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Abstract

In this article, we prove the generalized Hyers-Ulam stability of the following Pexider functional inequalities
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1) + g(y) + kh(=)] < Hkp ()

o ()]

in non-Archimedean Banach spaces. (©2015 All rights reserved.
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1. Introduction and Preliminaries

We recall some basic facts concerning non-Archimedean spaces. By a non-Archimedean field, we mean
a field K equipped with a function (valuation) |- | from K to [0,00) such that |r| = 0 if and only if r = 0,
|rs| = |r||s| and |r + s| < max{|r|,|s|} for all r,s € K. Clearly, |1| =| —1| =1 and |n| <1 for all n € N.
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Definition 1.1. Let X be a vector space over a non-Archimedean scalar field K with a valuation |- |. A
function || - || : X — [0, 00) is a non-Archimedean norm if it satisfies for all r € K, z,y € X

(i) |lz|]| = 0 if and only if x = 0,

(i) [l = |rll,

(ili) ||z + y|| < max{||z|,]|y]|} (the strong triangle inequality).

Then (X, | - ||) is called a non-Archimedean normed space.

Definition 1.2. Let {z,} be a sequence in a non-Archimedean normed space X.

(1) {xn} converges to x € X if, for any € > 0 there exists an integer N such that ||z, — x| < e for n > N.
Then the point x is called the limit of the sequence {x,}, which is denoted by lim,_,o z,, = .

(2) {zn} is a Cauchy sequence if the sequence {x,+1 — x,} converges to zero.

(3) X is called a non-Archimedean Banach space if every Cauchy sequence in X is convergent.

The stability problem of functional equations originated from a question of Ulam [16] in 1940, concerning
the stability of group homomorphisms. In 1941, Hyers [9] gave the first affirmative answer to the problem
of Ulam for Banach spaces. Hyers’ result was generalized by Aoki [I] for additive mappings and by Rassias
[14] for linear mappings by considering an unbounded Cauchy difference. Generalizations of the Rassias’
theorem were obtained by Forti [5] and Gavruta [6] who permitted the Cauchy difference to become arbitrary
unbounded.

During the last two decades a number of papers and research monographs have been published on
various generalizations and applications of the Hyers-Ulam stability to a number of functional equations
and mappings. A large list of references concerning the stability of various functional equations can be
found e.g., in the books [3], 10, [1T].

Gilanyi [7] and Rétz [15] showed that if f satisfies the functional inequality

12f(z) +2f (y) = flay™ DIl < | f(zy)]

then f satisfies the Jordan-von Neumann functional equation 2f(z) + 2f(y) = f(zy) + f(xy~1). Gildnyi [§]
and Fechner [4] investigated the Hyers-Ulam stability of the functional inequality

12f (@) +2f(y) = flz =)l < [ F(z +y)ll.

Park et al. [13] investigated the following inequalities:

1) + F) + 12 ||<H2f(“y”)H,
1)+ Fly) + ()H<Hf(:c+y+Z>
1) + (o) + 22 H<H2f< )H

in Banach spaces. Recently, Cho et al. [2] investigated the following inequality

(0 < |kl <3)

1) + Fl) + £ < ka (*“) H |

in non-Archimedean Banach spaces. Lu and Park [12] investigated the following functional inequalities

Y

1) + £) + 1= ||<ka (et

et k591 = o (2
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in Banach spaces.
In this paper we investigate the generalized Hyers-Ulam stability of the following Pexider functional

inequalities
Ty, z> H (1.1)

1)+ o) + 1) < 1o (25252 (12)

in non-Archimedean Banach spaces.

1£(2) + g(y) + kh(2)]| < H"“p (”“"

2. Hyers-Ulam stability of (1.1])

In what follows we assume that X is a non-Archimedean normed space, Y is a non-Archimedean Banach
space and k is a nonzero scalar.

Proposition 2.1. Let f,g,h,p: X — Y be mappings such that g(0) = =p(0) =0 and

)l

forall x,y,z € X. Then f,g and h are additive, f(x) = g(x) = kh(%) for all z € X.

Proof. Letting x =y =z =0 in (2.1]), we have f(0) = 0.
Replacing (z,y, z) by (z,—z,0) in ,

f(@)+9(=2) =0 (2.2)

for all # € X. Replacing (,y, 2) by (2,0, —%) in (2.1),

1£(e) +ato) + kb(a)] < o (T

f(a) + kh (—%) —0 (2.3)
for all x € X.
Replacing (z,y, z) by (z,y, — x+y) in (2.1)),
f(2) + g(y) + kh (—xzy> =0 (2.4)
for all x € X.
By and , we have
f@)+g(y) = fle+y) =0, (2.5)
so that
f@)+9(y) = flz+y) (2.6)

for all z,y € X. Letting x = 0 in (2.6)), it follows that f(y) = g(y), and hence

flx+y) = f(z)+ f(y)

for all x,y € X. Since f is additive it is clear that h is additive and f(x) = kh (%) for all x € X. This
completes the proof. O

We prove the generalized Hyers-Ulam stability of the functional inequality (1.1]).
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Theorem 2.2. Let f,g,h,p: X — Y be mappings such that g(0) = h(0) = p(0) =0 and

rT+y
1)+ )+ kI < ko (27 +2) | + oo, (27)
where ¢ : X3 — [0, 00) satisfies ©(0,0,0) =0 and
' O S
A 12| s"(271’27“271) 0 (28)

for all x,y,z € X. Then there exists a unique additive mapping A : X — Y such that

1f(2) = A=) < (),
lg(x) = A(z)]| < (),

1 (2.9)
i) = k)| < vt
for all x € X. Here,
Y1 (x) = sup {IZW (ﬁ _ﬁ»o) 2P (2j+1’0’ _2j+1k.) 21 (27 EEYESE —m)} ;
va(e) = sup {200 (g7, 7am0) - 1 (0, gm —geeg ) 120 (v 37— ) |-
1 4 kx T - kx = - kx kxr «x
Ys(@) = gy sup {I2Vso <—2j+170= 2j+1> 12 (07 TR W) 1217 (—W, T m)}
forallz e X.
Proof. Letting x =y =z =0 in (2.7)), we get f(0) = 0. Replacing (z,y, z) by (x,—z,0) in (2.7)), we have
1f (@) + g(=2)|| < o(z,—2,0)  VreX. (2.10)
Replacing (z,y, z) by (m,O, —%) in (2.7), we have
x T
~2)|l < S . .
Hf(a:)—i—kh( k)H_cp(a:,O, k:) Ve e X (2.11)
From (2.10) and (2.11)) we have
x x
- “2) < - . . .
I12f(z) + g( ac)—l—kh( k)” _max{go(x, x,O),@(az,O, k>} Ve e X (2.12)
Replacing (z,vy, z) by (2:6, —x, —%) in (2.7), we have
x x
- ~2)|l < —— .
Hf(Zx) +g(—2) +kh( k)H <o (295, z, k) (2.13)
By (2.12) and (2.13)), it follows that
x x
_ < _ _Z e )
I2£(2) - £ (20)]| < max { oz, ~2,0), ¢ (2,0.~ 7 ) 1o (22, 2.~ )} (2.14)

so that

() -] <moxfe (5 50) (G i) ()} wex e
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T

Replacing z by 37
T x

’ x) - ( )H
H2 f (2]‘ 2 g

and multiplying |2 on both sides of (2.15]), we have

(2.16)

as j — oo
for all x € X. Hence {2" f (2%)} is a Cauchy sequence in Y. Since Y is complete, we can define the map

A: X — Y such that .
Alw) = Jim 2°f (55).

For nonnegative integers [ < m, we have for all x € X
1(7) -2 ()] = e {27 (5) -2 G}
H2f(21 2" om ) || = 1<jeme / 27 o
Jo (. ) (5” __* )
< max {|2\<p(2j+1, 5751:0) 12V (57 0 =577 ) - (2.17)

TI<j<m—1
Jo (X T _L>}
2 ‘p<2j’ 21 g ) [

Letting [ = 0 and taking the limit as m — oo in (2.17)), we have

1 f(z) — A(z)]]
T j x __Z xr _r
= P1(x)

for all x € X.
Similarly, there exists a mapping B : X — Y such that B(x) = lim,_, 2"¢ (21) and

lg(z) — B(z)]
< ?glo) {‘2|J<P (‘ﬁa ﬁ,()) 217¢ (07 PYESE —er) 2P <_ﬁ7 bYh _72%1]{:)} (2.19)
= 1a()
for all z € X.
Now we consider the mapping h. Replacing (z,y, z) by (a:, 0, —%) in , we have
T x
Hf(w)—i—kh <_E)H < @(x,O,—E> Ve e X. (2.20)
Replacing (z,y, z) by (0,1:, —%) in (2.7), we have
x x
Hg(:ﬂ)+kzh (fE)H < gp(O,:L",fE) Vz € X. (2.21)
By (2.20),(2.21),
x x x
Hf(x)—l—g(x)+2kh (—%)H Smax{cp (ZL‘,O,—%> ,go((),x,—%)} Vo € X. (2.22)
Replacing (z,y, z) by (ac,x, —2%) in , we have
(2.23)

Hf(:n) +gx) + kh (—2;) H <y <a::n _2;> Vi € X,
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From (2.22)) and ([2.23), it follows that

HQkh <—%> — kh (—2]:) H < max {go (ac,O, —%) , <O,x, —%) , (x,x, —2]:7> } ,
so that

|2h(x) — h(2z)]| < max{go( kx,0,x), (0, —kz,x), p(—kz, —kz,2x)} Vo e X.

%]

Then we have

x kr =z kr x kxr kzx
I < R e B X.  (2.24
H2h(2> h(m)H Wmax{gp( 2,0,2>,cp(0, 2,2),gp< 5 2,x>} Vo € (2.24)

Then by the same argument, there exists a mapping C' : X — Y such that C(z) = lim,,_,o 2"h (2%) and
[h(z) = C ()]l
= Jof 2 g 2 J v P e
<’ |?1>118{’2|30< 2j+17072j+1)7|2|¢<07 2j+1’2j+1>’|2¢< 2j+17 2]+1’2]>} (225)
= 1p3(z)

for all x € X.
Next, we show that A, B, C are additive and A = B, A(x) = kC(%) for all z € X.

Replacing (z,y, z) by (Qn, 23?1,0) , we have
13 (2) o (2] <o (G-t

A(x)+ B(—z)=0 VreX. (2.26)
Replacing (z,y, z) by (2,” ,—ﬁ) in (2.7), we have for all z € X

() w4 (gl = e (50 —5):

A(z) + kC (—%) —0 VeeX. (2.27)

so that

2"

so that

_l’_

L z

oy 9n s 2";6/) in , we have

n x Y r+y n T Yy x4y
i 7 _ < g .
21 (55) - (5) + e (=) | < e (5535
Hence
T+y
A(m)+B(y)+k‘C’< ’ ):0 Vz,y € X. (2.28)
Then by (2.26) and (2.27),
Alxz) — A(—y) — Az +y) =0 Va,yeX. (2.29)

Letting = y = 0 in (2.29), it follows that A(0) = 0. Letting 2 = 0 in (2.29)), it follows that A(—y) = —A(y),

so that by (2.29)) again,
Alz+y) =A(x) + Aly)  Vz,ye X.
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Letting = 0 in ([2.28]), we have by ([2.27))
Y
Bly) = Aly) = By) + kC (—¥) =0,

so that A = B. Since A is additive, it follows by (2.27) that A(z) = kC(%) and C'is additive. By ([2.18)),(2.19)

and (2.25)), the inequalities (2.9)) hold true.
Next, we show the uniqueness of A. Assume that 7' : X — Y is another additive map satisfying (2.9)).

Then || f(x) — T(x)|| < ¥1(x) for all z € X. So, we have

A(2) -7 (2)
< s () -5 ().

n—oo

[A(z) = T(x)|| = lim |2]"

n—oo

() -+ )l

_— B _— x oz
< hm jies {‘2’ (2n+ﬂ+1’ 2n+J+1’ ) 2 <2n+a‘+1 )0, 2n+a’+1k;) ’
2" (5 ~g) )
on+tj’ 2n+]+1 boon+j+l
=0
for all z € X. Hence it follows that A = T. This completes the proof. O

Corollary 2.3. Let f,g,h,p: X — Y be mappings such that g(0) = h(0) = p(0) =0 and 2] < 1, |k| < 1.
Assume that

156 + o) + K0 < o (242 ) |+ el + ol -+ 111

for all x,y,z € X, where 8 and r are constants with 0 > 0 and 0 < r < 1. Then there exists a unique
additive mapping A : X — Y such that for all z € X

I50) =A@ < (14 g + 5y ) olal

1 1
g(x) — Az §(1+ + >9xr,
lofe) = A < (1+ 5 + 57 ) Ol

ﬁ( + o >9||$||T if k"2 > 1,

LS Gl k] 2 < 1.

Hh(az) - %A(kx)

Corollary 2.4. Let f,g,h,p: X — Y be mappings such that g(0) = h(0) = p(0) =0 and

176 + o) + K0 < o (S22 ) |+ 0l ol el

for all x,y,z € X, where 8 and r are constants with 8 > 0 and r < % If 12| # 1, then there exists a unique
additive mapping A : X — Y such that

3r
1)~ A < 0l
1
lo(e) ~ A < el
1 L
i)~ i) | < ol

forallz € X.



S. O. Kim, A. Bodaghi, C. Park, J. Nonlinear Sci. Appl. 8 (2015), 776-786 783

3. Hyers-Ulam stability of (1.2)

Proposition 3.1. Let f,g,h,p: X =Y be mappings such that g(0) = h(0) = p(0) =0 and

1)+ ) + 1) < i (25252 (3.)

forallx,y,z € X. Then f = g = h and they are additive.
Proof. Replacing (x,y, z) by (z, —z,0) in , we get

flz)+g(—z)=0 VrxelX. (3.2)
Replacing (z,y, z) by (x,0,—x) in , we get

f(z)+h(—2)=0 Vr e X,

and so
g(z) = h(x) Vo € X.

Replacing (z,y, 2) by (z + y, —z, —y) in (3.1]), we have
f@e+y)+g(-2)+9(-y) =0 Vr,yeX,

so that by
flaty)—fl@) = fly)=0 Va,yeX.

That is, f is additive. Since f(—z) + g(z) = 0 by (3.2)), we have —f(z) + g(x) = 0 for all z € X. Hence
f = g. This completes the proof. O

We now prove the Hyers-Ulam stability of the functional inequality (1.2]).

Theorem 3.2. Let f,g,h,p: X — Y be mappings such that g(0) = h(0) = p(0) =0 and

r+y+z
1)+ ) + 81 < | (Z52E2) |4 ot (3.3
where ¢ : X3 — [0,00) satisfies ©(0,0,0) =0 and
; n, (2 Y F)\
A 12| SO(zn’ 2n’2n> 0 (34)

for all x,y,z € X. Then there exists a unique additive mapping A : X — Y such that

1/ () = A(@)|| < ¢ (), (3.5)
lg(x) = A(@)]| < a(2), (3.6)
[h(z) — A(2)]| < (). (3.7)

Here,

— J _ J _ J - —_
Vi) _3218{'2 ‘¢<2j+1’ 23'+1’0)’|2 ’90<2j+1’0’ 2j+1> 2o (zj’ i+ 2j+1)}’

— J - = J - J - - =
¢@($>-Sgg{|2\¢’< 2j+1’2j+1’0)’|2 M’(0’2j+17 2j+1)’|2|¢’( 2i 1’ 9j” 2j+1)}7

— J _ J _ J _ _
Yale) = 3‘;13{|2 ‘90< TRt 2j+1)’|2 v (0’ YRR 2j+1> 12 |‘0( i+’ 9+l 2j)}'
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Proof. Replacing (x,y, z) by (0,0,0) in (3.3]), we get f(0) = 0. Replacing (z,y, z) by (x,—=z,0) in (3.3)), we
have

1f (@) + g(=2)|| < o(z,—2,0).
Replacing (z,y, z) by (x,0,—x) in (3.3]), we have

1/ () + h(=2)l| < (x,0,—z).

Then
12f(z) + g(—2) + h(—2)|| < max{p(z, —,0),¢(z,0, —z)}. (3.8)
Replacing (z,y, z) by (2z,—x,—x) in (3.3, we have
1f(22) + g(—=2) + h(=2)|| < (22, —z, —x). (3.9)
Hence by (3.8]) and (3.9)),
HQf(.ﬁU) - f(?l’)” < max{go(a:, -, 0)> 30(.%', 07 _1:)7 90(21‘, -, —l’)},
and so

s (3) - st <o (5-50) s (G0D) w52} om0

for all z € X. Replacing x by 35 and multiplying by |27| on both sides of (3.10]) for every nonnegative
integer j, we have

H2 f (2j+1 215
J _ J _ J _ -
Sma’x{p |(10 (2j+1’ 2j+1’0> 7|2 |90 <2j+1’0’ 2j+1> 5‘2 |90<233 9j+1° 23+1>} (311)

for all z € X. Hence {2“ f (2%)} is a Cauchy sequence in Y. Since Y is complete, we can define the mapping
A: X — Y such that

A(z) := lim 2"f (%) .

n—oo

For nonnegative integers [ < m, we have
|21 (5) 21 ()]
= lSjH;%i{—l{Hij (%) -2 (%)H} (3.12)
< e [P (g5 ) 1 (g 052) 1 (g 5]
for all x € X. Letting | = 0 and taking the limit as m — oo in , we have
1f(z) = A(z)]]

; x x ; x x N x x (3.13)
j _ j _ j _ _ -
Sj{;g{m s0(23‘“’ 2j+1’0)’|2| S0(2]‘“’0’ 2J'+1>’|2| S0(23" 27+ 2]'+1)} = i)

for all z € X.
Similarly, there exists a mapping B : X — Y such that

B(z) := lim 2"g (%) ,

n—oo

and

lg(x) = B(z)]]

< sup {12/l 75 m O 121000, g7 =g Il s g — )} = ¥a(a).
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We also obtain a mapping C' : X — Y such that

C(z) := lim 2”h( ),

n—oo

and
[h(z) — C(=)||

T €T ; €T xT xT T x
< sup {12/l (— 7500 ey )+ 1219 (0= 7m 7 ) 127 (=g — e 39) } = valo)

Next, we show that A = B = C and they are additive. Replacing (z,y, z) by (2n, 29%,0) in (3.3]), we

have FE) o (-2)] <t (- 20).

A(z) + B(—z) =0 (3.14)
for all z € X. Similarly A(x) + C(—x) =0 for all x € X. Hence B = C.
Replacing (z,y, z) by (2%, o5 7(;6:”)) in (3.3]), we have

1(5)+o (@) on (2522 < me (5.2 52

A(z)+ B(y) + C(—(c+y)) =0

2"

and so

12"

and so

for all z,y € X. Then
A(z) = A(=y) — Az +y) =0,

so that
Alz +y) = A(x) — A(—y) (3.15)

for all z,y € X. Letting x = y = 0 in (3.15)), we have A(0) = 0. Letting x = 0 in (3.15)), A(—y) = —A(y),
so that
Az +y) = A(z) + Aly)

for all y € X. Then it follows by (3.14]) that
A(—z) = —A(z) = B(—=x)

for all x € X. Hence A = B = C and A is additive. Therefore the inequalities (3.5)),(3.6) and (3.7) hold.
Since the uniqueness of A can be proved similarly as in the proof of Theorem we omit it. This
completes the proof. O

Corollary 3.3. Let f,g,h,p: X — Y be mappings such that g(0) = h(0) = p(0) =0 and

1£G) + 9() + h(2)]| < Hkp (‘”“)H 0l + Il + #17)

for all x,y,z € X, where 6 and r are constants with > 0 and r < 1. If |2| # 1, then there exists a unique
additive mapping A : X — 'Y such that

1/
lg(z) = A(@)[| < 22]7" + 1f|=[",
1A (z) = A(z)[| < (22[" + Do]j=]|"

z) — Alx)|| < 227" + 1)o]]|",
(

forallz e X.
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Corollary 3.4. Let f,g,h,p: X — Y be mappings such that g(0) = h(0) = p(0) =0 and

1700+ at6) + 1) < i (2 | ol ol el

for all x,y,z € X, where 6 and r are constants with 6 > 0 and r < % If 12| # 1, then there exists a unique
additive mapping A : X —Y such that

1 (z) = Al)] < [217270)|z]*",

lg(z) — A(2)|| < [276]|[|*",
Ih(z) = Al@)|| < 27 6||=(*"
forallz e X.
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