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Abstract

In this paper, we study the characterization of Lp(R) spaces by using wavelet packet coefficients. We also
drive few results by using wavelet packet transform which generalize some results from the literature. c©2013
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1. Introduction

Wavelet theory developed from interdisciplinary origin in the last 30 years and the literature on wavelets
and their applications (on data analysis, image compression and enhancement, filtering of signals and many
others) is growing rapidly. Wavelet methods are refinement of Fourier analysis whose mathematical foun-
dation was provided by Grossman et al. [12], Meyer [19], Mallat [17, 18], Daubechies [6, 7], Coifman et al.
[5] and Wickerhauser [21].

Signals in practice are often band-limited where their frequency contents are restricted to prescribed
bands. For such signals, it is natural to expand them in terms of band-limited functions such as band-
limited wavelets. Band-limited refinable functions play a fundamental role in the construction of band-
limited wavelets (for instance see [6, 16, 22]). Among others, contributions in the theory of band-limited
refinable functions and wavelets are made in [1, 2, 9, 13, 15, 16, 20].

Band-limited orthonormal refinable functions and wavelet already well studied in the literature [2, 3, 9,
15, 16]. In order to make paper self contained, we state some basic preliminaries, notations and definitions.
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2. Preliminaries

Let 〈., .〉 and ||.|| be usual inner product and norm of the space Lp(R). The space Lp(R) the class of all
measurable functions f , defined on R for which∫

Ω
|f(x)|p dx <∞,

and the norm of f ∈ Lp(R) is defined by

‖f‖p :=


{∫

R |f(x)|pdx
}1/p

, for 1 ≤ p <∞

ess sup
−∞<x<∞

|f(x)|, for p =∞.

We define the inner product of functions f, g ∈ L2(R) as 〈f, g〉 =
∫∞
−∞ f(x)g(x)dx, the Fourier transform

of f ∈ L2(R) as f̂(w) =
∫∞
−∞ f(x)e−2πiwx dx and the relationship between functions and their Fourier

transform as 2π〈f, g〉 = 〈f̂ , ĝ〉. For f ∈ L1(R) ∩ L2(R), the Fourier transform f̂ of f is in L2(R) and
satisfies the Parseval identity ‖f̂‖22 = 2π‖f‖22.

Definition 2.1 ([8]). A system of elements {fn}n∈Λ in a Hilbert space H is called a frame for H if there
exists two positive numbers A and B such that for any f ∈ H,

A ‖f‖2 ≤
∑
n∈Λ

|〈f, fn〉|2 ≤ B ‖f‖2.

The numbers A and B are called frame bounds. If A = B, the frame is said to be tight. The frame is called
exact if it ceases to be a frame whenever any single element is deleted from the frame.

The connection between frames and numerically stable reconstruction from discretized wavelet coeffi-
cients was pointed out by Grossmann et al. [12]. A wavelet function ψ ∈ L2(R), also constitutes a wavelet
frame with frame bounds A and B, if for any f ∈ L2(R),

A ‖f‖22 ≤
∑
j,k∈Z

|〈f, ψj,k〉|2 ≤ B ‖f‖22,

where A and B are some positive numbers and ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z. Again, if A = B, the
frame is said to be tight.

The continuous wavelet transformation of a L2-function f with respect to the wavelet ψ, satisfying
admissibility condition, is defined as,

(Twavf)(a, b) = |a|−1/2

∫ ∞
−∞

f(t) ψ

(
t− b
a

)
dt, a, b ∈ R, a 6= 0.

The term wavelet denotes a family of functions of the form ψa,b = |a|−1/2 ψ
(
t−b
a

)
, obtained from

a single function ψ by the operations of dilation and translation. The wavelet coefficients at discrete
points a = k

2j
, b = 1

2j
, are given by ψj,k = (Twavf)( k

2j
, 1

2j
).

Wavelet Packets

Though the wavelet basis has good localization in time-frequency domain but in order to get better local-
ization for high frequency components in the wavelet decomposition, Coifman et al. [5] introduced another
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kinds of bases called wavelet packets. We have the following sequence of functions due to Wickerhauser [21].
For l = 0, 1, 2, .....,

ψ2l(x) =
√

2
∑
k∈Z

akψl(2x− k) and ψ2l+1(x) =
√

2
∑
k∈Z

bkψl(2x− k), (2.1)

where {ak} is the filter such that
∑

n∈Z an−2kan−2l = δkl,
∑

n∈Z an =
√

2 and bk = (−1)ka1−k. For l = 0 in
(2.1), we get

ψ0(x) = ψ0(2x) + ψ0(2x− 1), ψ1(x) = ψ0(2x)− ψ0(2x− 1),

where ψ0 is a scaling function and may be taken as a characteristic function. If we increase l, we get the
following

ψ2(x) = ψ1(2x) + ψ1(2x− 1), ψ3(x) = ψ1(2x)− ψ1(2x− 1)

ψ4(x) = ψ1(4x) + ψ1(4x− 1) + ψ1(4x− 2) + ψ1(4x− 3)

and so on.
Here ψl’s have a fixed scale but different frequencies. Actually, they are Walsh functions in [0,1[. The

functions ψl(t− k), for integers k, l with l ≥ 0, form an orthonormal basis of L2(R).

Theorem 2.2 ([21]). For every partition P of the non negative integers into the sets of the form Ilj = {2jl, · · · ,
2j(l + 1) − 1}, the collection of functions ψl;jk(x) = 2j/2ψl(2

jx − k), Ilj ∈ P, k ∈ Z, is an orthonormal
basis of L2(R).

The collection of functions gives rise to many bases including Walsh, wavelet and subband basis. A
wavelet packet basis of L2(R) is an orthonormal basis selected from among the functions ψl,jk.

The trigonometric system {eimz : m ∈ Z} is an orthonormal basis of L2(R, dx2π ) . Therefore, a function
f ∈ L2(R) if and only if its Fourier Coefficients

Cm =

∫
R
f(x)e−imx

dx

2π
, m ∈ Z,

to satisfy
∑
m∈Z
|cm|2 <∞,

and

||f ||L2(R, dx
2π

) =
(∑
m∈Z
|cm|2

)1/2
. (2.2)

The Littlewood-Paley G-function (cf. [4, 11, 15]), is defined by

G(f)(x) =
(∫ 1

0
(1− γ)

∣∣∣(f ∗ dPγ
dγ

)(x)
∣∣∣2dγ)1/2

(2.3)

where Pγ(x) = 1−γ2
1−2γcosx+γ2

is Poisson kernel for the unit disk.

The discrete version of Littlewood-Paley (cf. [11, 15]) function is defined by

g(f)(x) =
(∑
m∈Z
|φ2−m ∗ f(x)|2

)1/2
, (2.4)

and these expressions can be used to characterize the spaces Lp(R), 1 < p <∞.

We say that a function φ defined on R belongs to the regularity class S0, if there exist constants
C0, C1, γ > 0 and ε > 0 such that



J. Iqbal, J. Ali, J. Nonlinear Sci. Appl. 6 (2013), 305–311 308



(i)
∫
R φ(x)dx = 0

(ii) |φ(x)| ≤ C0
(1+|x|)1+γ , for all x ∈ R

(iii) |φ′(x)| ≤ C1
(1+|x|)1+ε , for all x ∈ R.

(2.5)

For any function g defined on R and for a real number λ > 0, we consider the maximal function [10],

g∗λ(x) = supy∈R
|g(x− y)|
(1 + |y|)λ

, x ∈ R. (2.6)

The Hardy-Littlewoood maximal function Mf(x) (cf. [14]) is given by

M f(x) = sup
γ>0

1

2γ

∫
|y−x|≤γ

|f(y)|dy (2.7)

for a locally integrable function f on R and M is bounded on Lp(R), 1 < p ≤ ∞.

Theorem 2.3 ([11, 15]). Suppose 1 < p, q <∞, there exists a constant Ap,q such that

∣∣∣∣∣∣{ ∞∑
i=1

(M fi)
q
}1/q∣∣∣∣∣∣

Lp(R)
≤ Ap,q

∣∣∣∣∣∣{ ∞∑
i=1

|fi|q
}1/q∣∣∣∣∣∣

Lp(R)

for any sequence {fi : i = 1, 2, ....} of totally integrable functions.

Lemma 2.4 ([10, 15]). Let φ be band limited, f ∈ S′ and 0 < p ≤ ∞ such that φ2−j ∗ f ∈ Lp(R) for all
j ∈ Z. Then for any real λ > 0, there exists a constant Cλ > 0 such that

(φ∗∗j,λf)(x) = Cλ

{
M (|φ2−j ∗ f |1/λ)(x)

}λ
, x ∈ R,

where (φ∗∗j,λf)(x) = supy∈R
|(φ

2−j ∗f)(x−y)|
(1+2j |y|)λ and φt(x) = 1

tφ(xt ).

Theorem 2.5 ([10, 15]). Let φ ∈ S0 be a band limited function. Given a real number λ ≥ 1 and 1 < p <∞,
there exists a constant Ap,λ <∞ such that∣∣∣∣∣∣{∑

j∈Z
|φ∗∗j,λf |2

}1/2∣∣∣∣∣∣
Lp(R)

≤ Ap,λ||f ||Lp(R), ∀f ∈ Lp(R).

Remark 2.6. Assuming φ ∈ S0 and φ is band limited. We assume that φ satisfies∑
l

∑
j∈Z
|φ̂l(2jξ)|2 = M for a.e. ξ ∈ R, l = 1, 2, ...., n.

The characterization of Lp(R), 1 < p <∞, in terms of the function φ∗∗∗l;j,λf i.e.

C||f ||Lp(R) ≤ ||
{∑

l

∑
j∈Z
|φ∗∗∗l;j,λf |2

}1/2
||Lp(R) ≤ D||f ||Lp(R),

with C and D depending on p and λ and λ ≥ 1.
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Given two functions f and ψl, l = 1, 2, ....., n for which 〈f, ψl〉 makes sense, we define

(Wψlf)(x) =
{∑

l

∑
j∈Z

∑
m∈Z
|〈f, ψl;j,m〉|22jχ[2−jm,2−j(m+1)](x)

}1/2
. (2.8)

We also define the observe operator Tψl, l = 1, 2, ....., n, is the operator mapping f into the l2(Z× Z)
valued function,

(Tψl)(x) =
{
〈f, ψl;j,m〉2j/2χ[2−jm,2−j(m+1)](x), j ∈ Z,m ∈ Z, l = 1, 2, ...., n

}
.

Then we have,
Wψlf =

√
(Tψl)(x) · (Tψl)(x),

where · denotes the dot product in l2(Z× Z).

3. Main Results

Theorem 3.1. Let ψl ∈ S0 (l = 1, 2, ...., n) be a band limited function. For 1 < p <∞ and f ∈ Lp(R), we
have, ∣∣∣∣∣∣{∑

l

∑
j∈Z

∑
m∈Z
|〈f, ψl;j,m〉|22jχ[2−jm,2−j(m+1)]

}1/2∣∣∣∣∣∣
Lp(R)

≤ C||f ||Lp(R), (3.1)

with C independent of f .

Proof. We start by noticing that for f ∈  Lp(R), the number 〈f, ψl;j,k〉 make sense, since ψl ∈ Lp
′
(R). In fact

|〈f, ψl;j,m〉| ≤ 2
j( 1
p
− 1

2
)||ψl||Lp′ (R)

||f ||Lp(R).

We have
|〈f, ψl;j,m〉| = 2j/2|

∫
R f(x)ψl(2jx−m)dx|

= 2−j/2|
∫
R f(x)ψl;2−j (x− 2−jm)dx|

= 2−j/2|(ψ̃l;2−j ∗ f)(2−jm)|

≤ 2−j/2supy∈Ij,m |(ψ̃l;2−j ∗ f)(y)|

where Ij,m = [2−jm, 2−j(m+ 1)] and ψ̃l(y) = ψl(−y). Fixing j ∈ Z, we have,

∑
l

∑
j∈Z
∑

m∈Z |〈f, ψl;j,m〉|22jχ[2−jm,2−j(m+1)](x)

≤
∑

l

∑
j

∑
m

{
supy∈Ij,m |(ψ̃l;2−j ∗ f)(y)|

}2
χIj,m(x)

≤
{

sup|z|≤2−j |(ψ̃l;2−j ∗ f)(x− z)|
}2

=
{

sup|z|≤2−j
|(ψ̂

l;2−j ∗f)(x−z)|
(1+2j |z|)λ

}2
(1 + 2j |z|)2λ

≤ 22λ[(ψ̂∗∗
l;2−jf)(x)]2,

for any λ > 0. Inequality (3.1), now follows by applying Theorem 2.5 with λ ≥ 1.
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Theorem 3.2. Let ψl (l = 1, 2, ..., n) be a band limited wavelet packet such that ψl ∈ S0. Given p ∈ (1,∞),
there exist two constants 0 < Ap ≤ Bp <∞ such that

Ap||f ||Lp(R) ≤ ||Wψlf ||Lp(R) ≤ Bp||f ||Lp(R) (3.2)

for all f ∈ Lp(R).

Proof. We first observe that the coefficients 〈f, ψl;j,m〉 are well defined since ψl ∈ Lp
′
(R), where 1

p′
+ 1

p = 1.

The inequality in the right of (3.2) is precisely inequality (3.1).

Thus, we have already obtained a constant Bp <∞ such that

||Wψlf ||Lp(R) ≤ Bp||f ||Lp(R). (3.3)

For p = 2, we have equality (with Bp = 1) because ψl is an orthonormal wavelet packet;∫
R(Tψlf)(x).(Tψlf)(x)dx

= ||Wψlf ||2L2(R)

=
∫
R
∑

l

∑
j∈Z
∑

m∈Z |〈f, ψl;j,m〉|22jχj,m(x)dx

=
∑

l

∑
j∈Z
∑

m∈Z |〈f, ψl;j,m〉|2

= ||f ||2L2(R),

where Ij,m = [2−jm, 2−j(m + 1)]. From this equality the polarization identity and a density argument we
obtain ∫

R
f(x)g(x)dx =

∫
R

(Tψlf)(x).(Tψlg)(x)dx,

for f ∈ Lp(R), g ∈ Lp
′
(R), where p

′
is the conjugate exponent to p. Now using the duality argument,

together with Hölder’s inequality and (3.3) for Lp
′
(R), we deduce

||f ||Lp(R) = sup||g||
p
′≤1
|
∫
R f(x)g(x)dx|

≤ sup||g||
p
′≤1
||Wψlf ||Lp(R).||Wψlg||Lp′ (R)

≤ Bp′ ||ψlf ||Lp(R).

Remark 3.3. Our results generalize the relevant results of Dziubański and Hernández [9] and Hernández
[16].
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