ∇∗∗(v, w, .) = ∇∗∗(w, v, .) for every v, w ∈ X. If there exists x0 ∈ X
with x0 ≤ Tx0, then T has a fixed point. Furthermore, if Tv = v, then, ∇∗∗(v, v, v) = 0.

Proof. (a): It was proved in Theorem (4.2).
(a)⇒ (b). Suppose that there exists y ∈ X with Ty 6= y and,

inf{‖ ∇∗∗(x, y, x) ‖ + ‖ ∇∗∗(x, y, Tx) ‖ + ‖ ∇∗∗(x, T 2
x , y) ‖} = 0. Then there exists a sequence {xn} in

X such that xn ≤ Txn and,

limn→∞{‖ ∇∗∗(xn, y, xn) ‖ + ‖ ∇∗∗(xn, y, Txn) ‖ + ‖ ∇∗∗(xn, T 2
xn
, y) ‖} = 0. So, we get:

limn→∞∇∗∗(y, y, xn) = limn→∞∇∗∗(xn, xn, y) = limn→∞∇∗∗(xn, y, xn) = 0, limn→∞∇∗∗(xn, y, Txn) = 0,
and limn→∞∇∗∗(xn, T 2

xn
, y) = 0, Thus, by part (a) of Lemma 3.8 we obtain,

limn→∞D
∗(y, y, Txn) = 0 and limn→∞D

∗(y, y, T 2
xn

) = 0.

By using the continuity of generalized D∗-metric, we get: limn→∞ Txn = limn→∞ T
2
xn

= y. Also we have:

limn→∞∇∗∗(Ty, Ty, Txn) ≤ h limn→∞∇∗∗(y, y, xn) = 0,
limn→∞∇∗∗(Txn , y, Ty) ≤ limn→∞ inf{‖ ∇∗∗(Txn , T

2
xn
, Ty) ‖}

≤ h limn→∞ inf{‖ ∇∗∗(xn, Txn , y) ‖}
≤ h limn→∞ inf{‖ ∇∗∗(xn, T 2

xn
, y) ‖} = 0.

Therefore, by part (a) of Lemma 3.8, we obtain, D∗(Ty, y, Ty) = 0 and hence Ty = y, and (a)⇒ (b).
Now, we show that (c)⇒ (b). Let T be continuous mapping. Further suppose that {xn} and {Txn} converge
to y. Then we have Ty = T (limn→∞ xn) = limn→∞ Txn = y.
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Next, we recall the following example to shows the validity of Theorem 4.2.

Example 4.4. Consider Example 3.3 define a mapping T : R→ R as follows:
Tx = x

2 for all x ∈ R. Then T is continuous and non-decreasing with respect to ≤. Then we have:

∇∗∗(Tx, T 2
x , Tw) = (| T 2

x − Tx | + | Tx − Tw|)
= (| x4 −

x
2 | + |

x
2 −

w
2 |)

= 1
2(| x2 − x |)+ | x− w |)

= 1
2∇
∗∗(x, Tx, w)

for all x,w ∈ R, since y 6= Ty implies y 6= 0, we obtain:

inf{‖ ∇∗∗(x, y, x) ‖ + ‖ ∇∗∗(x, y, Tx) ‖ + ‖ ∇∗∗(x, T 2
x , y) ‖: x ≤ Tx} > 0.

Hence, all the conditions of Theorem 4.2 are satisfied and x = 0 is a fixed point of T . Furthermore,
∇∗∗(0, 0, 0) = 0.
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