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Abstract

In this paper, we obtain the general solution and investigate the generalized Hyers-Ulam stability of a
reciprocal type functional equation in several variables of the form

[1i2s (21 + ;) [1 r(e

> io (TGt jp (@1 + 25) >iso (@) [H;’n:2,j7éi T(xj)] +(m — 1) [[[2y r(:)

where m is a positive integer with m > 3. (©2014 All rights reserved.
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1. Introduction

About seventy years ago, Ulam [I3] raised the well known stability problem of functional equations. In
the next year, Ulam’s problem was partially answered by Hyers [4] in Banach spaces. T. Aoki [I] generalized
Hyers’ theorem for additive mappings in the year 1950. In the year 1978, a generalized version of the theorem
of Hyers for approximately linear mappings was given by Th.M. Rassias [12]. During 1982-1989, J.M. Rassias
(B, [6], [7]) treated the Ulam-Gavruta-Rassias stability on linear and non-linear mappings and generalized
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Hyers’ result. In 1994, a further generalization of the Th.M. Rassias’ theorem was obtained by P. Gavruta
[3], who replaced the bound 6 (||z||” + ||y||”) by a general control function ¢(z,y).
In the year 2010, K. Ravi and B.V. Senthil Kumar [§] investigated the generalized Hyers-Ulam stability
for the reciprocal functional equation
r(z)r(y)

— (1.1)
r(z) +r(y)
where 7 : X — Y is a mapping on the spaces of non-zero real numbers. The reciprocal function r(z) = ¢ is

a solution of the functional equation (|1.1)).
Later, K. Ravi, J.M. Rassias and B.V. Senthil Kumar [10] introduced the reciprocal difference functional

r(r+y) =

equation
T+y 7(z)r(y)
_ = A 1.2
(52) et = 42
and the reciprocal adjoint functional equation
Tty 3r(z)r(y)
= 1.3
() et = (9

and investigated the generalized Hyers-Ulam stability for the above two functional equations (1.2 and (|1.3)).
Recently, K. Ravi, J.M. Rassias and B.V. Senthil Kumar [9] discussed the generalized Hyers-Ulam stability
for the generalized reciprocal functional equation

(S s ) = I, () |
(; ) 2 {ai (H;‘T;Lj;éﬁ(xj))] -

for arbitrary but fixed real numbers a; # 0 for i = 1,2,...,m, sothat 0 < o = a1+ as + -+ + ap, =
Soitio;#land r: X — Y with X and Y are the sets of non-zero real numbers.

Very recently, K. Ravi, E. Thandapani and B.V. Senthil Kumar [II] obtained the general solution and
investigated the generalized Hyers-Ulam stability for the reciprocal type functional equations

r(k1x — kay)r(ki1y — ko)

k1 —k k1 — k = 1.
T(( 1 2)‘7: +( 1 Q)y) T(klfL‘ — k2y) + T(kly — k?zl‘) ( 5)
where k1 and ko are any integers with ki #£ ko and
r(kix + koy)r(kiy + kox
F((r + k) + (b + ho)y) = —oi tRayriby & o) (1.6)

(ki + koy) + r(kiy + ko)
where k1 and ko are any integers with ki % —ko.

In this paper, we obtain the solution and investigate the generalized Hyers-Ulam stability for a reciprocal
type functional equation in several variables of the form

[y r(z1 + i) _ [[5, r(=i

1 T
> i [HT:Q,j;éi r(z1 + ;) > iso (@) H;‘n:2,j7£i r(l’j)] (m —1) [[;Zy ()

(1.7)
where m is a positive integer with m > 3.
Throughout this paper, we assume that X is the set of non-zero real numbers. For convenience, we define
the difference operator D,,r : X™ — R such that

[[s (1 + )
Soito (I jei (@1 + x])}
[ r()
Sy (@) ([T r(a)] + (m = DT, r(a)

Dyr(xy,xe, ... Ty) =
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for x1,29,...,2m € X.
. . m—1
In the following results, we will set 8,,1—_2 = 0 for m > 3 and assume

Z H r(x1 +xj)| #0, Zr(azl) H r(z;) | + (m—1) Hr(azz) #0
i=2 | j=2,j#i i=2 J=2,5#i =2

forall x; € X;i=1,2,...,m;m >3 and z1 # —x;, for all ;2 < i < m;m > 3.

2. General solution of functional equation (|1.7))

Theorem 2.1. A mapping r : X — R satisfies the functional equation for all x1,2z9,..., 2y € X if
and only if there exists a reciprocal mapping v : X — R satisfying the reciprocal functional equation
forallxz,y € X.

Proof. Let the mapping r : X — R satisfy the functional equation (1.7). Replacing x; by x and z; by y for

i=2,3...,min (1.7), we arrive ([1.1).
Conversely, let the mapping r : X — R satisfy the functional equation (l.1)). Replacing (z,y) by

(x1,22 + x3) in (|1.1)), we obtain
r(xz1)r(xe + x3)
r(xz1) + r(ze + x3)
r(z1)r(z)r(s)

r(x1)r(xg) + r(xy)r(zs) + r(xe)r(zs)

H?:l r(@;)
Yo (@) [H?’:Z,j;ﬁi 7”(%’)} + [y ()
for all 1, x2,z3 € X. Using induction on a positive integer m — 1, we have

[T (=)
St rlen) [TT7ls ()] + 1" ()

for all z1,29,...,2m-1 € X. Now, replacing x; by x for i = 1,2,...,m — 1 in (2.1)), we get r((m — 1)z) =

%lr(:n), for all x € X. Replacing z; by ;41 fori =1,2,...,m —11in 1} we obtain

m
[ ()
>iar(w2) [H;n:?;,j;éir(mj)} + ITs ()
for all 9, x3,..., 2, € X. Now, replacing x; by x + x; for i =2,3...,m in , we get
[[sr(z1 + )
Sisa (@ + x2) |[1]Ls jos (@1 + )| + T[Ls (21 + )

r(z1 4+ xo + x3) =

(i +x+- +xp) =

(2.1)

r(wg 4+ 23+ ay) = (2:2)

=r((m—-1Dzr +z2+ -+ )

1 [[i%s r(:)

mflr(xl) P 7’(”)[“?:3,;‘#’"(%)]‘*’1_1223 r(zi)
L (zy) + [1i% r(zi)

m—1 >itgr(z2) [H;T:Zi,j;éi T(Ij)]+nﬁ3 7(%:)

_ [T () (2.3)

Sy () [T r(@)| + (m = DT, ()

for all z1,xz9,..., 2, € X. On further simplification of the above equation ({2.3]) yields the equation (|1.7)).
This completes the proof of Theorem O
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3. Generalized Hyers-Ulam stability of equation ([1.7))

Theorem 3.1. Let ¢ : X™ — R be a function satisfying

o0

1 X T9 Tm
Z 9i+1 7 <2i+1’ Qi1 2i+1> < +00 (3.1)
i=0
for all x1,xs,...,xm € X. If a function f: X — R satisfies the functional inequality
| D f(x1, 22,y 2m)| < @(x1,22, ..., Tm) (3.2)

for all x1,29,..., 2 € X, then there exists a unique reciprocal mapping r : X — R which satisfies
and the inequality

o0

1
r@) = f@)| < 2m = 1) 579 (57 30702 37 (3.3)

=0

forallx € X.

Proof. Replacing z; by § for i =1,2,...,m in (3.2) and multiplying by (m — 1), we get

@)= 57 (5)] = m = e (3.4

rr E)
53 g

for all z € X. Now, replacing = by § in , dividing by 2 and summing the resulting inequality with
(3.4), we obtain

1
1 T 1 x x z
’f(x) o ?f (22)’ < 2(m— 1)§:2i+190 (22‘+1’ i1’ 2i+1>
i=0

for all x € X. Proceeding further and using induction arguments on a positive integer n, we arrive

n—1
1 T 1 T x T
‘f(x) o fnf (271)‘ < 2(m—1) E: oit1¥ <22‘+1’ Qi1 2i+1> (3:5)

for all x € X. For any positive integer ¢ and = € X, we have

gei! () ~ 50 (7)| = 7|/ (3) ~ o7 ()

1 x x T
<2(m — 1)2i+190 (22‘+1’ oiF1 2i+1>

1
T2

Hence for any integers [, k with [ > k > 0, we obtain by using the triangular inequality
1 T 1 T
7/ (3) -/ (%)‘

%f (%) B 211—1f <2l1i1) * 2l1—1f <2lﬂi1> T zklﬁf <2kx+1>‘

1 T T T 1 T T T
S2(m_1)§@(§’§"“’§>+"'+2(m_1)2k+19‘9<2k+1’2k+1""72k+1)

l

1 T T

<2m-1) 3 7o (zg )

=k+1

=g T x x
<2(m—1) 91 ¥ (2i+1’ 9il 2i+1) (3.6)

)
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for all x € X. Taking the limit as & — 400 in (3.6) and considering (3.1]), it follows that the sequence
{2% f (2%)} is a Cauchy sequence for each x € X. Since R is complete, we can define r : X — R by

r(z) = lim Q%f (2%) To show that r satisfies 1) replacing (1, x2,...,Tm) by (27 "x1,2 "xa,...,2 "2y,
n—oo
n (3.2) and dividing by 2", we obtain

127" D f (27 21,27 " xgy o, 27 )| < 27"0(27 e, 27 e, L, 27 N Ey,) (3.7)

for all x1,x2, ...,y € X and for all positive integer n. Usmg and (3.5)) in ., we see that r satisfies
(11.7), for all x1,x9,...,x, € X. Taking limit n — oo in , we arrive . Now, it remains to show that
r is uniquely defined. Let r1 : X — R be another reciprocal mapping which satisfies (1.7)) and the inequality

(3.3). Clearly, r1(27"z) = 2"r(z), 7(27"x) = 2"r(x) and using (3.3), we arrive

|ri(x) —r(z)| =27" |r1(2_"x) - ’I“(Q_néb)‘

o0

1 T x x
<4(m—1) Z ontit1? <2n+z’+1’ onitl 2n+z‘+1)
=0
=1 T x T
<4(m—1) Z 9i+1 ¥ <2i+1’ SRR ﬁ) (3:8)
i=n

for all z € X. Allowing n — oo in (3.8, we find that r is unique. This completes the proof of Theorem
B.1 O

Theorem 3.2. Let ¢ : X™ — R be a function satisfying
Z 2'p(2'x1, 20, ..., 2'xy) < 00 (3.9)

for all x1,x9,..., 2y € X. If a function f: X — R satisfies the functional inequality

| D f(x1, 22,y 2m)| < @(x1,29, ..., Tm) (3.10)

for all x1,29,..., 2 € X, then there exists a unique reciprocal mapping r : X — R which satisfies
and the inequality

Ir(x) — f(z)] < 2(m —1) 221 (2%, 2%x,. .., 2%) (3.11)

forallx € X.

Proof. The proof is obtained by replacing z; by x for i = 1,2,...,m in (3.10) and proceeding further by
similar arguments as in Theorem O

Corollary 3.3. For any fired c1 > 0 andp > —1 orp < —1, if f : X — R satisfies

m
|Dmf(.'E1,ZE2, ce. 7l'm)| S C1 <Z ’xl|p>
i=1

for all x1,xs,...,xym € X, then there exists a unique reciprocal mapping r : X — R such that

2mbmenjap for p < —1

2m(m—1)c
[r(z) — f(z)] < {2§)+111$|p forp>—1

forallx € X.
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Proof. If we choose p(x1,x2,...,xm) = c1 (D |zi|P), for all z1,z2,..., 2, € X, then by Theorem we

arrive 2 D
m(m — 1)Cc1
|7’($) — f(ﬂ?)‘ S me for all eX and D > —1

and using Theorem we arrive

2 -1
Ir(z) — f(x)] < W!x!”, for all z € X and p < —1.

O

Corollary 3.4. Let f: X — R be a mapping and there exists p such that p > —1 or p < —1. If there exists

co > 0 such that
m
|Dmf($1,$2, ce. 7$m)| S C2 (H |xl|£)
i=1

for all x1, 29, ..., 2, € X, then there exists a unique reciprocal mapping r : X — R satisfying the functional

equation and
2(m—1)ca ’.’L"p f07" _
- p>-—1
r(z) = f(z)] < {2%2“1)@

WL’L"I) fO’l”p<—1

forallz e X.

Proof. Considering p(x1,Ta,...,%m) = C2 (H:’il |a:i|%), for all x1,x9,..., 2, € X, then by Theorem |3.1
we arrive

2(m —1
Ir(z) — f(z)| < (27111)02|1:|p, forall x € X and p > —1

1
and using Theorem we arrive

2(m—1
Ir(z) — f(z)] < (1mzp+)102|$’;77 for all z € X and p < —1.

O

Corollary 3.5. Let c3 > 0 and o > —% or a < —% be real numbers, and f : X — R be a mapping

satisfying the functional inequality

|Din f(21, 22, ..., 2m)| < c3 {Z [ + (H \l’i|a> }
i=1 i=1

forallzy,xo,...,xm € X. Then there exists a unique reciprocal mapping v : X — R satisfying the functional

equation and

2(m—1)(m+1)cs ‘.’L‘|ma fOT’ a> 1
[r(z) — f(z)] < 2(m271)2>72111)03 ma T
S gmarr || Jora < —--
forallz e X.
Proof. Choosing ¢(x1,x2,...,&m) = c3{d> ey |zi|™* + ([1% |z4|®)}, for all z1,29,...,2m € X, then by
Theorem [3.1] we arrive

2(m —1)(m + 1)cs 1
- < ma for all X and -
Ir(xz) — f(z)] < Smatl T |z, for all x € X and a > —

and using Theorem we arrive

2(m —1)(m + 1)c3 1
Ir(z) — f(z)| < [ omati |z|™%, for all z € X and a < —
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4. Counter-examples

The following example illustrates the fact that the functional equation (1.7 is not stable for p = —1 in
Corollary We present the following counter-example modified by the well-known counter-example of Z.
Gajda [2].

Example 4.1. Let ¢ : X — R be a mapping defined by

£ for z € (1,00)
p(r) = {z :
© otherwise

where 1 > 0 is a constant, and define a mapping f: X — R by
o
2771
x)zZ%, for all x € X.

Then the mapping f satisfies the inequality

6 o

for all x1,x2,...,2ym € X. Therefore there do not exist a reciprocal mapping r : X — R and a constant
B > 0 such that

|f(z) —r(@)] < Bla|™ (4.2)
for all x € X.
Proof. |f(z)] <300, |“0(|22n%)| <Y =p(l- %)_1 = 2u. Hence f is bounded by 2pu. If

(i my—l) >1

then the left hand side of lj is less than m—_ Now, suppose that 0 < (37, |z;|™*) < 1. Then there
exists a positive integer k£ such that

v <3l < (4.3

Hence Y1, |25/ ~! < 3¢ implies

or %>1f0ri:1,2,...,m

; 1
or ;E—;>1>§f0ri:1,2,...,m
or 2:1 =1,2,....,m

and consequently

1 1 1 .
=1 (1), k1 (i), A1 (x1+x;)) >1fori=23...,m.
Therefore, for each value of n =0,1,2,...,k — 1, we obtain
1 1

1 .
27( 1), 2n(m2) 2n(x1+xi)>1forz:2,3,...,m
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and Dp,p(27"21,2 "2, ...,27 "xy) = 0 for n = 0,1,2,...,k — 1. Using (4.3) and the definition of f, we
obtain

‘ HZQ flz1 + )
> its [HT:Z,J’;&Z’ fler+ xj)}
120 f(xi) ‘
S £ (@) ([T £ + (m = DT, F(a0)
- [ > ntk 3w N [[2: >ty o
T m - DI (002 4)  20m = DT, (205 )
3 0 1\ !
= 2(m —1) 2k (1_2>
61 1
< 7

—m —12k+1
o (SN
m—1\4 ‘
=1

for all x1,x9,..., 2, € X. Therefore the inequality (4.1) holds true.

We claim that the reciprocal functional equation (|1.7)) is not stable for p = —1 in Corollary

Assume that there exists a reciprocal mapping r : X — R satisfying (4.2). Therefore, we have

|f(2)] < (B+ )|z (4.4)

However, we can choose a positive integer m with muy > g+ 1. If z € (1, 2”“1) then 27"z € (1,00)
for allm =0,1,2,...,m — 1 and therefore

|Dmf(:171,l'2, s 7$m)| =

IN

00 _ m—1 2"y
_ p(27"x) T M -1
|f(z)| = 2 = > B+

which contradicts (4.4]). Therefore, the reciprocal type functional equation ([1.7]) is not stable for p = —1 in
Corollary O

The following example illustrates the fact that the functional equation |D is not stable for a = —%
in Corollary

Example 4.2. Let ¢ : X — R be a mapping defined by
[
g forx € (1,00
o(x) = {5” ( )

6 otherwise

where 6 > 0 is a constant, and define a mapping f: X — R by
o0 2771
f(z) = z;]qw? for all x € X.
Then the mapping f satisfies the inequality

66 m m 1
1D f (21,22, 2m)| < — {; Jars| ™t + (il;[llfml_m>} (4.5)

for all x1,x9,...,2y, € X. Therefore there do not exist a reciprocal mapping r : X — R and a constant
B > 0 such that

|f(x) = ()] < Blz| ! (4.6)
for all z € X.
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Proof. Tt is easy to show that f is bounded by 2§, by similar arguments as in Example If

m m N
{35+ (ITii# ) } 1.
i=1 i=1
then the left hand side of 1} is less than mﬁ—f Now, suppose that

1

0< {i EAREt (ﬁ mﬁ)} <1
=1 =1

Then there exists a positive integer k such that

1 m - m . 1
oFt1 < {Z‘wz‘ Lt <H|xz’ m)} < 9%k (4.7)
; =1

Hence {2211 || 1 + (Hz’il \xz|7i)} < 5 implies

m m 1
25 a2 | [l ) p <1

i=1 i=1
or kai_1<1fori:1,2,...,m
or %>1f0ri:1,2,...,m

ZT; 1 .

or 2—k>1>§for2:1,2,...,m
or 22:%1>2>1f0r2':1,2,...,m

and consequently

1 1 1 .
ok—1 (:L'l), k-1 (."L‘Z), k1 ($1 + ."L‘Z) >1fori=2,3,...,m.
Therefore, for each value of n =0,1,2,...,k — 1, we obtain
1 1 1 .
2—n(x1), 27(1'@), 2—”(371 +xz;)>1fori=23,....,m

and Dp,o(27"x1,2 "2, ...,27"xy,) =0forn=0,1,2,...,k—1. Using , the definition of f and similar
arguments as in Example we obtain the inequality . The remaining part of the proof is obtained
by similar arguments as in Example Hence, the reciprocal type functional equation is not stable
for a = —% in Corollary [3.5 O
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