
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 8 (2015), 518–528

Research Article

Fixed point theorems for α-β-ψ-contractive
mappings in partially ordered sets

Mohammad Sadegh Asgari∗, Ziad Badehian

Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Abstract

In this paper, we introduce a new concept of α-β-ψ-contractive type mappings and construct some fixed
point theorems for such mappings in metric spaces endowed with partial order. Moreover, we use fixed
point theorems to find a solution for the first-order boundary value differential equation. c⃝2015 All rights
reserved.
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1. Introduction and Preliminaries

The existence of fixed point in partially ordered sets has been considered in [1, 2, 3, 5, 6, 7, 8, 9, 11, 12,
15, 16, 19]. Furthermore, some applications to periodic boundary value problems and matrix equations were
given in [13, 14, 17]. Recently, Samet et al. [18] introduced α-ψ-contractive type mappings in complete metric
space and established some fixed point theorems as well as their applications to a second-order ordinary
differential equation. In this paper, we introduce a new concept of α-β-ψ-contractive type mappings and
establish some fixed point theorems in a metric space endowed with partial order. The presented theorems
extend, generalize and improve many existing results in the literature, in particular the results of Ran and
Reurings [17], Nieto and Rodŕıguez-López [12, 13] and Harjani and Sadarangani [7]. In the literature, we
can find results on existence of solution for ordinary differential equations in presence of both lower and
upper solutions. In this paper, we assume the existence of just one of them for the periodic boundary value
problem {

u′(t) = h(t, u(t)), t ∈ I = [0, T ],
u(0) = u(T ),

(1.1)
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where T > 0, and h : I × R → R is a continuous function. A solution to (1.1) is a function u ∈ C1(I,R)
satisfying conditions in (1.1). A lower solution for (1.1) is a function u ∈ C1(I,R) such that{

u′(t) ≤ h(t, u(t)), t ∈ I = [0, T ],
u(0) ≤ u(T ).

An upper solution for (1.1) satisfies the reversed inequalities. It is well known [10] that the existence of a
lower solution u and an upper solution v with u ≤ v implies the existence of a solution of (1.1) between
u and v. In this paper, the existence of a unique solution for problem (1.1) was obtained under suitable
conditions. Let’s start by a few definitions and lemmas.

Definition 1.1. Let (X,≤) be a partially ordered set. We say that f : X → X is monotone nondecreasing
if for all x, y ∈ X,

x ≤ y =⇒ f(x) ≤ f(y).

Definition 1.2 ([18]). Let Ψ be a family of nondecreasing functions ψ : [0,∞) → [0,∞) such that for each
ψ ∈ Ψ and t > 0,

∑∞
n=1 ψ

n(t) < +∞, where ψn is the n-th iterate of ψ.

Lemma 1.3 ([18]). Let ψ : [0,∞) → [0,∞) be a nondecreasing function. If for each t > 0, lim
t→∞

ψn(t) = 0

then ψ(t) < t.

Definition 1.4. Let (X,≤) be a partially ordered space with complete metric d. We say that f : X → X
is a α-β-ψ-contractive mapping if there exist three functions α, β : X ×X → [0,∞), ψ ∈ Ψ such that for all
x, y ∈ X with x ≥ y,

α(x, y)d(f(x), f(y)) ≤ β(x, y)ψ(d(x, y)). (1.2)

Example 1.5. If f : X → X satisfies the Banach contraction principle, then f is an α-β-ψ-contractive
mapping, where α(x, y) = β(x, y) = 1 for all x, y ∈ X and ψ(t) = ct for all t ≥ 0 and some c ∈ [0, 1).

Definition 1.6. Let f : X → X, α, β : X × X → [0,∞) and Cα > 0, Cβ ≥ 0. We say that f is an
α-β-admissible mapping if for all x, y ∈ X with x ≥ y,

(i) α(x, y) ≥ Cα implies α(f(x), f(y)) ≥ Cα;

(ii) β(x, y) ≤ Cβ implies β(f(x), f(y)) ≤ Cβ ;

(iii) 0 ≤ Cβ/Cα ≤ 1.

Example 1.7. Let X = (0,+∞). Define f : X → X and α, β : X ×X → [0,∞) by f(x) = ex for all x ∈ X
and

α(x, y) =

{
3 if x ≥ y;

0 otherwise,
, β(x, y) =

{
1/4 if x ≥ y;

0 otherwise,

let Cα = 2 and Cβ = 1/2 then f is α-β-admissible.

Example 1.8. Let X = [0,+∞). Define f : X → X and α, β : X×X → [0,∞) by f(x) = 3
√
x for all x ∈ X

and

α(x, y) =

{
xy−1 if x ≥ y;

0 otherwise,
, β(x, y) =

{
2y−x

3 if x ≥ y;

0 otherwise,

let Cα = 1/2 and Cβ = 1/3 then f is α-β-admissible.
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2. Fixed point theorems

Theorem 2.1. Let (X,≤) be a partially ordered space with complete metric d. Let f : X → X be a
nondecreasing, α-β-ψ-contractive mapping satisfying the following conditions:

(i) f is continuous;

(ii) f is α-β-admissible;

(iii) there exists x0 ∈ X such that x0 ≤ f(x0);

(iv) there exist Cα > 0, Cβ ≥ 0 such that α(f(x0), x0) ≥ Cα, β(f(x0), x0) ≤ Cβ.

Then, f has a fixed point.

Proof. If f(x0) = x0, then the proof is finished. Suppose that f(x0) ̸= x0. Since x0 ≤ f(x0) and f is
nondecreasing, we obtain by induction that

x0 ≤ f(x0) ≤ f2(x0) ≤ f3(x0) ≤ . . . ≤ fn(x0) ≤ fn+1(x0) ≤ · · · , (2.1)

also, since f is α-β-admissible by (iv), we get{
α(f(x0), x0) ≥ Cα → α(f2(x0), f(x0)) ≥ Cα → . . .→ α(fn+1(x0), f

n(x0)) ≥ Cα,

β(f(x0), x0) ≤ Cβ → β(f2(x0), f(x0)) ≤ Cβ → . . .→ β(fn+1(x0), f
n(x0)) ≤ Cβ .

(2.2)

Now, by (1.2), (2.1) and (2.2), we obtain

Cαd(f
2(x0), f(x0)) ≤ α(f(x0), x0)d(f

2(x0), f(x0))

≤ β(f(x0), x0)ψ(d(f(x0), x0))

≤ Cβψ(d(f(x0), x0)).

Hence,
d(f2(x0), f(x0)) ≤ Cβ/Cαψ(d(f(x0), x0)) ≤ ψ(d(f(x0), x0)).

Continuing this process, we get

d(fn+1(x0), f
n(x0)) ≤ ψn(d(f(x0), x0)).

Now, as n→ ∞ then d(fn+1(x0), f
n(x0)) → 0. We show that {fn(x0)}∞n=1 is a Cauchy sequence. Fix ϵ > 0

and let n(ϵ) ∈ N such that ∑
n≥n(ϵ)

ψn(d(f(x0), x0)) < ϵ.

Let m,n ∈ N with m > n > n(ϵ), by triangular inequality,

d(fn(x0), f
m(x0)) ≤ d(fn(x0), f

n+1(x0)) + . . .+ d(fm−1(x0), f
m(x0))

≤ ψn(d(f(x0), x0)) + . . .+ ψm−1(d(f(x0), x0))

=
m−1∑
k=n

ψk(d(f(x0), x0))

≤
∑

n≥n(ϵ)

ψn(d(f(x0), x0)) < ϵ.

Since (X, d) is a complete metric space, then there exists x ∈ X such that lim
n→∞

fn(x0) = x. Now, we show

that x is a fixed point of f(x). Suppose ϵ > 0 is given. Since f is a continuous function, then there exists
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δ > 0 such that, for each z ∈ X, d(z, x) < δ implies that d(f(z), f(x)) < ϵ
2 . Given η = min{ ϵ

2 , δ}, now by
convergence of {fn(x0)}∞n=1 to x, there exists n0 ∈ N such that, for all n ∈ N, n ≥ n0,

d(fn(x0), x) < η.

Taking n ∈ N, n ≥ n0, we get

d(f(x), x) ≤ d(f(fn(x0), f(x)) + d(fn+1(x0), x)

<
ϵ

2
+ η ≤ ϵ

2
+
ϵ

2
= ϵ,

therefore, d(f(x), x) = 0. Consequently, f(x) = x.

In the next theorem, the continuity hypothesis of f has been removed.

Theorem 2.2. Let (X,≤) be a partially ordered space with complete metric d. Let f : X → X be a
nondecreasing, α-β-ψ-contractive mapping satisfying the following conditions:

(i) f is α-β-admissible;

(ii) there exists x0 ∈ X such that x0 ≤ f(x0);

(iii) there exist Cα > 0, Cβ ≥ 0 such that α(f(x0), x0) ≥ Cα, β(f(x0), x0) ≤ Cβ;

(iv) if {xn}∞n=1 be a sequence in X such that α(xn, xn+1) ≥ Cα , β(xn, xn+1) ≤ Cβ for all n ∈ N and
lim
n→∞

xn = x, then α(xn, x) ≥ Cα, β(xn, x) ≤ Cβ;

(v) if {xn} be a nondecreasing sequence in X such that xn → x then xn ≤ x, for all n ∈ N.

Then, f has a fixed point.

Proof. Following the proof of Theorem 2.1, since {fn(x0)} is a cauchy sequence, then there exists x ∈ X
such that lim

n→∞
fn(x0) = x. We will show that x is a fixed point of f(x). Given ϵ > 0, since {fn(x0)}∞n=1

converges to x, there exists n0 ∈ N such that for all n ≥ n0,

d(fn(x0), x) <
ϵ

2
.

Moreover, since {fn(x0)} is a nondecreasing sequence, from (v), we have

fn(x0) ≤ x. (2.3)

From (1.2), (2.2), (2.3) and (iv), we get

Cαd(x, f(x)) ≤ Cαd(f(f
n(x0), f(x))) + Cαd(f

n+1(x0), x)

≤ α(fn(x0), x)d(f(f
n(x0), f(x))) + Cαd(f

n+1(x0), x)

≤ β(fn(x0), x)ψ(d(f
n(x0), x)) + Cαd(f

n+1(x0), x)

< Cβψ(d(f
n(x0), x)) + Cαd(f

n+1(x0), x),

therefore,

d(x, f(x)) < Cβ/Cαψ(d(f
n(x0), x)) + d(fn+1(x0), x) <

ϵ

2
+
ϵ

2
= ϵ.

Hence, d(x, f(x)) = 0, that is, f(x) = x.
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Example 2.3. Let (R,≤) and d(x, y) = |x − y| for all x, y ∈ R, then (R, d) is a complete metric space.
Define f : R → R and α, β : X ×X → [0,+∞), by

f(x) =

{
x
15 if x ≥ 0;

0 if x < 0,

and

α(x, y) =

{
2 if x, y ≥ 0;

0 otherwise,
, β(x, y) =

{
1/3 if x, y ≥ 0;

0 otherwise.

Let ψ(t) = t
2 for each t > 0. Clearly, f is an α-β-ψ-contractive mapping. Moreover, f is nondecreasing

and continuous. We show that f is α-β-admissible. For all x, y ∈ [0,+∞) with x ≥ y. Let Cα = 3/2 and
Cβ = 1/2, we have

α(x, y) ≥ Cα → α(f(x), f(y)) = α(
x

15
,
y

15
) ≥ Cα,

also
β(x, y) ≤ Cβ → β(f(x), f(y)) = β(

x

15
,
y

15
) ≤ Cβ .

In addition, there exists x0 = 0 ∈ R such that α(f(x0), x0) ≥ Cα and β(f(x0), x0) ≤ Cβ . Further, since
0 ≤ f(0) = 0 then x0 ≤ f(x0). Now, all the hypotheses of Theorem 2.1 are satisfied consequently, f has a
fixed point. Here, 0 is a fixed point of f .

In the following example, the continuity of f has been removed.

Example 2.4. Let (R,≤) and d(x, y) = |x − y| for all x, y ∈ R, then (R, d) is a complete metric space.
Define f : R → R and α, β : X ×X → [0,+∞), by

f(x) =


2x− 1

2 if x ≥ 1
2 ;

x
10 if 0 ≤ x < 1

2 ;

0 if x < 0,

and

α(x, y) =

{
1 if x, y ∈ [0, 12);

0 otherwise,
, β(x, y) =

{
1/3 if x, y ∈ [0, 12);

0 otherwise.

Clearly, f is nondecreasing and discontinuous. Let ψ(t) = t
3 for each t > 0. Obviously, if x, y ∈ R− [0, 1/2),

then f is an α-β-ψ-contractive mapping. Suppose that x, y ∈ [0, 1/2) with x ≥ y, let Cα = 1/2 and Cβ = 1/3
then α(x, y) ≥ Cα and β(x, y) ≤ Cβ . Hence,

α(x, y)d(f(x), f(y)) = |f(x)− f(y)| = | x
10

− y

10
| = |x− y|

10

and

β(x, y)ψ(d(x, y)) =
d(x, y)

9
=

|x− y|
9

,

therefore,
|x− y|
10

≤ |x− y|
9

.

In other words,
α(x, y)d(f(x), f(y)) ≤ β(x, y)ψ(d(x, y)).



M. S. Asgari, Z. Badehian, J. Nonlinear Sci. Appl. 8 (2015), 518–528 523

So, for all x, y ∈ R, f is an α-β-ψ-contractive mapping. Moreover, there exists x0 ∈ R such that
α(f(x0), x0) ≥ Cα and β(f(x0), x0) ≤ Cβ . Let x0 = 0 then

α(f(x0), x0) = α(f(0), 0) = α(0, 0) = 1 ≥ Cα = 1/2,

and
β(f(x0), x0) = β(f(0), 0) = β(0, 0) = 1/3 ≤ Cβ = 1/3.

Since 0 = x0 ≤ 0 = f(x0) then x0 ≤ f(x0). Clearly, f is α-β-admissible. Finally, if {xn} be a nondecreasing
sequence in R such that α(xn, xn+1) ≥ Cα and β(xn, xn+1) ≤ Cβ for all n ∈ N and xn → x then, by
definitions of α and β, xn ∈ [0, 12). Consequently, x ∈ [0, 12). In addition, {xn} is nondecreasing hence
xn ≤ x. Therefore, all the required hypotheses of Theorem 2.2 are satisfied, then f has a fixed point. Here,
0 and 1

2 are two fixed points of f .

Regarding to the above examples , it is seen that f may have more than one fixed point. In the following,
additional condition is applied to the hypotheses of Theorems 2.1 and 2.2 to obtain the singularity of the
fixed point.

Theorem 2.5. Suppose all the hypotheses of Theorems 2.1 and 2.2 are satisfied. If there exists z ∈ X such
that for all x, y ∈ X with x ≥ z, y ≥ z,{

α(x, z) ≥ Cα and β(x, z) ≤ Cβ ,

α(y, z) ≥ Cβ and β(y, z) ≤ Cβ .
(2.4)

Then, f has a unique fixed point.

Proof. Suppose x⋆ and y⋆ are two fixed points of f , then, f(x⋆) = x⋆ and f(y⋆) = y⋆. By the first part of
(2.4), there exists z ∈ X such that

α(x⋆, z) ≥ Cα and β(x⋆, z) ≤ Cβ , x⋆ ≥ z. (2.5)

Since f is α-β-admissible, we get

α(f(x⋆), f(z)) ≥ Cα and β(f(x⋆), f(z)) ≤ Cβ , f(x⋆) ≥ f(z),

therefore,
α(x⋆, f(z)) ≥ Cα and β(x⋆, f(z)) ≤ Cβ , x⋆ ≥ f(z).

Continuing this process, we have

α(x⋆, fn(z)) ≥ Cα and β(x⋆, fn(z)) ≥ Cβ , x⋆ ≥ fn(z), (2.6)

for all n ∈ N. Since f is α-β-ψ-contractive mapping, then we get

Cαd(x
⋆, fn(z)) = Cαd(f(x

⋆), f(fn−1(z)))

≤ α(x⋆, fn−1(z))d(f(x⋆), f(fn−1(z)))

≤ β(x⋆, fn−1(z))ψ(d(x⋆, fn−1(z)))

≤ Cβψ(d(x
⋆, fn−1(z))),

so,

d(x⋆, fn(z)) ≤ Cβ/Cαψ(d(x
⋆, fn−1(z)))

≤ ψ(d(x⋆, fn−1(z)))

≤ ψ(ψ(d(x⋆, fn−2(z))))

...

≤ ψn(d(x⋆, z)),
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which implies that,
d(x⋆, fn(z)) ≤ ψn(d(x⋆, z)).

For all n ∈ N. Now, as n → ∞ then fn(z) → x⋆. Similarly for the second part of (2.4), fn(z) → y⋆.
Therefore, x⋆ = y⋆. That means f has a unique fixed point.

Theorem 2.6. Let (X,≤) be a partially ordered space with complete metric d. Let f : X → X be a
nondecreasing, α-β-ψ-contractive mapping satisfying the following conditions:

(i) f is continuous;

(ii) f is α-β-admissible;

(iii) there exists x0 ∈ X such that x0 ≥ f(x0);

(iv) there exist Cα > 0, Cβ ≥ 0 such that α(x0, f(x0)) ≥ Cα, β(x0, f(x0)) ≤ Cβ.

Then, f has a fixed point.

Theorem 2.7. Let (X,≤) be a partially ordered space with complete metric d. Let f : X → X be a
nondecreasing, α-β-ψ-contractive mapping satisfying the following conditions:

(i) f is α-β-admissible;

(ii) there exists x0 ∈ X such that x0 ≥ f(x0);

(iii) there exist Cα > 0, Cβ ≥ 0 such that α(x0, f(x0)) ≥ Cα, β(x0, f(x0)) ≤ Cβ;

(iv) if {xn}∞n=1 be a sequence in X such that α(xn+1, xn) ≥ Cα , β(xn+1, xn) ≤ Cβ for all n ∈ N and
lim
n→∞

xn = x, then α(x, xn) ≥ Cα, β(x, xn) ≤ Cβ;

(v) if {xn} be a nonincreasing sequence in X such that xn → x then x ≤ xn, for all n ∈ N.

Then, f has a fixed point.

Theorem 2.8. Suppose all the hypotheses of Theorems 2.6 and 2.7 are satisfied. If there exists z ∈ X such
that for all x, y ∈ X with z ≥ x, z ≥ y,{

α(z, x) ≥ Cα and β(z, x) ≤ Cβ ,

α(z, y) ≥ Cβ and β(z, y) ≤ Cβ .
(2.7)

Then, f has a unique fixed point.

3. Application to ordinary differential equations

In this section, we prove the existence of the unique solution of problem (1.1) in the presence of it’s
lower solution with α-β-ψ-contractive mappings. This problem is solved by Nieto and Rodŕıguez-López [13]
in the presence of a lower solution, as follow.

Theorem 3.1. Consider problem (1.1) with h : I × R → R continuous. Suppose that there exist λ > 0 and
µ > 0 with µ < λ such that for all x, y ∈ R, with y ≥ x,

0 ≤ h(t, y) + λy − h(t, x)− λx ≤ µ(y − x),

then, the existence of a lower solution for (1.1), provides the existence of a unique solution of (1.1).

Also, Harjani and Sadarangani [7] have established following theorem:

Theorem 3.2. Consider problem (1.1) with h : I × R → R continuous. Suppose that there exists λ > 0
such that for all x, y ∈ R, with y ≥ x,

0 ≤ h(t, y) + λy − h(t, x)− λx ≤ λψ(y − x),

where ψ : [0,∞) → [0,∞) can be written by ψ(x) = x−ϕ(x) with ϕ : [0,∞) → [0,∞) continuous, increasing,
positive in (0,∞), ϕ(0) = 0 and lim

t→∞
ϕ(t) = ∞. Then the existence of a lower solution of (1.1) provides the

existence of a unique solution of (1.1).
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Now, we are ready to solve problem (1.1) according to our presented theorems.

Remark 3.3. For each λ > 0, problem (1.1) is written as{
u′(t) + λu(t) = h(t, u(t)) + λu(t), t ∈ I = [0, T ];

u(0) = u(T ),

this differential equation is equivalent to the integral equation:

u(t) =

∫ T

0
G(t, s)[h(s, u(s)) + λu(s)]ds,

where,

G(t, s) =


eλ(T+s−t)

eλT−1
, 0 ≤ s < t ≤ T ;

eλ(s−t)

eλT−1
, 0 ≤ t < s ≤ T.

In the theory of differential equations, G(t, s) is called Green function.

Theorem 3.4. Consider differential equation (1.1) with continuous h : I ×R → R by following conditions:

(i) there exists λ > 0 such that for all x, y ∈ R, with y ≥ x, and ψ ∈ Ψ,

0 ≤ h(t, y) + λy − h(t, x)− λx ≤ λψ(y − x);

(ii) there exists a function ξ : R2 → R such that for all t ∈ I, for all a, b ∈ R with ξ(a, b) ≥ 0,

ξ

(∫ T

0
G(t, s)[h(s, u(s)) + λu(s)]ds, γ(t)

)
≥ 0,

where γ ∈ C(I,R) be a lower solution of (1.1);

(iii) for all t ∈ I and all x, y ∈ C(I,R), ξ(x(t), y(t)) ≥ 0 implies,

ξ

(∫ T

0
G(t, s)[h(s, x(s)) + λu(s)]ds,

∫ T

0
G(t, s)[h(s, y(s)) + λu(s)]ds

)
≥ 0;

(iv) if xn → x ∈ C(I,R) and ξ(xn, xn+1) ≥ 0 then ξ(xn, x) ≥ 0 for all n ∈ N.

Therefore, the existence of a lower solution for (1.1) provides a unique solution of (1.1).

Proof. Regarding to the Remark 3.3, we define A : C(I,R) → C(I,R) by

[Au] (t) =
∫ T

0
G(t, s)[h(s, u(s)) + λu(s)]ds, t ∈ I.

Note that if u ∈ C(I,R) is a fixed point of A, then u ∈ C1(I,R) is a solution of (1.1). Let X = C(I,R).
By the following order relation, X is a partially ordered set.

x, y ∈ X, x ≤ y ⇐⇒ x(t) ≤ y(t), t ∈ I.

If we choose
d(x, y) = sup

t∈I
|x(t)− y(t)|, x, y ∈ X

then (X, d) is a complete metric space. Assume a monotone nondecreasing sequence {xn} ⊆ C(I,R)
converging to x ∈ C(I,R), then for each t ∈ I,

x1(t) ≤ x2(t) ≤ x3(t) ≤ · · · ≤ xn(t) ≤ · · · .
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The convergence of this sequence to x(t) implies that xn(t) ≤ x(t), for all t ∈ I, all n ∈ N. Therefore, xn ≤ x
for all n ∈ N. Moreover, A is a nondecreasing mapping, since for all u, v ∈ X with u ≥ v,

h(t, u) + λu ≥ h(t, v) + λv

and also G(t, s) > 0 for all (t, s) ∈ I × I, then

[Au] (t) =

∫ T

0
G(t, s)[h(s, u(s)) + λu(s)]ds

≥
∫ T

0
G(t, s)[h(s, v(s)) + λv(s)]ds = [Av] (t).

In addition, for u ≥ v by (i) and the definition of G(t, s), we obtain

d(Au,Av) = sup
t∈I

|Au(t)−Av(t)|

≤ sup
t∈I

∫ T

0
G(t, s)|h(s, u(s)) + λu(s)− h(s, v(s))− λv(s)|ds

≤ sup
t∈I

∫ T

0
G(t, s)|λψ(u(s)− v(s))|ds

≤ sup
t∈I

∫ T

0
G(t, s)λψ(|u(s)− v(s)|)ds

≤ λψ(d(u, v)) sup
t∈I

∫ T

0
G(t, s)ds

= λψ(d(u, v)) sup
t∈I

1

eλT − 1

(
1

λ
eλ(T+s−t)

∣∣∣t
0
+

1

λ
eλ(s−t)

∣∣∣T
t

)
= λψ(d(u, v))× 1

λ
= ψ(d(u, v)),

then
(Au,Av) ≤ ψ(d(u, v)).

Define α : X ×X → [0,∞) by

α(u, v) =

{
1 if ξ(u(t), v(t)) ≥ 0, t ∈ I;

0 otherwise,

and β : X ×X → [0,∞) by

β(u, v) =

{
1 if ξ(u(t), v(t)) ≥ 0, t ∈ I;

0 otherwise,

for all u, v ∈ X with u ≥ v. Then,

α(u, v)d(Au,Av) ≤ β(u, v)ψ(d(u, v)),

which implies that A is an α-β-ψ-contractive mapping. Let Cα = Cβ = 1. From (iii), for all u, v ∈ X with
u ≥ v, we get

α(u, v) ≥ 1 = Cα =⇒ ξ(u(t), v(t)) ≥ 0 =⇒ ξ(Au(t),Av(t)) ≥ 0 =⇒ α(Au,Av) ≥ 1 = Cα,

also,
β(u, v) ≤ 1 = Cβ =⇒ ξ(u(t), v(t)) ≥ 0 =⇒ ξ(Au(t),Av(t)) ≥ 0 =⇒ β(Au,Av) ≤ 1 = Cβ.
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Therefore, A is α-β-admissible. Let η be a lower solution of (1.1), from (ii),

ξ((Aη)(t), η(t)) ≥ 0 =⇒

{
α(Aη, η) ≥ Cα;

β(Aη, η) ≤ Cβ .

Now, we show that Aη ≥ η. From the definition of lower solution, we have{
η′(t) ≤ h(t, η(t)), t ∈ I = [0, T ];

η(0) ≤ η(T ).

For all t ∈ I and λ > 0, hence
η′(t) + λη(t) ≤ h(t, η(t)) + λη(t),

multiplying by eλt, we get
(η(t)eλt)′ ≤ (h(t, η(t)) + λη(t))eλt,

by integration, we obtain

η(t)eλt ≤ η(0) +

∫ t

0
[h(s, η(s)) + λη(s)]eλsds, (3.1)

which implies that

η(0)eλT ≤ η(T )eλT ≤ η(0) +

∫ T

0
[h(s, η(s)) + λη(s)]eλsds,

and so

η(0) ≤
∫ T

0

eλs

eλT − 1
[h(s, η(s)) + λη(s)]ds. (3.2)

From (3.1) and (3.2),

η(t)eλt ≤
∫ T

0

eλs

eλT − 1
[h(s, η(s)) + λη(s)]ds+

∫ t

0
[h(s, η(s)) + λη(s)]eλsds

≤
∫ t

0

eλ(T+s)

eλT − 1
[h(s, η(s)) + λη(s)]ds+

∫ T

t

eλs

eλT − 1
[h(s, η(s)) + λη(s)]ds,

dividing by eλt, we obtain

η(t) ≤
∫ t

0

eλ(T+s−t)

eλT − 1
[h(s, η(s)) + λη(s)]ds+

∫ T

t

eλ(s−t)

eλT − 1
[h(s, η(s)) + λη(s)]ds.

Then, by the definition of G(t, s), we have

η(t) ≤
∫ T

0
G(t, s)[h(s, η(s)) + λη(s)]ds = [Aη] (t),

for all t ∈ I, then, Aη ≥ η. Finally, from (iv) if xn → x ∈ X for all n, we get

ξ(xn, xn+1) ≥ 0 =⇒ ξ(xn, x) ≥ 0,

therefore
α(xn, xn+1) ≥ Cα =⇒ α(xn, x) ≥ Cα,

also
β(xn, xn+1) ≤ Cβ =⇒ β(xn, x) ≤ Cβ .

Then, all the hypotheses of Theorem 2.2 are satisfied. Consequently, A has a fixed point and so equation
(1.1) has a solution. The uniqueness of the solution comes from Theorem 2.5.

Theorem 3.5. If we replace the existence of lower solution to (1.1) by upper solution, Theorem 3.4 still
holds.
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[12] J. J. Nieto, R. L. Pouso, R. Rodŕıguez-López, Fixed point theorems in ordered abstract spaces, Proc. Amer. Math.
Soc., 137 (2007), 2505–2517. 1
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