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Abstract

In this article, we prove the generalized Hyers-Ulam stability of the following Pexider functional inequalities

‖f(x) + g(y) + kh(z)‖ ≤
∥∥∥∥kp(x+ y

k
+ z

)∥∥∥∥ ,
‖f(x) + g(y) + h(z)‖ ≤

∥∥∥∥kp(x+ y + z

k

)∥∥∥∥
in non-Archimedean Banach spaces. c©2015 All rights reserved.
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1. Introduction and Preliminaries

We recall some basic facts concerning non-Archimedean spaces. By a non-Archimedean field, we mean
a field K equipped with a function (valuation) | · | from K to [0,∞) such that |r| = 0 if and only if r = 0,
|rs| = |r||s| and |r + s| ≤ max{|r|, |s|} for all r, s ∈ K. Clearly, |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N.
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Definition 1.1. Let X be a vector space over a non-Archimedean scalar field K with a valuation | · |. A
function ‖ · ‖ : X → [0,∞) is a non-Archimedean norm if it satisfies for all r ∈ K, x, y ∈ X

(i) ‖x‖ = 0 if and only if x = 0,

(ii) ‖rx‖ = |r|‖x‖,
(iii) ‖x+ y‖ ≤ max{‖x‖, ‖y‖} (the strong triangle inequality).

Then (X, ‖ · ‖) is called a non-Archimedean normed space.

Definition 1.2. Let {xn} be a sequence in a non-Archimedean normed space X.

(1) {xn} converges to x ∈ X if, for any ε ≥ 0 there exists an integer N such that ‖xn − x‖ ≤ ε for n ≥ N .
Then the point x is called the limit of the sequence {xn}, which is denoted by limn→∞ xn = x.

(2) {xn} is a Cauchy sequence if the sequence {xn+1 − xn} converges to zero.

(3) X is called a non-Archimedean Banach space if every Cauchy sequence in X is convergent.

The stability problem of functional equations originated from a question of Ulam [16] in 1940, concerning
the stability of group homomorphisms. In 1941, Hyers [9] gave the first affirmative answer to the problem
of Ulam for Banach spaces. Hyers’ result was generalized by Aoki [1] for additive mappings and by Rassias
[14] for linear mappings by considering an unbounded Cauchy difference. Generalizations of the Rassias’
theorem were obtained by Forti [5] and Gǎvruta [6] who permitted the Cauchy difference to become arbitrary
unbounded.

During the last two decades a number of papers and research monographs have been published on
various generalizations and applications of the Hyers-Ulam stability to a number of functional equations
and mappings. A large list of references concerning the stability of various functional equations can be
found e.g., in the books [3, 10, 11].

Gilányi [7] and Rätz [15] showed that if f satisfies the functional inequality

‖2f(x) + 2f(y)− f(xy−1)‖ ≤ ‖f(xy)‖

then f satisfies the Jordan-von Neumann functional equation 2f(x) + 2f(y) = f(xy) + f(xy−1). Gilányi [8]
and Fechner [4] investigated the Hyers-Ulam stability of the functional inequality

‖2f(x) + 2f(y)− f(x− y)‖ ≤ ‖f(x+ y)‖.

Park et al. [13] investigated the following inequalities:

‖f(x) + f(y) + f(z)‖ ≤
∥∥∥∥2f

(
x+ y + z

2

)∥∥∥∥ ,
‖f(x) + f(y) + f(z)‖ ≤ ‖f(x+ y + z)‖,

‖f(x) + f(y) + 2f(z)‖ ≤
∥∥∥∥2f

(
x+ y

2
+ z

)∥∥∥∥
in Banach spaces. Recently, Cho et al. [2] investigated the following inequality

‖f(x) + f(y) + f(z)‖ ≤
∥∥∥∥kf (x+ y + z

k

)∥∥∥∥ , (0 < |k| < 3)

in non-Archimedean Banach spaces. Lu and Park [12] investigated the following functional inequalities

‖f(x) + f(y) + f(z)‖ ≤
∥∥∥∥kf (x+ y + z

k

)∥∥∥∥ ,
‖f(x) + f(y) + kf(z)‖ ≤

∥∥∥∥kf (x+ y

k
+ z

)∥∥∥∥
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in Banach spaces.
In this paper we investigate the generalized Hyers-Ulam stability of the following Pexider functional

inequalities

‖f(x) + g(y) + kh(z)‖ ≤
∥∥∥∥kp(x+ y

k
+ z

)∥∥∥∥ (1.1)

‖f(x) + g(y) + h(z)‖ ≤
∥∥∥∥kp(x+ y + z

k

)∥∥∥∥ (1.2)

in non-Archimedean Banach spaces.

2. Hyers-Ulam stability of (1.1)

In what follows we assume that X is a non-Archimedean normed space, Y is a non-Archimedean Banach
space and k is a nonzero scalar.

Proposition 2.1. Let f, g, h, p : X → Y be mappings such that g(0) = h(0) = p(0) = 0 and

‖f(x) + g(y) + kh(z)‖ ≤
∥∥∥∥kp(x+ y

k
+ z

)∥∥∥∥ (2.1)

for all x, y, z ∈ X. Then f, g and h are additive, f(x) = g(x) = kh(xk ) for all x ∈ X.

Proof. Letting x = y = z = 0 in (2.1), we have f(0) = 0.
Replacing (x, y, z) by (x,−x, 0) in (2.1),

f(x) + g(−x) = 0 (2.2)

for all x ∈ X. Replacing (x, y, z) by (x, 0,−x
k ) in (2.1),

f(x) + kh
(
−x
k

)
= 0 (2.3)

for all x ∈ X.
Replacing (x, y, z) by

(
x, y,−x+y

k

)
in (2.1),

f(x) + g(y) + kh

(
−x+ y

k

)
= 0 (2.4)

for all x ∈ X.
By (2.3) and (2.4), we have

f(x) + g(y)− f(x+ y) = 0, (2.5)

so that
f(x) + g(y) = f(x+ y) (2.6)

for all x, y ∈ X. Letting x = 0 in (2.6), it follows that f(y) = g(y), and hence

f(x+ y) = f(x) + f(y)

for all x, y ∈ X. Since f is additive it is clear that h is additive and f(x) = kh
(
x
k

)
for all x ∈ X. This

completes the proof.

We prove the generalized Hyers-Ulam stability of the functional inequality (1.1).
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Theorem 2.2. Let f, g, h, p : X → Y be mappings such that g(0) = h(0) = p(0) = 0 and

‖f(x) + g(y) + kh(z)‖ ≤
∥∥∥∥kp(x+ y

k
+ z

)∥∥∥∥+ ϕ(x, y, z), (2.7)

where ϕ : X3 → [0,∞) satisfies ϕ(0, 0, 0) = 0 and

lim
n→∞

|2|nϕ
( x

2n
,
y

2n
,
z

2n

)
= 0 (2.8)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ ψ1(x),

‖g(x)−A(x)‖ ≤ ψ2(x),∥∥∥∥h(x)− 1

k
A(kx)

∥∥∥∥ ≤ ψ3(x)

(2.9)

for all x ∈ X. Here,

ψ1(x) = sup
j≥0

{
|2|jϕ

( x

2j+1
,− x

2j+1
, 0
)
, |2|jϕ

( x

2j+1
, 0,− x

2j+1k

)
, |2|jϕ

( x
2j
,− x

2j+1
,− x

2j+1k

)}
,

ψ2(x) = sup
j≥0

{
|2|jϕ

(
− x

2j+1
,
x

2j+1
, 0
)
, |2|jϕ

(
0,

x

2j+1
,− x

2j+1k

)
, |2|jϕ

(
− x

2j+1
,
x

2j
,− x

2j+1k

)}
,

ψ3(x) =
1

|k|
sup
j≥0

{
|2|jϕ

(
− kx

2j+1
, 0,

x

2j+1

)
, |2|jϕ

(
0,− kx

2j+1
,
x

2j+1

)
, |2|jϕ

(
− kx

2j+1
,− kx

2j+1
,
x

2j

)}
for all x ∈ X.

Proof. Letting x = y = z = 0 in (2.7), we get f(0) = 0. Replacing (x, y, z) by (x,−x, 0) in (2.7), we have

‖f(x) + g(−x)‖ ≤ ϕ(x,−x, 0) ∀x ∈ X. (2.10)

Replacing (x, y, z) by
(
x, 0,−x

k

)
in (2.7), we have∥∥∥f (x) + kh

(
−x
k

)∥∥∥ ≤ ϕ(x, 0,−x
k

)
∀x ∈ X. (2.11)

From (2.10) and (2.11) we have

‖2f(x) + g(−x) + kh
(
−x
k

)
‖ ≤ max

{
ϕ(x,−x, 0), ϕ

(
x, 0,−x

k

)}
∀x ∈ X. (2.12)

Replacing (x, y, z) by
(
2x,−x,−x

k

)
in (2.7), we have∥∥∥f(2x) + g(−x) + kh

(
−x
k

)∥∥∥ ≤ ϕ(2x,−x,−x
k

)
. (2.13)

By (2.12) and (2.13), it follows that

‖2f(x)− f(2x)‖ ≤ max
{
ϕ(x,−x, 0), ϕ

(
x, 0,−x

k

)
, ϕ
(

2x,−x,−x
k

)}
, (2.14)

so that∥∥∥2f
(x

2

)
− f(x)

∥∥∥ ≤ max
{
ϕ
(x

2
,−x

2
, 0
)
, ϕ
(x

2
, 0,− x

2k

)
, ϕ
(
x,−x

2
,− x

2k

)}
∀x ∈ X. (2.15)
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Replacing x by x
2j

and multiplying |2|j on both sides of (2.15), we have∥∥∥2jf
( x

2j

)
− 2j+1f

( x

2j+1

)∥∥∥
≤ max

{
|2|jϕ

( x

2j+1
,− x

2j+1
, 0
)
, |2|jϕ

( x

2j+1
, 0,− x

2j+1k

)
, |2|jϕ

( x
2j
,− x

2j+1
,− x

2j+1k

)}
→ 0

as j →∞

(2.16)

for all x ∈ X. Hence
{

2nf
(

x
2n

)}
is a Cauchy sequence in Y . Since Y is complete, we can define the map

A : X → Y such that
A(x) := lim

n→∞
2nf

( x
2n

)
.

For nonnegative integers l < m, we have for all x ∈ X∥∥∥2lf
( x

2l

)
− 2mf

( x

2m

)∥∥∥ ≤ max
l≤j≤m−1

{∥∥∥2jf
( x

2j

)
− 2j+1f

( x

2j+1

)∥∥∥}
≤ max

l≤j≤m−1

{
|2|jϕ

( x

2j+1
,− x

2j+1
, 0
)
, |2|jϕ

( x

2j+1
, 0,− x

2j+1k

)
,

|2|jϕ
( x

2j
,− x

2j+1
,− x

2j+1k

)}
.

(2.17)

Letting l = 0 and taking the limit as m→∞ in (2.17), we have

‖f(x)−A(x)‖

≤ sup
j≥0

{
|2|jϕ

( x

2j+1
,− x

2j+1
, 0
)
, |2|jϕ

( x

2j+1
, 0,− x

2j+1k

)
, |2|jϕ

( x
2j
,− x

2j+1
,− x

2j+1k

)}
= ψ1(x)

(2.18)

for all x ∈ X.
Similarly, there exists a mapping B : X → Y such that B(x) = limn→∞ 2ng

(
x
2n

)
and

‖g(x)−B(x)‖

≤ sup
j≥0

{
|2|jϕ

(
− x

2j+1
,
x

2j+1
, 0
)
, |2|jϕ

(
0,

x

2j+1
,− x

2j+1k

)
, |2|jϕ

(
− x

2j+1
,
x

2j
,− x

2j+1k

)}
= ψ2(x)

(2.19)

for all x ∈ X.
Now we consider the mapping h. Replacing (x, y, z) by

(
x, 0,−x

k

)
in (2.7), we have∥∥∥f(x) + kh

(
−x
k

)∥∥∥ ≤ ϕ(x, 0,−x
k

)
∀x ∈ X. (2.20)

Replacing (x, y, z) by
(
0, x,−x

k

)
in (2.7), we have∥∥∥g(x) + kh

(
−x
k

)∥∥∥ ≤ ϕ(0, x,−x
k

)
∀x ∈ X. (2.21)

By (2.20),(2.21),∥∥∥f(x) + g(x) + 2kh
(
−x
k

)∥∥∥ ≤ max
{
ϕ
(
x, 0,−x

k

)
, ϕ
(

0, x,−x
k

)}
∀x ∈ X. (2.22)

Replacing (x, y, z) by
(
x, x,−2x

k

)
in (2.7), we have∥∥∥∥f(x) + g(x) + kh

(
−2x

k

)∥∥∥∥ ≤ ϕ(x, x,−2x

k

)
∀x ∈ X. (2.23)
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From (2.22) and (2.23), it follows that∥∥∥∥2kh
(
−x
k

)
− kh

(
−2x

k

)∥∥∥∥ ≤ max

{
ϕ
(
x, 0,−x

k

)
, ϕ
(

0, x,−x
k

)
, ϕ

(
x, x,−2x

k

)}
,

so that

‖2h(x)− h(2x)‖ ≤ 1

|k|
max {ϕ(−kx, 0, x), ϕ(0,−kx, x), ϕ(−kx,−kx, 2x)} ∀x ∈ X.

Then we have∥∥∥2h
(x

2

)
− h(x)

∥∥∥ ≤ 1

|k|
max

{
ϕ

(
−kx

2
, 0,

x

2

)
, ϕ

(
0,−kx

2
,
x

2

)
, ϕ

(
−kx

2
,−kx

2
, x

)}
∀x ∈ X. (2.24)

Then by the same argument, there exists a mapping C : X → Y such that C(x) = limn→∞ 2nh
(

x
2n

)
and

‖h(x)− C(x)‖

≤ 1

|k|
sup
j≥0

{
|2|jϕ

(
− kx

2j+1
, 0,

x

2j+1

)
, |2|jϕ

(
0,− kx

2j+1
,
x

2j+1

)
, |2|jϕ

(
− kx

2j+1
,− kx

2j+1
,
x

2j

)}
= ψ3(x)

(2.25)

for all x ∈ X.
Next, we show that A,B,C are additive and A = B, A(x) = kC(xk ) for all x ∈ X.

Replacing (x, y, z) by
(

x
2n ,−

x
2n , 0

)
in (2.7), we have

|2|n
∥∥∥f ( x

2n

)
+ g

(
− x

2n

)∥∥∥ ≤ |2|nϕ( x
2n
,− x

2n
, 0
)
,

so that
A(x) +B(−x) = 0 ∀x ∈ X. (2.26)

Replacing (x, y, z) by
(

x
2n , 0,−

x
2nk

)
in (2.7), we have for all x ∈ X

|2|n
∥∥∥f ( x

2n

)
+ kh

(
− x

2nk

)∥∥∥ ≤ |2|nϕ( x
2n
, 0,− x

2nk

)
,

so that
A(x) + kC

(
−x
k

)
= 0 ∀x ∈ X. (2.27)

Replacing (x, y, z) by
(

x
2n ,

y
2n ,−

x+y
2nk

)
in (2.7), we have

|2|n
∥∥∥∥f ( x2n)+ g

( y
2n

)
+ kh

(
−x+ y

2nk

)∥∥∥∥ ≤ |2|nϕ( x

2n
,
y

2n
,−x+ y

2nk

)
.

Hence

A(x) +B(y) + kC

(
−x+ y

k

)
= 0 ∀x, y ∈ X. (2.28)

Then by (2.26) and (2.27),

A(x)−A(−y)−A(x+ y) = 0 ∀x, y ∈ X. (2.29)

Letting x = y = 0 in (2.29), it follows that A(0) = 0. Letting x = 0 in (2.29), it follows that A(−y) = −A(y),
so that by (2.29) again,

A(x+ y) = A(x) +A(y) ∀x, y ∈ X.
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Letting x = 0 in (2.28), we have by (2.27)

B(y)−A(y) = B(y) + kC
(
−y
k

)
= 0,

so that A = B. Since A is additive, it follows by (2.27) that A(x) = kC(xk ) and C is additive. By (2.18),(2.19)
and (2.25), the inequalities (2.9) hold true.

Next, we show the uniqueness of A. Assume that T : X → Y is another additive map satisfying (2.9).
Then ‖f(x)− T (x)‖ ≤ ψ1(x) for all x ∈ X. So, we have

‖A(x)− T (x)‖ = lim
n→∞

|2|n
∥∥∥A( x

2n

)
− T

( x
2n

)∥∥∥
≤ lim

n→∞
max

{
|2|n

∥∥∥A( x
2n

)
− f

( x
2n

)∥∥∥ , |2|n ∥∥∥T ( x
2n

)
− f

( x
2n

)∥∥∥}
≤ lim

n→∞
sup
j≥0

{
|2|n+jϕ

( x

2n+j+1
,− x

2n+j+1
, 0
)
, |2|n+jϕ

( x

2n+j+1
, 0,− x

2n+j+1k

)
,

|2|n+jϕ
( x

2n+j
,− x

2n+j+1
,− x

2n+j+1k

)}
= 0

for all x ∈ X. Hence it follows that A = T . This completes the proof.

Corollary 2.3. Let f, g, h, p : X → Y be mappings such that g(0) = h(0) = p(0) = 0 and |2| < 1, |k| < 1.
Assume that

‖f(x) + g(y) + kh(z)‖ ≤
∥∥∥∥kp(x+ y

k
+ z

)∥∥∥∥+ θ(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X, where θ and r are constants with θ > 0 and 0 ≤ r < 1. Then there exists a unique
additive mapping A : X → Y such that for all x ∈ X

‖f(x)−A(x)‖ ≤
(

1 +
1

|2|r
+

1

|2k|r

)
θ‖x‖r,

‖g(x)−A(x)‖ ≤
(

1 +
1

|2|r
+

1

|2k|r

)
θ‖x‖r,

∥∥∥∥h(x)− 1

k
A(kx)

∥∥∥∥ ≤
 1
|k|

(
1 + 2·|k|r

|2|r

)
θ‖x‖r if |k|r + |2|r ≥ 1,

1
|k|

1+|k|r
|2|r θ‖x‖r if |k|r + |2|r < 1.

Corollary 2.4. Let f, g, h, p : X → Y be mappings such that g(0) = h(0) = p(0) = 0 and

‖f(x) + g(y) + kh(z)‖ ≤
∥∥∥∥kp(x+ y

k
+ z

)∥∥∥∥+ θ‖x‖r · ‖y‖r · ‖z‖r

for all x, y, z ∈ X, where θ and r are constants with θ > 0 and r < 1
3 . If |2| 6= 1, then there exists a unique

additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 1

|4k|r
θ‖x‖3r,

‖g(x)−A(x)‖ ≤ 1

|4k|r
θ‖x‖3r,∥∥∥∥h(x)− 1

k
A(kx)

∥∥∥∥ ≤ |k|2r−1|4|r
θ‖x‖3r

for all x ∈ X.
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3. Hyers-Ulam stability of (1.2)

Proposition 3.1. Let f, g, h, p : X → Y be mappings such that g(0) = h(0) = p(0) = 0 and

‖f(x) + g(y) + h(z)‖ ≤
∥∥∥∥kp(x+ y + z

k

)∥∥∥∥ (3.1)

for all x, y, z ∈ X. Then f = g = h and they are additive.

Proof. Replacing (x, y, z) by (x,−x, 0) in (3.1), we get

f(x) + g(−x) = 0 ∀x ∈ X. (3.2)

Replacing (x, y, z) by (x, 0,−x) in (3.1), we get

f(x) + h(−x) = 0 ∀x ∈ X,

and so
g(x) = h(x) ∀x ∈ X.

Replacing (x, y, z) by (x+ y,−x,−y) in (3.1), we have

f(x+ y) + g(−x) + g(−y) = 0 ∀x, y ∈ X,

so that by (3.2)
f(x+ y)− f(x)− f(y) = 0 ∀x, y ∈ X.

That is, f is additive. Since f(−x) + g(x) = 0 by (3.2), we have −f(x) + g(x) = 0 for all x ∈ X. Hence
f = g. This completes the proof.

We now prove the Hyers-Ulam stability of the functional inequality (1.2).

Theorem 3.2. Let f, g, h, p : X → Y be mappings such that g(0) = h(0) = p(0) = 0 and

‖f(x) + g(y) + h(z)‖ ≤
∥∥∥∥kp(x+ y + z

k

)∥∥∥∥+ ϕ(x, y, z), (3.3)

where ϕ : X3 → [0,∞) satisfies ϕ(0, 0, 0) = 0 and

lim
n→∞

|2|nϕ
( x

2n
,
y

2n
,
z

2n

)
= 0 (3.4)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ ψ1(x), (3.5)

‖g(x)−A(x)‖ ≤ ψ2(x), (3.6)

‖h(x)−A(x)‖ ≤ ψ3(x). (3.7)

Here,

ψ1(x) = sup
j≥0

{
|2j |ϕ

( x

2j+1
,− x

2j+1
, 0
)
, |2j |ϕ

( x

2j+1
, 0,− x

2j+1

)
, |2j |ϕ

( x
2j
,− x

2j+1
,− x

2j+1

)}
,

ψ2(x) = sup
j≥0

{
|2j |ϕ

(
− x

2j+1
,
x

2j+1
, 0
)
, |2j |ϕ

(
0,

x

2j+1
,− x

2j+1

)
, |2j |ϕ

(
− x

2j+1
,
x

2j
,− x

2j+1

)}
,

ψ3(x) = sup
j≥0

{
|2j |ϕ

(
− x

2j+1
, 0,

x

2j+1

)
, |2j |ϕ

(
0,− x

2j+1
,
x

2j+1

)
, |2j |ϕ

(
− x

2j+1
,− x

2j+1
,
x

2j

)}
.
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Proof. Replacing (x, y, z) by (0, 0, 0) in (3.3), we get f(0) = 0. Replacing (x, y, z) by (x,−x, 0) in (3.3), we
have

‖f(x) + g(−x)‖ ≤ ϕ(x,−x, 0).

Replacing (x, y, z) by (x, 0,−x) in (3.3), we have

‖f(x) + h(−x)‖ ≤ ϕ(x, 0,−x).

Then
‖2f(x) + g(−x) + h(−x)‖ ≤ max{ϕ(x,−x, 0), ϕ(x, 0,−x)}. (3.8)

Replacing (x, y, z) by (2x,−x,−x) in (3.3), we have

‖f(2x) + g(−x) + h(−x)‖ ≤ ϕ(2x,−x,−x). (3.9)

Hence by (3.8) and (3.9),

‖2f(x)− f(2x)‖ ≤ max{ϕ(x,−x, 0), ϕ(x, 0,−x), ϕ(2x,−x,−x)},

and so ∥∥∥2f
(x

2

)
− f(x)

∥∥∥ ≤ max
{
ϕ
(x

2
,−x

2
, 0
)
, ϕ
(x

2
, 0,−x

2

)
, ϕ
(
x,−x

2
,−x

2

)}
(3.10)

for all x ∈ X. Replacing x by x
2j

and multiplying by |2j | on both sides of (3.10) for every nonnegative
integer j, we have∥∥∥2j+1f

( x

2j+1

)
− 2jf

( x
2j

)∥∥∥
≤ max

{
|2j |ϕ

( x

2j+1
,− x

2j+1
, 0
)
, |2j |ϕ

( x

2j+1
, 0,− x

2j+1

)
, |2j |ϕ

( x
2j
,− x

2j+1
,− x

2j+1

)}
(3.11)

for all x ∈ X. Hence
{

2nf
(

x
2n

)}
is a Cauchy sequence in Y . Since Y is complete, we can define the mapping

A : X → Y such that
A(x) := lim

n→∞
2nf

( x
2n

)
.

For nonnegative integers l < m, we have∥∥∥2lf
( x

2l

)
−2mf

( x

2m

)∥∥∥
≤ max

l≤j≤m−1

{∥∥∥2jf
( x

2j

)
− 2j+1f

( x

2j+1

)∥∥∥}
≤ max

l≤j≤m−1

{
|2j |ϕ

( x

2j+1
,− x

2j+1
, 0
)
, |2j |ϕ

( x

2j+1
, 0,− x

2j+1

)
, |2j |ϕ

( x
2j
,− x

2j+1
,− x

2j+1

)} (3.12)

for all x ∈ X. Letting l = 0 and taking the limit as m→∞ in (3.12), we have

‖f(x)−A(x)‖

≤ sup
j≥0

{
|2|jϕ

( x

2j+1
,− x

2j+1
, 0
)
, |2|jϕ

( x

2j+1
, 0,− x

2j+1

)
, |2|jϕ

( x
2j
,− x

2j+1
,− x

2j+1

)}
= ψ1(x)

(3.13)

for all x ∈ X.
Similarly, there exists a mapping B : X → Y such that

B(x) := lim
n→∞

2ng
( x

2n

)
,

and

‖g(x)−B(x)‖

≤ sup
j≥0

{
|2j |ϕ(− x

2j+1
,
x

2j+1
, 0), |2j |ϕ(0,

x

2j+1
,− x

2j+1
), |2j |ϕ(− x

2j+1
,
x

2j
,− x

2j+1
)
}

= ψ2(x).
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We also obtain a mapping C : X → Y such that

C(x) := lim
n→∞

2nh
( x

2n

)
,

and

‖h(x)− C(x)‖

≤ sup
j≥0

{
|2j |ϕ

(
− x

2j+1
, 0,

x

2j+1

)
, |2j |ϕ

(
0,− x

2j+1
,
x

2j+1

)
, |2j |ϕ

(
− x

2j+1
,− x

2j+1
,
x

2j

)}
= ψ3(x).

Next, we show that A = B = C and they are additive. Replacing (x, y, z) by
(

x
2n ,−

x
2n , 0

)
in (3.3), we

have
|2n|

∥∥∥f ( x
2n

)
+ g

(
− x

2n

)∥∥∥ ≤ |2n|ϕ( x
2n
,− x

2n
, 0
)
,

and so
A(x) +B(−x) = 0 (3.14)

for all x ∈ X. Similarly A(x) + C(−x) = 0 for all x ∈ X. Hence B = C.

Replacing (x, y, z) by
(

x
2n ,

y
2n ,
−(x+y)

2n

)
in (3.3), we have

|2n|
∥∥∥∥f ( x2n)+ g

( y
2n

)
+ h

(
−(x+ y)

2n

)∥∥∥∥ ≤ |2n|ϕ( x

2n
,
y

2n
,
−(x+ y)

2n

)
,

and so
A(x) +B(y) + C

(
−(c+ y)

)
= 0

for all x, y ∈ X. Then
A(x)−A(−y)−A(x+ y) = 0,

so that
A(x+ y) = A(x)−A(−y) (3.15)

for all x, y ∈ X. Letting x = y = 0 in (3.15), we have A(0) = 0. Letting x = 0 in (3.15), A(−y) = −A(y),
so that

A(x+ y) = A(x) +A(y)

for all y ∈ X. Then it follows by (3.14) that

A(−x) = −A(x) = B(−x)

for all x ∈ X. Hence A = B = C and A is additive. Therefore the inequalities (3.5),(3.6) and (3.7) hold.
Since the uniqueness of A can be proved similarly as in the proof of Theorem 2.2, we omit it. This

completes the proof.

Corollary 3.3. Let f, g, h, p : X → Y be mappings such that g(0) = h(0) = p(0) = 0 and

‖f(x) + g(y) + h(z)‖ ≤
∥∥∥∥kp(x+ y + z

k

)∥∥∥∥+ θ(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X, where θ and r are constants with θ > 0 and r < 1. If |2| 6= 1, then there exists a unique
additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ (2|2|−r + 1)θ‖x‖r,

‖g(x)−A(x)‖ ≤ (2|2|−r + 1)θ‖x‖r,

‖h(x)−A(x)‖ ≤ (2|2|−r + 1)θ‖x‖r

for all x ∈ X.
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Corollary 3.4. Let f, g, h, p : X → Y be mappings such that g(0) = h(0) = p(0) = 0 and

‖f(x) + g(y) + h(z)‖ ≤
∥∥∥∥kp(x+ y + z

k

)∥∥∥∥+ θ‖x‖r · ‖y‖r · ‖z‖r

for all x, y, z ∈ X, where θ and r are constants with θ > 0 and r < 1
3 . If |2| 6= 1, then there exists a unique

additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ |2|−2rθ‖x‖3r,

‖g(x)−A(x)‖ ≤ |2|−2rθ‖x‖3r,

‖h(x)−A(x)‖ ≤ |2|−2rθ‖x‖3r

for all x ∈ X.
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[7] A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math., 62 (2001), 303–309.

1
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(1998).1

[11] S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Springer, New York,
(2011).1

[12] G. Lu, C. Park, Additive functional inequalities in Banach spaces, J. Inequal. Appl., 2012 (2012), 10 pages.1
[13] C. Park, Y. Cho, M. Han, Functional inequalities associated with Jordan-von Neumann-type additive functional

equations, J. Inequal. Appl., 2007 (2007), 13 pages.1
[14] Th. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300.

1
[15] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math., 66

(2003), 191–200.1
[16] S. M. Ulam, Problems of modern mathematics, Sciences Editions John Wiley & Sons Inc., New York, (1960).1


	1 Introduction and Preliminaries
	2 Hyers-Ulam stability of (1.1)
	3 Hyers-Ulam stability of (1.2)

