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Abstract

In this article, we introduce a new concept of general mixed width-integral of convex bodies, and establish
some of its inequalities, such as isoperimetric inequality, Aleksandrov-Fenchel inequality, and cyclic inequal-
ity. We also consider the general width-integral of order i and show its related properties and inequalities.
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1. Introduction and main results

Let K™ denote the set of convex bodies (compact, convex subsets with non-empty interiors) in Euclidean
space R™. For the set of convex bodies containing the origin in their interiors and the set of convex bodies
whose centroids lie at the origin in R™, we write K? and K7?, respectively. Let S"~! denote the unit sphere
in R”, and let V(K) denote the n-dimensional volume of a body K. For the standard unit ball B in R", we
use w, = V(B) to denote its volume.

If K € K™, then its support function, hxg = h(K,-) : R" — (—o00,00), is defined by (see [6] 25])

hMK,z)=max{z -y:y € K}, ze€R",

where z - y denotes the standard inner product of z and y.

The study of width-integral has a long history. The notion of the classical width-integral was first
considered by Blaschke (see [3]) and was further studied by Hardy, Littlewood and Pdlya (see [12]). It was
generalized to the mixed width-integral by Lutwak [19] in 1977. Many important results related to the
mixed width-integral were obtained from these articles (see [13| 17, [18], 21]).
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The mixed width-integral, B(Ky,--- , K,), of Ki,---, K,, € K" was defined by (see [19])

Bl Jo) = 1 [ K W) b u)aS (), (1)
where dS(u) is the (n — 1)-dimensional volume element on S"~! and b(K,u) denotes the half width of K
in the direction u, namely, b(K,u) = %h(K, u) + %h(K, —u). If there exists a constant A > 0 such that
b(K,u) = \b(L,u) for all u € S"~! then K and L are said to have similar width.
The main aim of this article is to define a corresponding notion of mixed width-integral, and to extend
Lutwak’s inequalities to the entire family of this new mixed width-integral.
For 7 € (—1,1), the general mixed width-integral, B (K7, --- , K,), of K1,--- , K, € K" is defined by

1
B(Ky, - Ky) = / b (K w) - 0T (K, u)dS (u), (1.2)
n Sn—1
where (") (K, u) = f1(7)h(K,u) + fo(7)h(K, —u) and the functions fi(7) and fo(7) are defined as follows
(1+7)? (1—17)2
=— 7 = 1.
he = sy PO = aare (13)
Clearly,
() + fa(m) =1, (1.4)
fi(=7) = fao7),  fa(=7) = fu(7). (1.5)
Together with , the case 7 = 0 in definition is just Lutwak’s mixed width-integral
B(Ki,---,K,). Two convex bodies K and L are said to have similar general width if there exists a

constant A\ > 0 such that b(™) (K, u) = A7) (L,u) for all u € S, If (") (K, u)b(")(L,u) is a constant for
all w € S"~1, then we call K and L with joint constant general width.

The general operator belongs to the asymmetric Brunn-Minkowski theory which has its starting point in
the theory of valuations in connection with isoperimetric and analytic inequalities (see [I}, 2, (4} [, [7HIT), T4+
16], 22H241, [26H30]).

The main results are the following: We first establish the isoperimetric and Aleksandrov-Fenchel in-
equalities for the general mixed width-integral.

Theorem 1.1. If 7 € (—-1,1) and K1,--- , K, € K, then
V(K1) V(K,) < BO(Ky, - Ky)", (1.6)
with equality if and only if K1,--- , K, are n-balls.

Theorem 1.2. If 7 € (-1,1), Ky,-+- , K, € K" and 1 <m < n, then

m
BO(Ky, -+ Kny)™ < [[BO(Ky, Ky Knigt,++ Knign), (1.7)
=1
with equality if and only if Kyp—m+1, -+ , Ky are all of similar general width.

Moreover, we show a cyclic inequality for the general mixed width-integral.
Theorem 1.3. If 7 € (—1,1) and K, L € K", then fori < j < k,
B (K, 1)* B (K, L)1~ > B (K, L), (L8)
with equality if and only if K and L have similar general width.

Here Blm (K,L)= Bi(T)(K, n —; L,7) in which K appears n — i times and L appears i times.
The proofs of Theorems will be given in the Section [3] of this paper. In Section [ we consider
the general width-integral of order i and establish its related properties and inequalities.
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2. Preliminaries

The radial function, px = p(K,-) : R™ \ {0} — [0, 00), of a compact star-shaped (about the origin) set
K in R" is defined, for u € S"~!, by (see [6] 25])

p(K,u) =max{\>0:\-ue K} (2.1)
The polar body, K*, of K € K" is defined by (see [6l 25])
K'={zeR":z-y<l,ye K}. (2.2)

It is easy to check that for K € K7,
(K*)" = K,

and
1 1

hgs = —, pr~=1—.
PK hi

An extension of the well-known Blaschke-Santalé inequality is as follows (see [20]):

Theorem 2.1. If K € K, then
V(E)V(K") < wy, (2.3)

with equality if and only if K is an ellipsoid.

For K € K" and i =0,1,--- ,n — 1, the quermassintegrals, W;(K), of K is given by (see [0} 25])
Wi(K) = / h(K,u)dS;(K,u), (2.4)
Sn 1

where S;(K,-) denotes the mixed surface area measure of K. Besides, we know that

1
WoH(K) = / h(K,u)dS(K,u) = V(K). (2.5)
Sn—1
The polar coordinate formula for volume of a body K in R" is
1
V(K) = * / (K, u)"dS (1), (2.6)
Sn—1

3. Proofs of Theorems 1.IH1.3
Proof of Theorem [1.1]. Tt follows by Jensen’s inequality (see [12]) that

BO(Ky,- - ,Kn)zl/ b (K, u) - b7 (K, uw)dS(u) (3.1)
Sn—l

—1
> nw? U b<T>(K1,u)1.--b<7>(Kn,u)1dS(u)} ,
Sn—l

with equality if and only if K1, -, K,, have joint constant general width. Together with Hdélder’s inequality
(see [12]), we have

[/gnl b\ (K, u) ™" - ..b(T)(Kn,u)_ldS(u)] - ﬁ [/Sn 1 b (K, u) ™ "dS(u)] _1’ (3.2)

=1
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with equality if and only if Ky,--- , K, have similar general width. Using Minkowski’s inequality (see [12]),
we have

1

L ouas)] "- o o 0 R (33

> |5 [ e mas)] " = v

with equality if and only if K; is origin-symmetric. It follows from Theorem that for inequality (3.3]),

[ ! /S ) lb(T)(Ki,u)”dS(u)} v, (3.4)

2
nwi

with equality if and only if K; is an n-dimensional ellipsoid. From inequalities (3.1), (3.2)) and (3.4)), this
yields
V(K- V(K,) < B(T)(Kl,m VK™

By the equality conditions of inequalities (3.1), (3.2) and (3.4)), equality holds in (1.6) if and only if
K, , K, are n-balls. O

Lemma 3.1 ([I7]). If fo,f1, -, fm are (strictly) positive continuous functions defined on S™ ! and

A1, , A are positive constants the sum of whose reciprocals is unity, then
m 1
Ai A
[ - smtwasto <1 [ s dsw) ™ (35)
with equality if and only if there exist positive constants o, -+ , ay, such that a1f1’\1 (u) = - = amfrm (u)

for all u € S 1,
Proof of Theorem[L.2. Let in Lemma
Ai=m (1 <i<m),
fo=bT (K1, u)- - b (Kym,w)  (fo=1 if m=n),

fl_b ( nH—la) (1§z§m)

Then

/ b (Kq,u) - b7 (K, w)dS(w)
Snf 1

3|~

H [ / DO (K1) - b (Koo, )b (K11, 1) dS (1)
Sn— 1

Combining with definition (1.2, we have

m
BO(Ky, -+ Kp)™ < HB(T)(KL o Koy Ky Kpmig)-

The equality condition of inequality (3.5 implies that equality holds in (1.7 if and only if K, g1, -
are all of similar general width.

afs
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Proof of Theorem [1.3. Tt follows from Holder’s inequality (see [12]) that

o
|
ks

n

j j—i ) ) b
Bk, L) B (K, L) = (1 / (™) (K, u)"~b")(L, u)’dS(u))
n Sn—l

) =

X ( / b (K, u)n-’fb“)(L,u)de(u))
n Sn—l

1 . . -

> 1 / b (K, )96 (L, up dS(u) = BO(K, L),

Snfl

This gives
B (K, LB (), L)~ > BV (K, L)

The equality condition of Hélder’s inequality gets that equality holds in (1.8]) if and only if K and L
have similar general width. O

Taking ¢ = 0, j =i and k = n in inequality (1.8)), we have
Corollary 3.2. If 7 € (—1,1) and K,L € K", then for 0 <i <n,
BO(K, D" < BO(K)"BO(L), (3.6)

fori <0 ori>n, inequality (3.6) is reversed, with equality in every inequality if and only if i = n or, when
i #n, K and L have similar general width.

Let i =1 and i = —1 in Corollary respectively. The dual Minkowski type inequalities for the general
mixed width-integral are as follows:

Corollary 3.3. If T € (—1,1) and K,L € K", then
B (K, L)" < BO(K)" ' BO(L),
with equality if and only if K and L have similar general width.
Corollary 3.4. If 7 € (=1,1) and K, L € K", then
B (K, L)" > B (K" BO)(L) !,

with equality if and only if K and L have similar general width.

4. General width-integral of order 2

In this section, we consider the general width-integral of order i and show its related properties and
inequalities.

Taking K1 =--- =K, ;,=Kand K, ;41 =---=K, =B in , the general width-integral of order
i, BZ-(T)(K), of K € K" is given by

T 1 —
BM(K) = - / (™ (K, u)"dS (). (4.1)
n Sn—1
Let K1 = --- = K, = K in (L.2). We write B()(K) for B")(K,--- , K) called the general width-integral

of K € K™
If Ki,-++,K; € K" and Ay, -+, Ay, € R, then the Minkowski linear combination is defined by (see
[6, 25])
MK+ ALK :{)\1$1+"'+)\mxm:$1 e Ky, ,iL‘mEKm}.
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It is easy to verify that
h( MK+ -+ A K, ) = Mh(K1, ) + -+ Anh(Ko, ).

We now show that the general width-integral of \{ K7 + - -+ + A\ K, is a homogeneous polynomial of
degree n in A1, -+, A\

Theorem 4.1. Suppose 7 € (—1,1) and Ky,--- , K, e K". If K = M K1+ -+ + A K, then

BU(K) = Z Z Ay "')\jnB(T)(Kjla"' K. (4.2)

The following is a direct consequence of Theorem [4.1]

Theorem 4.2. Let 7 € (—1,1) and K € K". If K, = K + uB (> 0) then for j =0,1,--- ,n,

n—j s '
B0 =3 (") B (13)

, i
=0
Further, we establish several inequalities for the general width-integral of order i.

Lemma 4.3. If 7 € (—1,1) and K € K", then
By (K) < V(K¥), (4.4)
with equality if and only if K is origin-symmetric.

Proof. Using Minkowski’s inequality (see [12]), we yield

T 1 1 _ o
BO(K) ™ = | = /S (K ) "dS(u)]

|n

3=

- :L/ (fi(m)h(K,u) + fo(T)h(K,—u))™" dS(u)]
L7 J5n—1

> ib /5711 (FL(T)R(K,u) ™ dS(u)] ~1
) [;‘ ., dS(u)}

n

_ [711 /S hE, u)_”dS(u)}

This implies

B < = [ b s () = V).

The equality condition of Minkowski’s inequality gives that equality holds in (4.4)) if and only if K and
—K are dilated of one another, namely, K is origin-symmetric. O

Theorem 4.4. If 7 € (—1,1) and K € K7, then forn <i < 2n,

BO7(K)BT (K*) < w2

K2 n’

(4.5)

For i < n, inequality (4.5)) is reversed, with equality in every inequality if and only if K is an ellipsoid
centered at the origin.
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Proof. Using Lemma |4.3| and Jensen’s inequality (see [12]), we have for i < 2n and i # n
i72n.
wﬁ(nﬂ) BZ(T)(K)ﬁ > Bgl)(K)_% > V(K*)_% (4.6)

Thus it follows from (4.6]) that

1 —2
i—2n 1

w0 BO (K > V(K) . (4.7)

Together (4.6]), (4.7) with Theorem we get

2

1
[BZ.(T)(K)BY)(K*) > e (4.8)

If n <i < 2n in inequality (4.8), then

B (KB (K*) < w2,

7

If i < n in inequality (4.8]), then
B (KB (K*) > w2,

(2

By the equality conditions of inequality (4.4)), inequality (2.3)) and Jensen’s inequality, we know that
equality holds in every inequality if and only if K is an ellipsoid centered at the origin. O

Lemma 4.5 ([6]). If K € K" and 0 < i < j <k <n, then
Wi (K" > Wi ()T Wi (K7,
with equality if and only if K is an n-ball.
Taking L = B in Theorem the following is a direct result.
Lemma 4.6. For K € K" and 7 € (—1,1), if i < j < k then
B() < BRI B (Y,
with equality if and only if K is of similar general width.
Lemma 4.7. If 7 € (—1,1) and K € K", then
BT\ (K) = Wi (K).

Proof. 1t follows by definition (4.1) that

BV = 1 [ A + A, ~u)ldS(a)
n gn—1
1
=2 /S B, w)dS () = W (K).
0
Theorem 4.8. For 7 € (—1,1) and K € K", if i <n —1 then
Wi(K) < B{(K), (4.9)

with equality if and only if K is an n-ball centered at the origin.
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Proof. Using Lemma it follows that
W;(K) < wi " wii(K), (4.10)
with equality if and only if K is an n-ball. By Lemma we have
wi B, ()" < B (K), (4.11)

with equality if and only if K is of similar general width. Together (4.10f), (4.11]) with Lemma this gives

Wi(K) < B7(K).

From the equality conditions of inequalities (4.10) and (4.11)), we obtain that equality holds in (4.9)) if
and only if K is an n-ball centered at the origin. O

Theorem 4.9. For 7 € (—1,1) and K € K", if 0 < i < n then

B(T)

i (B) < Wiy (K7), (4.12)

with equality if and only if K is an n-ball centered at the origin.
Proof. By Lemma we get

wy VIKY) < Wi (KF), (4.13)
with equality if and only if K* is an n-ball. It follows from Lemma [4.6] that
B (K)" < wi ' B (K, (4.14)

with equality if and only if K is of similar general width. By (4.13)), (4.14)) and Lemma we have

B)/(K) < Wi(K*).
The equality conditions of inequalities (4.13)), (4.14) and (4.4)) imply that equality holds in (4.12)) if and
only if K is an n-ball centered at the origin. O
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