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Abstract

In this paper, we prove that every F ∗ space (i.e., Hausdorff topological vector space satisfying the first
countable axiom) can be characterized by means of its “standard generating family of pseudo-norms”. By
using the standard generating family of pseudo-norms P, the concepts of P-bounded set and γ-max-
pseudo-norm-subadditive operator in F ∗ space are introduced. The uniform boundedness principles for
family of γ-max-pseudo-norm-subadditive and quasi-homogeneous operators in F ∗ spaces are established.
As applications, we obtain the corresponding uniform boundedness principles in classical normed spaces and
Menger probabilistic normed spaces. c⃝2015 All rights reserved.
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1. Introduction

The uniform boundedness principle (or the resonance theorem) is one of the foundation stones of func-
tional analysis. For its importance there has been a lot of work (see books [2, 14, 16]) on uniform boundedness
principles since Banach-Steinhaus theorems were established in 1927. Especially, today we can find some
new improvements for uniform boundedness principles in many different mathematical fields (for examples,
see [1, 5, 6, 8, 9, 10, 11, 12, 15, 17, 18]).

Recently, in [4, 7], R. Li et al. gave the definition of quasi-homogeneous operator and showed the family
of quasi-homogeneous operators included all linear and many more nonlinear operators. The introduction
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of quasi-homogeneous operators has strongly broadened our research scope of operators. After that, some
new uniform boundedness principles for quasi-homogeneous operators have appeared in the literature (see
[9, 12]).

On the other hand, it is well known that the subadditive functions have played a important role in the
study of uniqueness of differential equations, convex solids and extension of linear functional. Then the
uniform boundedness principles for family of γ-subadditive functionals in some topological vector groups
are established in [5]. Inspired by the work of [4, 5, 7, 9, 12], the main work of this paper is to establish
the uniform boundedness principles for family of γ-max-pseudo-norm-subadditive and quasi-homogeneous
operators in F ∗ spaces.

In this paper, we use the terminology in [14], where a F ∗ space means a Hausdorff topological vec-
tor space satisfying the first countable axiom, and a complete F ∗ space is called a F space. In Section
2, we first prove that every F ∗ space can be characterized by means of its “standard generating family
of pseudo-norms”. Then by using the standard generating family of pseudo-norms P, the concepts of
P-bounded set and γ-max-pseudo-norm-subadditive operator in F ∗ space are introduced. In Section 3,
the uniform boundedness principles for family of pointwise bounded γ-max-pseudo-norm-subadditive and
quasi-homogeneous operators in F ∗ spaces (or normed spaces) are established. In Section 4, we give some
applications concerning our results. As example, we obtain the corresponding uniform boundedness princi-
ples for family of pointwise probabilistic bounded γ-max-probabilistic subadditive and quasi-homogeneous
operators in Menger probabilistic normed spaces, and the elements of the space (lp) form a subset of the
first category in the space (c0), where p > 1.

2. Preliminaries

In this section, we first introduce the concept of “standard generating family of pseudo-norms” of a
F ∗ space, and prove that the linear topology on every F ∗ space can be determined by its standard generating
family of pseudo-norms P. Secondly, we use the standard generating family of pseudo-norms P to give the
definitions of P-bounded set and γ-max-pseudo-norm-subadditive operator in F ∗ spaces, and study their
relevant properties.

Throughout this paper, let R = (−∞,+∞), R+ = [0,+∞) and N be the set of all positive integers. In
order to give a new characteristic description of F ∗ spaces, we need the following lemma.

Lemma 2.1. ( cf.[11]) Suppose X is a linear space on a number field K (real number field or complex field),
P = {pλ | λ ∈ (0, 1]} is a family of pseudo-norms in X satisfying the following conditions:

(P-1) pλ(x) = inf0<µ<λ pµ(x) for each x ∈ X and λ ∈ (0, 1];
(P-2) pλ(kx) = |k|pλ(x) for all x ∈ X, λ ∈ (0, 1] and k ∈ K;
(P-3) for each λ ∈ (0, 1], there exists µ ∈ (0, λ], such that

pλ(x+ y) 6 pµ(x) + pµ(y) for all x, y ∈ X;

(P-4) pλ(x) = 0 for each λ ∈ (0, 1] ⇐⇒ x = θ.

Then there exists a unique topology T on X, such that (X,T ) is a Hausdorff topological vector space, and

U = {U(ε, λ) | ε > 0, λ ∈ (0, 1]}

is a T -neighborhood base of θ, where U(ε, λ) = {x ∈ X | pλ(x) < ε}.

Remark 2.2. Below, the topology T introduced in Lemma 2.1 on the linear space X, is called a topology
generated by the family of pseudo-norms P in X.

Theorem 2.3. Let (X, T ) be a F ∗ space, then there exists a family of pseudo-norms P = {pλ | λ ∈ (0, 1]} in
X satisfying conditions (P-1)−(P-4), such that the topology T generated by P is equivalent to the original
topology T on X.
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Proof. Since (X, T ) is a topological vector space satisfying the first countable axiom, there exists a balanced
T -neighborhood base {Vn | n ∈ N} of θ, with Vn+1 ⊂ Vn (n = 1, 2, · · · ). For each λ ∈ (0, 1], we define Uλ as
follows:

If λ ∈ (
1

n+ 1
,
1

n
], then Uλ = λVn (n = 1, 2, · · · ). (2.1)

Obviously, {Uλ | λ ∈ (0, 1]} is also a balanced T -neighborhood base of θ, and from (2.1) we know

(i) 0 < µ < λ 6 1 =⇒ Uµ ⊂ Uλ;
(ii) If λ, µ ∈ ( 1

n+1 ,
1
n ], then Uλ = λ

µUµ.

Assume pλ(·) is a Minkowski functional on Uλ, that is,

pλ(x) = inf{t > 0 | x ∈ tUλ}, x ∈ X. (2.2)

We now prove that P = {pλ | λ ∈ (0, 1]} is a family of pseudo-norms in X satisfying conditions (P-1)−(P-5).

(P-1) From (i) and (2.2) we know, 0 < µ < λ ⇒ pλ(x) 6 pµ(x), and so pλ(x) 6 inf0<µ<λ pµ(x). On the
other hand, for any λ ∈ (0, 1], we can assume λ ∈ ( 1

n+1 ,
1
n ] without loss of generality. Taking µ ∈ ( 1

n+1 , λ),
by (ii) and (2.2) we have

pλ(x) = inf{t > 0 | x ∈ tUλ} = inf

{
t > 0

∣∣∣∣ x ∈ tλ

µ
Uµ

}
=

µ

λ
pµ(x) >

µ

λ
inf

0<α<λ
pα(x).

Letting µ → λ, we get pλ(x) > infα∈(0,λ) pα(x). Hence pλ(x) = infµ∈(0,λ) pµ(x) and (P-1) holds.

(P-2) can be easily checked by (2.2) and the balance of Uλ.

(P-3) Note that {Uλ | λ ∈ (0, 1]} is the T -neighborhood base of θ satisfying (i), hence for each λ ∈ (0, 1],
there exists µ ∈ (0, λ] such that Uµ + Uµ ⊂ Uλ. Let pµ(x) = a, pµ(y) = b, then for any ε > 0, there exist
0 < s < a+ ε and 0 < t < b+ ε, such that x ∈ sUµ, y ∈ tUµ. Thus

x+ y ∈ sUµ + tUµ = (s+ t)

(
s

s+ t
Uµ +

t

s+ t
Uµ

)
⊂ (s+ t)(Uµ + Uµ) ⊂ (s+ t)Uλ,

which means that pλ(x+ y) 6 s+ t < a+ b+ 2ε. By the arbitrariness of ε, (P-3) holds.

(P-4) By (2.2), pλ(θ) = 0 for each λ ∈ (0, 1]. Conversely, if for each λ ∈ (0, 1], pλ(x) = 0, then from (2.2)
and the balance of Uλ, we know x ∈

∩
{Uλ | λ ∈ (0, 1]}. Since {Uλ | λ ∈ (0, 1]} is a T -neighborhood base of

θ in the Hausdorff topological vector space (X, T ), we have x = θ. Therefore, (P-4) holds.

Since the family of pseudo-norms P = {pλ | λ ∈ (0, 1]} satisfies conditions (P-1)−(P-4), then by
Lemma 2.1, there exists a topology T on X, such that (X,T ) is a Hausdorff topological vector space, and
U = {U(ε, λ) | ε > 0, λ ∈ (0, 1]} is the T -neighborhood base of θ, where

U(ε, λ) = {x ∈ X | pλ(x) < ε}. (2.3)

It is easy to show that for any ε > 0 and λ ∈ (0, 1], we have the following two inclusion relations between
sets

U(1, λ) ⊂ Uλ,
ε

2
Uλ ⊂ U(ε, λ).

Therefore, the topology T generated by P is equivalent to the original topology T on X.
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Remark 2.4. If the topology T generated by a family of pseudo-norms P on X is equivalent to the topology
T in a F ∗ space (X, T ), then we call P a generating family of pseudo-norms of T on X, or a generating
family of pseudo-norms of (X,T ) for short. If a family of pseudo-norms P = {pλ | λ ∈ (0, 1]} satisfies
conditions (P-1)−(P-4), then we call P a standard generating family of pseudo-norms in the F ∗ space X.
According to the proof of Theorem 2.3, we know that U = {U(ε, λ) | ε > 0, λ ∈ (0, 1]} is a neighborhood
base of θ in (X,T ), where U(ε, λ) is given by (2.3).

For the sake of neatness, below we will denote a F ∗ space (X,T ) by (X,P) or (X, {pλ}λ∈(0,1]), where P
or {pλ}λ∈(0,1] is a standard generating family of pseudo-norms on (X,T ). It is easy to see that if {xn}∞n=1

is a sequence in X, and x ∈ X, then

(1) xn
T→ x (n → ∞) iff for each λ ∈ (0, 1], pλ(xn − x) → 0 (n → ∞).

(2) {xn}∞n=1 is a T -Cauchy sequence iff for each ε > 0 and λ ∈ (0, 1], there exists N ∈ N, such that
pλ(xm − xn) < ε , whenever m,n > N .

Notice that the definition of a family of pseudo-norms in Theorem 2.3, we can easily obtain the following
lemma.

Lemma 2.5. If (X,P) be a locally convex F ∗ space, then there exists a standard generating family of
semi-norms {pλ}λ∈(0,1] in X, such that pλ is a semi-norm for each λ ∈ (0, 1].

Example 2.6. Let X = C(R) and the family of pseudo-norms {pλ}λ∈(0,1] be defined on X as follows

pλ(x) = sup
s∈[1− 1

λ
, 1
λ
−1]

|x(s)| for all λ ∈ (0, 1].

Then (X,P) ( or (C(R), {pλ}λ∈(0,1])) is a locally convex F ∗ space, and the family of semi-norms {pλ}λ∈(0,1]
satisfies conditions (P-1)−(P-4).

Obviously, {pλ}λ∈(0,1] is a family of semi-norms, and (P-2)−(P-4) are easy to check. For any

0 < µ < λ 6 1, we know [1 − 1
λ ,

1
λ − 1] ⊂ [1 − 1

µ ,
1
µ − 1] ⇒ pλ(x) 6 pµ(x), and so pλ(x) 6 inf0<µ<λ pµ(x).

On the other hand, note that x(s) ∈ C(R), we have pλ(x) = maxs∈[1− 1
λ
, 1
λ
−1] |x(s)|. From the continuity of

x(s), we can know that for any ε > 0, there exist δ > 0 such that

pλ(x) = max
s∈[1− 1

λ
, 1
λ
−1]

|x(s)| > max
s∈[1− 1

λ
−δ, 1

λ
−1+δ]

|x(s)| − ε > inf
0<µ<λ

pµ(x)− ε.

By the arbitrariness of ε, we have pλ(x) > inf0<µ<λ pµ(x). Thus (P-1) holds. Hence the check is completed.

From the proof of Example 2.6 we have the following example.

Example 2.7. Let X = C(R+) and the family of pseudo-norms {pλ}λ∈(0,1] be defined on X as follows

pλ(x) = sup
s∈[0, 1

λ
−1]

|x(s)| for all λ ∈ (0, 1].

Then (C(R+), {pλ}λ∈(0,1]) is a locally convex F ∗ space, and the family of semi-norms {pλ}λ∈(0,1] satisfies
conditions (P-1)−(P-4).

Now we use the standard generating family of pseudo-norms P = {pλ | λ ∈ (0, 1]} in a F ∗ space (X,P)
to give the definitions of P-bounded set.

Definition 2.8. Let (X,P) be a F ∗ space and A ⊂ X. A is said to be a P-bounded set if

sup
x∈A

pλ(x) < +∞for eachλ ∈ (0, 1].
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Proposition 2.9. Let (X,P) be a F ∗ space and A ⊂ X, then A is a P-bounded set in (X,P) iff A is a
topology bounded set (for short, bounded set) in (X,P), i.e., A can be absorbed by any T -neighborhood of
θ in (X,P).

Proof. Suppose A is a P-bounded set, i.e., for each λ ∈ (0, 1], supx∈A pλ(x) < +∞. Suppose W is a
T -neighborhood of θ in (X,P). By Remark 2.4, U = {U(ε, λ) | ε > 0, λ ∈ (0, 1]} is a neighbor-
hood base of θ, and so there exist ε0 > 0 and λ0 ∈ (0, 1], such that U(ε0, λ0) ⊂ W . Evidently, there
exists M > 0 such that supx∈A pλ0(x) < M , which implies A ⊂ U(M,λ0). Applying (P-2), we have
U(M,λ0) = (M/ε0)U(ε0, λ0). Let t0 = M/ε0, then A ⊂ t0W . Therefore, A is a bounded set.

Conversely, suppose A is a bounded set. Note that for any λ ∈ (0, 1], U(1, λ) is a T -neighborhood of θ
in (X,P), hence there exists M > 0 such that A ⊂ MU(1, λ) = U(M,λ), which means

sup
x∈A

pλ(x) 6 M < +∞.

Therefore, A is a P-bounded set.

Remark 2.10. The concept “bounded set” is well known in an ordinary topological vector spaces. As a
consequence of the above proposition, in a F ∗ space, a “bounded set” is equivalent to a “P-bounded set”.

Lemma 2.11. Let (X, ∥ · ∥) be a classical normed space. Set ∥x∥ = pλ(x), x ∈ X and λ ∈ (0, 1]. Then
(X,P) is a locally convex F ∗ space, and we call it the induced F ∗ space by the norm ∥ · ∥.

Remark 2.12. By Lemma 2.11, it is easy to see that if (X,P) be an induced F ∗ space by a norm ∥ · ∥, then
∥x∥ = p1(x) = pλ(x) for all λ ∈ (0, 1] and x ∈ X. Hence, we have
(1) A is a bounded set in (X, ∥ · ∥) iff A is a P-bounded set in (X,P);
(2) (X, ∥ · ∥) is complete iff (X,P) is complete.

Definition 2.13. ( cf. [4, 7]) Let X,Y be vector spaces. An operator T from X to Y is said to be
quasi-homogeneous if there exists a function φ : R → R satisfying limt→0 φ(t) = 0 = φ(0), such that
T (tx) = φ(t)T (x) for all t ∈ R and x ∈ X.

Remark 2.14. Say that the function φ in Definition 2.13 is the eigenfunction of a quasi-homogeneous operator
T . It is clear that , if φ : R → R is a function such that T : X → Y is quasi-homogeneous, then φ satisfies
φ(st) = φ(s)φ(t) for all s, t ∈ R. Let

C(0) =
{
φ ∈ RR : lim

t→0
φ(t) = φ(0) = 0, φ(st) = φ(s)φ(t), ∀ s, t ∈ R

}
.

Obviously, if φ is the eigenfunction of a quasi-homogeneous operator T , then φ ∈ C(0).

Below, for convenience, for each φ ∈ C(0), let

QHφ(X,Y ) =
{
T ∈ Y X : T (tx) = φ(t)T (x), ∀ t ∈ R, x ∈ X

}
.

We define a function φ0 : R → R by φ0(t) = t (t ∈ R). Obviously, φ0 ∈ C(0), and we know that if T is an
ordinary homogeneous operator from X to Y , then T ∈ QHφ0

(X,Y ) and QHφ0
(X,Y ) is just the family of

all homogeneous operators from X to Y .

Definition 2.15. Let (X,P) and (Y, P̃) be F ∗ spaces, with (Y, P̃) is locally convex.

(1) An operator T : X → Y is said to be γ-max-pseudo-norm-subadditive if there exists γ > 0, such that

p̃λ(T (x+ y)) 6 γ ·max{p̃λ(Tx), p̃λ(Ty)} (2.4)

for all x, y ∈ X and λ ∈ (0, 1];

(2) An operator T : X → Y is said to be γ-pseudo-norm-subadditive if there exists γ > 0, such that

p̃λ(T (x+ y)) 6 γ(p̃λ(Tx) + p̃λ(Ty)) (2.5)

for all x, y ∈ X and λ ∈ (0, 1]. In particular, T is pseudo-norm-subadditive if γ = 1.
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Remark 2.16. It is easy to see that an additive operator must be γ-pseudo-norm-subadditive, and a γ-
pseudo-norm-subadditive operator must be γ-max-pseudo-norm-subadditive since γ(p̃λ(Tx) + p̃λ(Ty)) 6
2γ ·max{p̃λ(Tx), p̃λ(Ty)}. But the converses are not always true. For example, we can refer to examples
in [5] or Examples 2.17-2.20 in this paper.

If X and Y be two F ∗ spaces with Y is locally convex, by γ-MSAQH(X,Y ) we denote the γ-max-
pseudo-norm-subadditive and quasi-homogeneous operators from X to Y . By γ-SAQH(X,Y ) we de-
note the γ-pseudo-norm-subadditive and quasi-homogeneous operators from X to Y . In particular, by
γ-MSAQHφ(X,Y ) and γ-SAQHφ(X,Y ) we denote the γ-max-pseudo-norm-subadditive and γ-pseudo-
norm-subadditive with φ-quasi-homogeneous operators from X to Y , respectively. Moreover, denote the
continuous operators from X to Y by C(X,Y ), the linear operators from X to Y by L(X,Y ), and the
bounded linear operators from X to Y by BL(X,Y ). It is clear that

BL(X,Y ) ⊂ γ-SAQH(X,Y ) ∩C(X,Y ) ⊂ γ-MSAQH(X,Y ) ∩C(X,Y ),

but BL(X,Y ) can be a proper subfamily of γ-SAQH(X,Y )∩C(X,Y ), and γ-SAQH(X,Y )∩C(X,Y ) can
be a proper subfamily of γ-MSAQH(X,Y ) ∩C(X,Y ).

Example 2.17. Let (X,P) = (C(R+), {pλ}λ∈(0,1]) (see Example 2.7). For 1 > α > 0, we define the
operator T : C(R+) → C(R+) as follows:

T (x)(s) =
∫ s
0 |x(u)|αdu for all x ∈ X and s > 0.

Then T (x) ∈ X for all x ∈ X and T ∈ 1-SAQH(X,X) ∩C(X,X).

In fact, it is easy to see that T (x) ∈ X for all x ∈ X, and T ∈ QH(X,X) with φ(t) = |t|α ∈ C(0) is the
eigenfunction of a quasi-homogeneous operator T . Note that (a + b)α 6 aα + bα (a, b > 0, 1 > α > 0), for
all x, y ∈ X and λ ∈ (0, 1], we

pλ(T (x+ y)) = sup
s∈[0, 1

λ
−1]

∣∣∣∣∫ s

0
|x(u) + y(u)|αdu

∣∣∣∣
6 sup

s∈[0, 1
λ
−1]

∣∣∣∣∫ s

0
(|x(u)|α + |y(u)|α)du

∣∣∣∣
6 sup

s∈[0, 1
λ
−1]

∫ s

0
|x(u)|αdu+ sup

s∈[0, 1
λ
−1]

∫ s

0
|y(u)|αdu

= pλ(Tx) + pλ(Ty),

which implies that the operator T is pseudo-norm-subadditive.
Furthermore, for any {xn}, x ∈ X, if xn → x (n → ∞) , then we have for each λ ∈ (0, 1], pλ(xn − x)→

0 (n → ∞). Note that |xn(u)|α 6 (|xn(u)− x(u)|+ |x(u)|)α 6 |xn(u)− x(u)|α + |x(u)|α for 1 > α > 0, we
can obtain ||xn(u)|α − |x(u)|α| 6 |xn(u)− x(u)|α. Then we have

pλ(Txn − Tx) = sup
s∈[0, 1

λ
−1]

∣∣∣∣∫ s

0
|xn(u)|αdu−

∫ s

0
|x(u)|αdu

∣∣∣∣
6 sup

s∈[0, 1
λ
−1]

∫ s

0
||xn(u)|α − |x(u)|α| du

6 sup
s∈[0, 1

λ
−1]

∫ s

0
|xn(u)− x(u)|α du

6 (
1

λ
− 1) · (pλ(xn − x))α,

which implies that for each λ ∈ (0, 1], pλ(Txn − Tx) → 0 (n → ∞). This shows that T ∈ C(X,X). Hence
T ∈ 1-SAQH(X,X) ∩C(X,X).
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Example 2.18. Let (X,P) = (C(R), {pλ}λ∈(0,1]) (see Example 2.6). For α > 1, we define the operator
T : C(R) → C(R) as follows:

T (x)(s) = |x(s)|α for all x ∈ X and s ∈ R.

Then T (x) ∈ X for all x ∈ X and T ∈ 2α-MSAQH(X,X) ∩C(X,X).

Obviously, T (x) ∈ X for all x ∈ X, and T ∈ QH(X,X) with φ(t) = |t|α ∈ C(0) is the eigenfunction of
a quasi-homogeneous operator T . For all x, y ∈ X and λ ∈ (0, 1], we have

pλ(T (x+ y)) = sup
s∈[1− 1

λ
, 1
λ
−1]

|x(s) + y(s)|α

6 sup
s∈[1− 1

λ
, 1
λ
−1]

(|x(s)|+ |y(s)|)α

6 sup
s∈[1− 1

λ
, 1
λ
−1]

(2αmax{|x(s)|α, |y(s)|α})

6 2αmax{pλ(Tx), pλ(Ty)},

which implies that the operator T is 2α-max-pseudo-norm-subadditive.
Furthermore, for any {xn}, x ∈ X, if xn → x (n → ∞) , then we have for each λ ∈ (0, 1], pλ(xn − x) →

0 (n → ∞). Note that {xn} ∪ {x} is a bounded set, by Definition 2.1, we know that for each λ ∈ (0, 1],
there exists Mλ > 0 such that pλ(y) 6 Mλ for all y ∈ {xn} ∪ {x}.

If α ∈ {2, 3, 4, · · · }, then we have

pλ(Txn − Tx) = sup
s∈[1− 1

λ
, 1
λ
−1]

||xn(s)|α − |x(s)|α|

= sup
s∈[1− 1

λ
, 1
λ
−1]

||xn(s)| − |x(s)|| · (|xn(s)|α−1

+|xn(s)|α−2|x(s)|+ · · ·+ |x(s)|α−1)

6 sup
s∈[1− 1

λ
, 1
λ
−1]

|xn(s)− x(s)| · (|xn(s)|α−1

+|xn(s)|α−2|x(s)|+ · · ·+ |x(s)|α−1)

6 αMα−1
λ · pλ(xn − x),

which implies that for each λ ∈ (0, 1], pλ(Txn − Tx) → 0 (n → ∞). This shows that T ∈ C(X,X).
If 1 < α ̸∈ {2, 3, 4, · · · }, then there exists m ∈ {1, 2, · · · } such that α − m ∈ (0, 1). Similarly, we can

obtain that

pλ(Txn − Tx) = sup
s∈[1− 1

λ
, 1
λ
−1]

||xn(s)|α − |x(s)|α|

= sup
s∈[1− 1

λ
, 1
λ
−1]

∣∣|xn(s)|m · (|xn(s)|α−m − |x(s)|α−m)

+|x(s)|α−m · (|xn(s)|m − |x(s)|m)
∣∣

6 sup
s∈[1− 1

λ
, 1
λ
−1]

[ |xn(s)|m ·
∣∣|xn(s)|α−m − |x(s)|α−m

∣∣
+|x(s)|α−m · ||xn(s)|m − |x(s)|m| ]

6 Mm
λ · (pλ(xn − x))α−m +mMα−1

λ · pλ(xn − x),
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which shows that for each λ ∈ (0, 1], pλ(Txn − Tx) → 0 (n → ∞); that is, T ∈ C(X,X). Hence
T ∈ 2α-MSAQH(X,X) ∩C(X,X).

Example 2.19. Let (X, ∥ ·∥) and (Y, ∥ ·∥) be two normed spaces, and f ∈ BL(X,Y ). For 0 < α < 1, define
T : X → Y by

Tf (x) =

{
f(x)

∥f(x)∥α , f(x) ̸= θ,

θ, f(x) = θ,
for all x ∈ X.

Then the family {Tf}f∈BL(X,Y ) ⊂ 1-SAQH(X,Y ) ∩C(X,Y ).

For each f ∈ BL(X,Y ), Tf ∈ QH(X,Y ) is obvious, since φ(t) ∈ C(0), where

φ(t) =

{
t/|t|α, t ̸= 0,
0, t = 0.

For all x, y ∈ X, without loss of generality, suppose that x ̸= θ and y ̸= θ. Note that f ∈ BL(X,Y ) and
0 < α < 1, we have

∥Tf (x+ y)∥ = ∥f(x+ y)∥1−α 6 (∥f(x)∥+ ∥f(y)∥)1−α

6 ∥f(x)∥1−α + ∥f(y)∥1−α = ∥Tf (x)∥+ ∥Tf (y)∥,

which implies that Tf is pseudo-norm-subadditive.
Moreover, for any {xn}, x ∈ X, if xn → x (n → ∞) , by f ∈ BL(X,Y ), we can know that f(xn) →

f(x) (n → ∞). If x ̸= θ, without loss of generality, we can suppose that xn ̸= θ for all n = 1, 2, · · · . Note
that f ∈ BL(X,Y ) and f(xn) → f(x) (n → ∞), we have

∥Tf (xn)− Tf (x)∥ =

∥∥∥∥ f(xn)

∥f(xn)∥α
− f(x)

∥f(x)∥α

∥∥∥∥
6 ∥f(xn)− f(x)∥

∥f(xn)∥α
+

∥f(x)∥ · |∥f(x)∥α − ∥f(xn)∥α|
∥f(xn)∥α · ∥f(x)∥α

→ 0 (n → ∞),

which implies that Tf ∈ C(X,Y ). If x = θ, Tf ∈ C(X,Y ) is clear. Thus {Tf}f∈BL(X,Y ) ⊂ 1-SAQH(X,Y )∩
C(X,Y ).

Example 2.20. Let X = R. Define T : R → R by T (x) = x2 for all x ∈ R.Then T ∈ 2-SAQHφ(X,X) ∩
C(X,X), where φ(t) = t2 ∈ C(0).

3. Main results

For the sake of brevity, before we state the main results we introduce the following definitions.

Definition 3.1. Let (X,P) and (Y, P̃) be F ∗ spaces. A family {Tβ}β∈Λ of quasi-homogeneous operators
from X to Y is said to be uniformly quasi-homogeneous if limt→0 φβ(t) = 0 uniformly for β ∈ Λ, where φβ

is the eigenfunction of Tβ .

Definition 3.2. Let (X,P) and (Y, P̃) be F ∗ spaces. A family {Tβ}β∈Λ of γ-max-pseudo-norm-subadditive
(or γ-pseudo-norm-subadditive) operators from X to Y is said to be uniformly γ-bounded if supβ∈Λ{γβ} <
+∞.

Let δ > 0 and ω > 1 are two constants, then we denote by Cδ,ω(0) the set

Cδ,ω(0) = {φ ∈ C(0) : δ 6 φ(t) 6 tω for all t ∈ [1,+∞)} .
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Theorem 3.3. Let (X,P) be a F ∗ space of second category and let (Y, P̃) be a locally convex F ∗ space.
Assume that {Tβ}β∈Λ ⊂ γ-MSAQH(X,Y ) ∩C(X,Y ) satisfying:

(a) {Tβ}β∈Λ is uniformly quasi-homogeneous, and φβ ∈ Cδ,ω(0) for each β ∈ Λ, where φβ is the eigenfunc-
tion of Tβ;

(b) {Tβ}β∈Λ is uniformly γ-bounded;

(c) For each x ∈ X, the set {Tβ(x) : β ∈ Λ} is P̃-bounded in Y .

Then
∪

β∈Λ Tβ(A) is a P̃-bounded set in Y for each P-bounded set A in X.

To prove Theorem 3.3, we need the following some lemmas:

Lemma 3.4. Let (X,P) be a locally convex F ∗ space. Then for each λ ∈ (0, 1], Vλ = {x ∈ X : pλ(x) 6 λ}
is a closed, convex and absorbing set.

Proof. Let x, y ∈ Vλ and t ∈ [0, 1]. By Lemma 2.1 and Lemma 2.5, we have

pλ(tx+ (1− t)y) 6 pλ(tx) + pλ((1− t)y) 6 tλ+ (1− t)λ = λ,

and so tx+ (1− t)y ∈ Vλ. Hence Vλ is convex.

Let {xn} ⊂ Vλ and xn
T→ x ∈ X (n → ∞). Then we have

pλ(x) 6 pλ(x− xn) + pλ(xn) 6 pλ(x− xn) + λ.

Letting n → ∞, we obtain pλ(x) 6 λ. So Vλ is closed. By Lemma 2.1 we know that Vλ is a neighborhood
of θ in (X,P). Therefore, Vλ is absorbing.

Lemma 3.5. (cf.[9, 12]) Let φ ∈ C(0). If there exists a non-zero and continuous operator T : X → Y such
that T ∈ QHφ(X,Y ), then φ has the following properties:
(1) φ(1) = 1 = |φ(−1)|;
(2) φ(t) is continuous on [0,+∞);
(3) φ(t) > 0 for all t > 0;
(4) φ(1/t) = 1/φ(t) for all t > 0.

Proof. of Theorem 3.3. For each λ ∈ (0, 1], we now denote by

Vλ = {y ∈ Y : p̃λ(y) 6 1} and Wλ =
∩
β∈Λ

T−1
β (Vλ).

We shall first prove that Wλ is a closed and absorbing set for each λ ∈ (0, 1].
By Lemma 3.4 , we know that Vλ is a closed set in Y . Note that Tβ is continuous, we have T−1

β (Vλ) is a
closed set in X, and so Wλ is a closed set in X.

Moreover, since Tβ is quasi-homogeneous, Tβ(θ) = Tβ(0 · x) = φβ(0)Tβ(x) = θ̃ ∈ Vλ, and so θ ∈ Wλ.

Note that condition (c), {Tβ(x) : β ∈ Λ} is a P̃-bounded set in Y for each x ∈ X. Hence, from Definition
2.8, we know that for each λ ∈ (0, 1] there exists Mλ > 0 such that p̃λ(Tβ(x)) 6 Mλ for all β ∈ Λ. Further,
applying (3) of Lemma 3.5, we have φβ(t) > 0 for each β ∈ Λ and t > 0. By condition (a), limt→0 φβ(t) = 0
uniformly for β ∈ Λ. Hence for the above Mλ > 0 there exists mλ ∈ N such that 0 < φβ(1/mλ) 6 1/Mλ

for all β ∈ Λ. And then it is easy to obtain that

p̃λ(Tβ(
1

mλ
x)) = p̃λ(φβ(

1

mλ
)Tβ(x)) = φβ(

1

mλ
)p̃λ(Tβ(x))

6 φβ(
1

mλ
)Mλ 6 1,

which implies that 1
mλ

x ∈
∩

β∈Λ T−1
β (Vλ) = Wλ, i.e., x ∈ mλWλ. These show that Wλ is a absorbing set for

each λ ∈ (0, 1].
In the next step we shall estimate the upper bounded of {p̃λ(Tβ(x)) : β ∈ Λ} for every x ∈ X.
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Note that absorptivity of Wλ, we have X =
∪∞

k=1 kWλ. By (X,P) is of second category , Wλ is closed
and {U(λ, λ) : λ ∈ (0, 1]} is also a neighborhood base of θ in (X,P), it is not difficult to see that there
exist k0 ∈ N, x0 ∈ X and λ0 ∈ (0, 1] such that

x0 + U(λ0, λ0) ⊂ k0Wλ = k0Wλ.

For any x ∈ X and ε > 0, taking z = x/(pλ0(x) + ε). It is clear that

x1 = x0 +
λ0z

2
∈ x0 + U(λ0, λ0) ⊂ k0Wλ,

x2 = x0 −
λ0z

2
∈ x0 + U(λ0, λ0) ⊂ k0Wλ,

and so x1/k0, x2/k0 ∈ Wλ ⊂ T−1
β (Vλ). This shows that p̃λ(Tβ(x1/k0)) 6 1 and p̃λ(Tβ(x2/k0)) 6 1. Note

that Tβ is γβ-max-pseudo-norm-subadditve, applying (1) of Lemma 3.5, it is not difficult to obtain that

p̃λ(Tβ(
x1 − x2

k0
)) 6 γβ ·max{p̃λ(Tβ(

x1
k0

)), p̃λ(Tβ(−
x2
k0

))} 6 γβ . (3.1)

Obviously x1−x2
k0

= λ0x
k0(pλ0 (x)+ε) . By using (4) of Lemma 3.5, from (3.1) we can obtain that

p̃λ(Tβ(x)) 6 γβφβ(k0(pλ0(x) + ε)/λ0) for all β ∈ Λ.

From (2) of Lemma 3.5, we know that φβ is continuous on [0,+∞). Hence, letting ε → 0 in the above
inequality, we can obtain that

p̃λ(Tβ(x)) 6 γβφβ(k0pλ0(x)/λ0) for all β ∈ Λ.

Note that condition (b), {Tβ}β∈Λ is uniformly γ-bounded. Hence there exists M > 0 such that γβ 6 M for
all β ∈ Λ. We have

p̃λ(Tβ(x)) 6 Mφβ(k0pλ0(x)/λ0) for all β ∈ Λ. (3.2)

Indeed, for (3.2) we have three cases to consider:

Case 1: pλ0(x) = 0. By Definition 2.13, we have φβ(0) = 0. Then it follows from (3.2) that supβ∈Λ p̃λ(Tβ(x)) =
0.

Case 2: 0 < pλ0(x) 6 λ0
k0
. This implies that λ0

k0pλ0 (x)
> 1. Note that φβ ∈ Cδ,w(0), we have φβ

(
λ0

k0pλ0 (x)

)
> δ

for all β ∈ Λ. Applying (4) of Lemma 3.5, we can obtain that φβ

(
k0pλ0 (x)

λ0

)
6 1

δ for all β ∈ Λ.

So, from (3.2) it is not difficult to see that supβ∈Λ p̃λ(Tβ(x)) 6 M/δ.

Case 3: pλ0(x) >
λ0
k0
. This shows that

k0pλ0 (x)

λ0
> 1. Since φβ ∈ Cδ,w(0), we can obtain that

φβ

(
k0pλ0(x)

λ0

)
6

(
k0pλ0(x)

λ0

)w

,

and so from (3.2) we have

p̃λ(Tβ(x)) 6 M

(
k0pλ0(x)

λ0

)w

for all β ∈ Λ.

In view of the above discussions, we can claim that

sup
β∈Λ

p̃λ(Tβ(x)) 6 max

{
M

δ
,M

(
k0pλ0(x)

λ0

)w}
. (3.3)
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Finally, We shall prove that sup
x∈A

sup
β∈Λ

p̃λ(Tβ(x)) < +∞ for each P-bounded set A in X. Note that A is

a P-bounded set in X, by Definition 2.8 we can find that for the above λ0 there exists M0 = M0(λ0) > 0
such that pλ0(x) 6 M0 for all x ∈ A. Thus, from (3.3) we have

sup
x∈A

sup
β∈Λ

p̃λ(Tβ(x)) 6 max

{
M

δ
,M

(
k0M0

λ0

)w}
< +∞

for each λ ∈ (0, 1]. This implies that
∪

β∈Λ Tβ(A) is a P̃-bounded set in Y . This makes end to the proof.

Lemma 3.6. (cf. [14, 16]) Each F space (i.e. complete F ∗ space) (X,P) is of the second category.

Form Lemma 3.6 we can immediately deduce the following theorem.

Theorem 3.7. If in Theorem 3.3 we replace the F ∗ space of second category (X,P) by the F space (X,P)
, then the conclusion of Theorem 3.3 remains true.

Note that {Tβ}β∈Λ ⊂ SAQH(X,Y ) ⊂ γ-SAQH(X,Y ) ⊂ γ-MSAQH(X,Y ), by Lemma 3.6, it is easy
to obtain the following corollaries.

Corollary 3.8. If in Theorem 3.3 we replace {Tβ}β∈Λ ⊂ γ-MSAQH(X,Y ) by {Tβ}β∈Λ ⊂ γ-SAQH(X,Y ),
then the conclusion of Theorem 3.3 remains true.

Corollary 3.9. Let (X,P) be a F ∗ space of second category (or a F space) and let (Y, P̃) be a locally
convex F ∗ space. Assume that {Tβ}β∈Λ ⊂ SAQH(X,Y ) ∩ C(X,Y ), with {Tβ}β∈Λ is uniformly quasi-
homogeneous, and φβ ∈ Cδ,ω(0) for each β ∈ Λ, where φβ is the eigenfunction of Tβ. If for each x ∈ X, the

set {Tβ(x) : β ∈ Λ} is P̃-bounded in Y , then the conclusion of Theorem 3.3 remains true.

Proof. Since {Tβ}β∈Λ ⊂ SAQH(X,Y ), {Tβ}β∈Λ is uniformly γ-bounded by Definition 3.2. This shows that
condition (b) in Theorem 3.3 is satisfied. In addition, by the assumption, we know that conditions (a) and
(c) in Theorem 3.3 are also satisfied. Therefore the conclusion follows from Theorem 3.3 immediately.

Theorem 3.10. Let (X,P) be a F ∗ space of second category (or a F space) and let (Y, P̃) be a locally
convex F ∗ space. Assume that T : X → Y be a γ-max-pseudo-norm-subadditive, quasi-homogeneous and
continuous operator. Then T is a bounded operator, i.e., T (A) is a P̃-bounded set in Y for each P-bounded
set A in X.

Proof. Obviously, {T (x)} is a P̃-bounded set in Y for each x ∈ X. As in the proof of Theorem 3.3, we can
prove that there exist k0 ∈ N and λ0 ∈ (0, 1] such that

p̃λ(T (x)) 6 γφ(k0pλ0(x)/λ0) for each λ ∈ (0, 1]. (3.4)

Note that A is a P-bounded set in X, by Definition 2.8 we know that for the above λ0 there exists
M0 = M0(λ0) > 0 such that pλ0(x) 6 M0 for all x ∈ A. Thus, from (3.4) and (2) of Lemma 3.5 we have

sup
x∈A

p̃λ(T (x)) 6 sup
x∈A

γφ(k0pλ0(x)/λ0) 6 γ max
t∈[0, k0M0

λ0
]

{φ(t)} < +∞

for each λ ∈ (0, 1]. This implies that T (A) is a P̃-bounded set in Y .

Applying Theorem 3.3 (or Theorem (3.7)) , it follows from Lemma 2.11 and Remark 2.12 that:

Theorem 3.11. Let (X, ∥·∥X) be a normed space of second category (or a Banach space) and let (Y, ∥·∥Y ) be
a normed space. Let {Tβ}β∈Λ ⊂ γ-MSAQH(X,Y ) ∩C(X,Y ), {Tβ}β∈Λ is uniformly γ-bounded, uniformly
quasi-homogeneous and φβ ∈ Cδ,ω(0) for each β ∈ Λ, where φβ is the eigenfunction of Tβ. If for each x ∈ X,
the set {Tβ(x) : β ∈ Λ} is bounded in Y , then

∪
β∈Λ Tβ(A) is bounded in Y for each bounded set A in X.
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Remark 3.12. Note that SAQH(X,Y ) ⊂ γ-SAQH(X,Y ) ⊂ γ-MSAQH(X,Y ), we easily obtain Theorem
3.3 in [12]. In addition, it is easy to see that Theorem 3.11 is the extension of classical uniform boundedness
principle on normed spaces.

Theorem 3.13. Let (X, ∥ · ∥X) be a normed space of second category (or a Banach space) and let (Y, ∥ · ∥Y )
be a normed space. Assume that {Tβ}β∈Λ ⊂ γ-MSAQH(X,Y ) ∩C(X,Y ) satisfying:

(a) φβ ∈ Cδ,ω(0) for each β ∈ Λ, where φβ is the eigenfunction of Tβ;

(b) {Tβ}β∈Λ is uniformly γ-bounded;

(c) There exists some subset E of second category in X such that for each x ∈ E, the set {Tβ(x) : β ∈ Λ}
is bounded in Y .

Then
∪

β∈Λ Tβ(A) is bounded in Y for each bounded set A in X.

Proof. Obviously, for each bounded set A in X, there exists r > 0 such that

A ⊂ B(θ, r) = {x ∈ X : ∥x∥X < r}.

Thus we need only to prove that supβ∈Λ supx∈B(θ,r){∥Tβ(x)∥Y } < +∞ for each r > 0.
Let p(x) = supβ∈Λ{∥Tβ(x)∥Y } for all x ∈ X, where p(x) = +∞ is admissible. For each k ∈ N, set

Wk = {x : p(x) < k, x ∈ E}.

Note that condition (c), by Definition 2.8 and Remark 2.12, we have E =
∪∞

k=1Wk. By E is of second
category, we can see that there exist k0 ∈ N, δ0 > 0 and x0 ∈ Wk0 such that

B(x0, δ0) = {x ∈ X : ∥x− x0∥X < δ0} ⊂ W k0 .

Below, we shall prove that p(x) is upper bounded on B(θ, δ0). In fact, for each β ∈ Λ and x ∈ B(θ, δ0), by
Tβ ∈ C(X,Y ), we have that for a given ε0 > 0 there exists δ(x,β) > 0 such that

∥Tβ(x)∥Y 6 ε0 + ∥Tβ(y)∥Y for all y ∈ B(x, δ(x,β)). (3.5)

It is clear that x0 + x ∈ B(x0, δ0). Since Wk0 is dense in B(x0, δ0), there exists a y0 ∈ Wk0 such that
∥y0 − x0 − x∥X = ∥y0 − (x0 + x)∥X < δ(x,β). By {Tβ}β∈Λ is uniformly γ-bounded, we know that there exists
a M > 0 such that supβ∈Λ{γβ} < M . Note that Tβ ∈ γ-MSAQH(X,Y ), from (1) of Lemma 3.5 and (3.5),
we have

∥Tβ(x)∥Y 6 ε0 + ∥Tβ(y0 − x0)∥Y 6 ε0 + γβ max{∥Tβ(y0)∥Y , ∥Tβ(−x0)∥Y }
= ε0 + γβ max{∥Tβ(y0)∥Y , |φβ(−1)| · ∥Tβ(x0)∥Y },

i,e.,

∥Tβ(x)∥Y 6 ε0 +Mk0. (3.6)

From (3.6) we can see that ε0 + Mk0 is independent of β ∈ Λ and x ∈ B(θ, δ0). This shows that p(x) is
upper bounded on B(θ, δ0).

Moreover, we know that for each r > 0, there exists a tr > 0 such that B(θ, r) ⊂ trB(θ, δ0). Thus for
each x ∈ B(θ, r), there exists a x ∈ B(θ, δ0) such that x = trx. Note that φβ ∈ Cδ,ω(0), by using (4) of
Lemma 3.5 and 3.6, we can obtain that for each x ∈ B(θ, r) such that

p(x) = sup
β∈Λ

∥Tβ(x)∥Y = sup
β∈Λ

∥Tβ(trx)∥Y = sup
β∈Λ

|φβ(tr)| · ∥Tβ(x)∥Y

6 (ε0 +Mk0) sup
β∈Λ

|φβ(tr)|

6
{

(ε0 +Mk0) · tωr , if tr ∈ [1,+∞),
(ε0 +Mk0) · 1

δ , if tr ∈ (0, 1)

< +∞,

which implies that supβ∈Λ supx∈B(θ,r){∥Tβ(x)∥Y } < +∞ for each r > 0. Hence the conclusion of theorem
holds.
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4. Some applications

In this section, we shall give some applications concerning our results. As example, first we shall apply
Theorem 3.3 to establish uniform boundedness principles for family of pointwise probabilistic bounded γ-
max-probabilistic subadditive and quasi-homogeneous operators in Menger probabilistic normed spaces. To
complete the results, we need state some basic concepts and results which will be used in Menger probabilistic
normed spaces (cf. [3] or [13] ).

We denote by D the set of all (left-continuous) distribution functions F satisfying supt∈R F (t) = 1 and
inft∈R F (t) = 0. D+ = {F ∈ D : F (0) = 0} and H is a specific distribution function defined by

H(t) =

{
0 if t 6 0,
1 if t > 0.

A function ∆ : [0, 1] × [0, 1] → [0, 1] is called a triangular norm (for short, a t-norm) if the following
conditions are satisfied:
for any a, b, c, d ∈ [0, 1],∆(a, 1) = a; ∆(a, b) = ∆(b, a); a > b, c > d ⇒ ∆(a, c) > ∆(b, d);
∆(a,∆(b, c)) = ∆(∆(a, b), c).

Definition 4.1. (cf.[3, 13]) A triplet (X,F ,∆) is a Menger probabilistic normed space (for short, Menger
PN-space) if X is a real linear space, ∆ is a t-norm and F : X → D+ is a mapping satisfying the following
conditions (in the sequel, F (x) is denoted by Fx):

(PN-1) Fx(t) = H(t) for all t ∈ R iff x = θ;

(PN-2) Fαx(t) = Fx(t/|α|), for α ∈ R with α ̸= 0;

(PN-3) Fx+y(s+ t) > ∆(Fx(s), Fy(t)) for all x, y ∈ X and s, t > 0.

Lemma 4.2. ( cf.[3, 13]) Let (X,F ,∆) be a Menger PN-space, ∆ satisfies the condition:

sup
0<t<1

∆(t, t) = 1, (4.1)

then (X,F ,∆) is a Hausdorff topological vector space in the topology T induced by the neighborhood base
of θ

U = {N(ε, λ) : ε > 0, λ ∈ (0, 1]},

where

N(ε, λ) = {x ∈ X : Fx(ε) > 1− λ}. (4.2)

Remark 4.3. The above topology T on (X,F ,∆) is called its (ε, λ)-topology. In addition, it is not difficult
to see that {U(1/n, 1/n) : n ∈ N} is also a neighborhood base of θ in (X,F ,∆). Hence (X,F ,∆) satisfies
the first countability axiom.

In the following, we always assume that a t-norm ∆ satisfies condition (4.1), unless otherwise stated.

Definition 4.4. (cf.[3]) Let (X,F ,∆) be a Menger PN-space and A ⊂ X. A is said to be a probabilistic
bounded set if supt>0 infx∈A Fx(t) = 1.

Lemma 4.5. Let (X,F ,∆) be a Menger PN-space. Define a functional pλ(·) on X by

pλ(x) = inf{t > 0 | x ∈ N(t, λ)}, (4.3)

for each λ ∈ (0, 1] and x ∈ X. Then (X,P) is a F ∗ space, called the induced F ∗ space by Menger PN-space
(X,F ,∆), and pλ(·) is called the induced pseudo-norm by F , where P = {pλ | λ ∈ (0, 1]} is its standard
generating family of pseudo-norms satisfying conditions (P-1)- (P-4).



M. L. Song, J. Nonlinear Sci. Appl. 8 (2015), 540–556 553

Proof. Firstly, according to Lemma 4.2 and the fact that {N(1/n, 1/n) | n ∈ N} is also a T -neighborhood
base of θ, (X,F ,∆) is a F ∗ space. By (4.3) and the non-increasing and left continuity of the distribution
function Fx(·), we have

pλ(x) < t ⇐⇒ x ∈ N(t, λ) ⇐⇒ Fx(t) > 1− λ. (4.4)

We now prove that P satisfies conditions (P-1)−(P-4).

(P-1) Obviously, 0 < µ < λ ⇒ N(t, µ) ⊂ N(t, λ) (∀ t > 0) ⇒ pλ(x) 6 pµ(x). Hence
pλ(x) 6 inf0<µ<λ pµ(x). On the other hand, by (4.3), for any ε > 0, there exists 0 < t < pλ(x)+ ε such that
x ∈ N(t, λ), i.e., Fx(t) > 1−λ. Evidently, there exists µ0 ∈ (0, λ) such that Fx(t) > 1−µ0, i.e., x ∈ N(t, µ0).
By (4.4), we have pµ0(x) < t < pλ(x)+ε. By the arbitrariness of ε, inf0<µ<λ pµ(x) 6 pµ0(x) 6 pλ(x). There-
fore pλ(x) = inf0<µ<λ pµ(x), and (P-1) is satisfied.

(P-2) For any k ∈ K with k ̸= 0, note that

pλ(kx) < t ⇐⇒ kx ∈ N(t, λ) ⇐⇒ Fkx(t) = Fx

( t

|k|
)
> 1− λ

⇐⇒ x ∈ N
( t

|k|
, λ

)
⇐⇒ pλ(x) <

t

|k|
⇐⇒ |k|pλ(x) < t.

Thus pλ(kx) = |k|pλ(x), which also holds for k = 0. Therefore, (P-2) holds.

(P-3) Since sup0<t<1∆(t, t) = 1, for each λ ∈ (0, 1], there exists µ ∈ (0, λ) such that ∆(1−µ, 1−µ) > 1−λ.
This implies that for any t, s > 0, N(t, µ) +N(s, µ) ⊂ N(t+ s, λ). Then by (4.4), we have
pλ(x+ y) ≤ pµ(x) + pµ(y), and (P-3) is satisfied.

(P-4) Since (X,F ,∆) is a Hausdorff topological vector space with U = {N(ε, λ) | ε > 0, λ ∈ (0, 1]} a
T -neighborhood base of θ, we have

∩
{N(ε, λ) | ε > 0, λ ∈ (0, 1]} = {θ}. Note that

pλ(x) = 0 (∀λ ∈ (0, 1]) ⇐⇒ x ∈ N(ε, λ) (∀ ε > 0, λ ∈ (0, 1])

⇐⇒ x ∈
∩

{N(ε, λ) | ε > 0, λ ∈ (0, 1]}.

Therefore, (P-4) holds. This shows that P = {pλ | λ ∈ (0, 1]} is the standard generating family of pseudo-
norms in X.

Remark 4.6. If we assume ∆ = min in Lemma 4.5, then (X,F ,∆) is a locally convex F ∗ space with respect
to its (ε, λ)-topology T , and P = {pλ | λ ∈ (0, 1]} defined by (4.3) is its family of standard generating
semi-norms satisfying conditions (P-1)−(P-4). In fact, it suffices to show that for any ε > 0, λ ∈ (0, 1],
N(ε, λ) is convex set in X. Taking any x, y ∈ N(ε, λ) and t ∈ [0, 1], by (4.2) in Lemma 4.2 and (PN-2),
(PN-3) in Definition 4.1, we have

Ftx+(1+t)y(ε) > min{Ftx(tε), F(1−t)y((1− t)ε)} = min{Fx(ε), Fy(ε)} > 1− λ,

which implies tx+ (1 + t)y ∈ N(ε, λ), i.e., N(ε, λ) is a convex set in X.

Lemma 4.7. Let (X,F ,∆) be a Menger PN-space. Let P = {pλ | λ ∈ (0, 1]} be its standard generating
family of pseudo-norms, where pλ(·) is defined by (4.3), and A ⊂ X. Then A is a probabilistic bounded set
iff A is a P-bounded set.

Proof. Denote D(A) = supt>0 infx∈A Fx(t). Suppose A is a probabilistic bounded set, i.e., D(A) = 1, then
for each λ ∈ (0, 1], there exists t0 > 0 such that Fx(t0) > 1 − λ for all x ∈ A. Then from (4.4) we get
supx∈A pλ(x) 6 t0 < +∞, i.e., A is a P-bounded set.

Conversely, suppose A is a P-bounded set, i.e., for each λ ∈ (0, 1], there exists t0 = t0(λ) > 0 such that
pλ(x) < t0 (∀x ∈ A). According to (4.4), D(A) > infx∈A Fx(t0) ≥ 1−λ. By the randomness of λ, D(A) = 1.
Therefore, A is a probabilistic bounded set.
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Definition 4.8. Let (X,F ,∆1) and (Y, F̃ ,∆2) be Menger PN-spaces.

(1) An operator from X to Y is said to be γ-max-probabilistic subadditive if there exists γ > 0 such that

F̃T (x+y)(γmax{s, t}) > ∆2{F̃Tx(s), F̃Ty(t)} for all x, y ∈ X and s, t > 0; (4.5)

(2) An operator from X to Y is said to be probabilistic subadditive if

F̃T (x+y)(s+ t) > ∆2{F̃Tx(s), F̃Ty(t)} for all x, y ∈ X and s, t > 0. (4.6)

Lemma 4.9. Let (X,F ,∆1) and (Y, F̃ ,∆2) be Menger PN-spaces, and let (X,P) and (Y, P̃) be the
induced F ∗ spaces by (X,F ,∆1) and (Y, F̃ ,∆2) respectively.

(1) If T : X → Y is a γ-max-probabilistic subadditive operator and ∆2 = min, then it is also γ-max-pseudo-
norm-subadditive.

(2) If T : X → Y is a probabilistic subadditive operator and ∆2 = min, then it is also pseudo-norm-
subadditive.

Proof. (1) Suppose that p̃λ(Tx) = a, p̃λ(Ty) = b for any x, y ∈ X and λ ∈ (0, 1]. It follows from (4.3) that

F̃Tx(a+ ε) > 1− λ, F̃Ty(b+ ε) > 1− λ

for all ε > 0. Since T is a γ-max-probabilistic subadditive and ∆2 = min, we have

F̃T (x+y)(γmax{a+ ε, b+ ε}) > min
(
F̃Tx(a+ ε), F̃Ty(b+ ε)

)
> 1− λ,

and so

p̃λ(T (x+ y)) < γmax{a+ ε, b+ ε}

Hence, by the arbitrariness of ε, we have

p̃λ(T (x+ y)) 6 γmax{p̃λ(Tx), p̃λ(Ty)}

for any x, y ∈ X and λ ∈ (0, 1], i.e., T is γ-max-pseudo-norm-subadditive.

(2) In a similar way, we can show that conclusion (2) holds.

Theorem 4.10. Let (X,F ,∆1) be a complete Menger PN-space and let (Y, F̃ ,∆2) be a Menger PN-space
with ∆2 = min. Assume that {Tβ ∈ Y X : β ∈ Λ} be a family of γ-max-probabilistic subadditive and
continuous operators satisfying :

(a) {Tβ}β∈Λ is uniformly quasi-homogeneous, and φβ ∈ Cδ,ω(0) for each β ∈ Λ, where φβ is the eigenfunction
of Tβ;

(b) {Tβ}β∈Λ is uniformly γ-bounded, i.e., supβ∈Λ{γβ} < +∞;

(c) For each x ∈ X, {Tβ(x) : β ∈ Λ} is probabilistic bounded in Y .

Then
∪

β∈Λ Tβ(A) is probabilistic bounded in Y for each probabilistic bounded set A in X.

Proof. Suppose that (X,P) and (Y, P̃) are the induced F ∗ spaces by (X,F ,∆1) and (Y, F̃ ,∆2) respec-
tively. By (X,F ,∆1) is complete, we can prove that (X,P) is also complete, i.e., (X,P) is a F space. By
Remark 4.6, ∆2 = min implies that (Y, P̃) is a locally convex F ∗ space. By Lemma 4.7 and (1) of Lemma
4.9, we can see that {Tβ}β∈Λ in this theorem also satisfies that {Tβ}β∈Λ ⊂ γ-MSAQH(X,Y )∩C(X,Y ) and
conditions (a), (b) and (c) in Theorem 3.3. Therefore from Theorem 3.3 we can prove that the conclusion
holds.
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As the proof of Theorem 4.10, we can prove the following corollary.

Corollary 4.11. Let (X,F ,∆1) and (Y, F̃ ,∆2) be Menger PN-spaces, with (X,F ,∆1) is complete and
∆2 = min. Assume that {Tβ ∈ Y X : β ∈ Λ} be a family of probabilistic subadditive and continuous
operators, with {Tβ}β∈Λ is uniformly quasi-homogeneous, and φβ ∈ Cδ,ω(0) for each β ∈ Λ, where φβ is the
eigenfunction of Tβ. If for each x ∈ X, {Tβ(x) : β ∈ Λ} is probabilistic bounded in Y , then

∪
β∈Λ Tβ(A) is

probabilistic bounded in Y for each probabilistic bounded set A in X.

Remark 4.12. It is easy to see that the probabilistic subadditive operators of Theorem 4.1 in [12] (and the
linear operators of Theorem 2 in [17]) are necessarily γ-max-probabilistic subadditive operators in this paper.
Therefore, the conclusions in this paper unite and generalize the corresponding conclusions in [12, 17].

Finally, we shall give an application of Theorem 3.13 in normed spaces.
Let (c0) = {{ξn} : ξn → 0 (n → ∞), ξn ∈ R, n ∈ N}. Define the norm ∥ · ∥c by ∥x∥c = supn∈N |ξn| for all

x ∈ (c0), then ((c0), ∥ · ∥c) is a complete normed space.

For p > 1, Let (lp) = {{ξn} :
∞∑
n=1

|ξn|p < +∞, ξn ∈ R, n ∈ N}. Define the norm ∥ · ∥l by ∥x∥l = (
∞∑
n=1

|ξn|p)
1
p

for all x ∈ (lp), then ((lp), ∥ · ∥l) is a complete normed space. It is clear that (lp) ⊂ (c0).

Theorem 4.13. For each p > 1, the elements of the space (lp) form a subset of the first category in the
space (c0). Further, it constitutes by itself a normed subspace of the first category in the norm of the space
(c0).

Proof. Obviously, ((c0), ∥ · ∥c) is a Banach space and ((lp), ∥ · ∥l) is a normed space. For x ∈ (c0),m ∈ N,

define the operator Tm as follows Tm(x) = (|ξ1|, · · · , |ξm|, 0, · · · ). We have Tm(x) ∈ (lp), since
∞∑
n=1

|ξn|p =

m∑
n=1

|ξn|p < +∞. This shows that we can define the family of operators {Tm}m∈N from ((c0), ∥ · ∥c) to

((lp), ∥ · ∥l).
It is clear that {Tm}m∈N ⊂ QHφ((c0), (l

p)), where φ(t) = |t| ∈ C1,1(0).

For all x = {ξn}, y = {ηn} ∈ (c0), by (a+ b)p 6 2p(ap + bp) (a, b > 0, p > 1), we have

∥Tm(x+ y)∥l = (

m∑
n=1

|ξn + ηn|p)
1
p 6 (

m∑
n=1

2p(|ξn|p + |ηn|p))
1
p

= 2(

m∑
n=1

|ξn|p +
m∑

n=1

|ηn|p)
1
p 6 2((

m∑
n=1

|ξn|p)
1
p + (

m∑
n=1

|ηn|p)
1
p )

6 4max{∥Tm(x)∥l, ∥Tm(y)∥l},

which implies that {Tm}m∈N ⊂ γ-MSA((c0), (l
p)) with uniformly γ-bounded.

Moreover, for any {xn}, x ∈ (c0), if xk → x(k → ∞), then ∥xk − x∥c = supn∈N |ξkn − ξn| → 0(k → ∞).
Then we have

∥Tm(xk)− Tm(x)∥l = (

m∑
n=1

|(|ξkn| − |ξn|)|p)
1
p 6 (

m∑
n=1

|ξkn − ξn|p)
1
p

6 (m)
1
p ∥xk − x∥

1
p
c → 0(k → ∞),

which shows that {Tm}m∈N ⊂ C((c0), (l
p)). Furthermore, for each x ∈ (lp), we have

sup
inN

{∥Tm(x)∥l} = sup
m∈N

{(
m∑

n=1

|ξn|p)
1
p } = (

∞∑
n=1

|ξn|p)
1
p < +∞.

Now we can claim that for each p > 1, the elements of the space (lp) form a subset of the first category
in the space (c0). In fact, suppose that the elements of the space (lp) form a subset of the second category
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in the space (c0), from Theorem 3.13, we can know that the set
∪

m∈N Tm(B(θ, 2)) is bounded in ((lp), ∥ ·∥l),
where B(θ, 2) ⊂ (c0), i.e.,

sup
m∈N

sup
x∈B(θ,2)

{∥Tm(x)∥l} < +∞. (4.7)

If we take x = (1, 12 , · · · ,
1
n , · · · ) ∈ B(θ, 2) ⊂ (c0), then it is clear that,

sup
m∈N

{∥Tm(x)∥l} =
∞∑
n=1

1

n
= +∞. (4.8)

This is a contradiction with (4.7).
In addition, note that the elements of the space (lp) is dense in the norm of the space (c0), we can know

that the conclusion of theorem holds.
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