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1. Introduction and Preliminaries

The theory of modular spaces was initiated by Nakano [10] in 1950 in connection with the theory of
order spaces and redefined and generalized by Musielak and Orlicz [11, 12] in 1959. The notion of a modular
metric on an arbitrary set an the corresponding modular space, more general than a metric space were
introduced and studied recently by Chistyakof [1]. There were any authors introduced the generalization
of metric spaces such as Gahler [4], which called 2–metric spaces, and Dhage [3], which called D–metric
spaces. In 2003, Mustafa and Sims [5] found that most of the claims concerning the fundemental topology
properties of D–metric spaces are incorrect. They [6] introduced a generalization of metric spaces, which
called G–metric spaces. In this paper, we introduce the notion of a modular G-metric spaces as the following:

Definition 1.1. Let X be a nonempty set, and let ν : (0,∞)×X×X×X −→ [0,∞] be a function satisfying;
(V1) νλ(x, y, z) = 0 for all x, y ∈ X and λ > 0 if x = y = z,
(V2) νλ(x, x, y) > 0 for all x, y ∈ X and λ > 0 with x 6= y,
(V3) νλ(x, x, y) ≤ νλ(x, y, z) for all x, y, z ∈ X and λ > 0 with z 6= y,
(V4) νλ(x, y, z) = νλ(x, z, y) = νλ(y, z, x) = · · · for all λ > 0 (symmetry in all three variables),
(V5) νλ+µ(x, y, z) ≤ νλ(x, a, a) + νµ(a, y, z) for all x, y, z, a ∈ X and λ, µ > 0 ,
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then the function νλ is called a modular G-metric on X.
The note by setting x = y = z and λ = µ > 0 in (V3), (V5) and taking into account (V1), for all x, y, z ∈ X,
we fined

0 = ν2λ(x, x, x) ≤ νλ(x, a, a) + νλ(a, x, x)

≤ 2νλ(x, y, z).

Example 1.2. The following indexed objects ν are simple examples of modulars on a set X. Let λ > 0 and
x, y, z ∈ X, we have:
(a) νλ(x, y, z) =∞ if x 6= y 6= z, νλ(x, y, z) = 0 if x = y = z; and if (X,G) is a G-metric space, then we also
have:
(b) νλ(x, y, z) = G(x,y,z)

ϕ(λ) , where ϕ : (0,∞)→ (0,∞) is a nondecreasing function;

(c) νλ(x, y, z) =∞ if λ ≤ G(x, y, z), and νλ(x, y, z) = 0 if λ > G(x, y, z);
(d) νλ(x, y, z) =∞ if λ < G(x, y, z), and νλ(x, y, z) = 0 if λ ≥ G(x, y, z).

Remark 1.3. Note that for x, y, z ∈ X the function 0 < λ 7−→ νλ(x, y, z) ∈ [0,∞] is nonincreasing on (0,∞).
Suppose 0 < µ < λ, then (V1) and (V5) imply

νλ(x, y, z) ≤ νλ−µ(x, x, x) + νµ(x, y, z) = νµ(x, y, z).

It follows that each point λ > 0 the right limit νλ+0(x, y, z) = limε→+0 νλ+ε(x, y, z) and left limit νλ−0(x, y, z) =
limε→0 νλ−ε(x, y, z) exist in [0,∞) and following two inequalities hold:

νλ+0(x, y, z) ≤ νλ(x, y, z) ≤ νλ−0(x, y, z).

Definition 1.4. Let ν be a modular G-metric on a set X. The binary relation
ν∼ on X defined for x, y, z ∈ X

by

x
ν∼ y if and only if lim

λ→∞
νλ(x, y, z) = 0 for some z ∈ X (1.1)

is, by virtue of axioms (V1), (V4) and (V5) , an equivalence relation since, if x
ν∼ y and y

ν∼ a, then
there exist z1, z2 ∈ X such that limλ→∞ νλ(x, y, z1) = 0 and limλ→∞ νλ(a, y, z2) = 0, so νλ(a, y, z2) ≤
νλ

2
(x, y, y) + νλ

2
(a, y, z2) ≤ νλ

2
(x, y, z1) + νλ

2
(a, y, z2) → 0 as λ → ∞, and so, x

ν∼ y. Denote by X/
ν∼ the

quotient-set of X with respect to
ν∼ and by

X◦ν (x) = {y ∈ X : y
ν∼ x}

the equivalence class of the element x ∈ X in the quotient-set X/
ν∼. Note, in particular, that x ∈ X◦ν (x)

and that the transitivity property of
ν∼ implies x

ν∼ z if and only if y, z ∈ X◦ν (x) for some x ∈ X (e.g., x = y
or x = z).

It follows from Remark 1.3 that the function G̃ : (X/
ν∼)× (X/

ν∼)× (X/
ν∼)→ [0,∞] given by

G̃(X◦ν (x), X◦ν (y), X◦ν (z)) = lim
λ→∞

νλ(x, y, z), (x, y, z ∈ X),

is well defined (the limit at the right-hand side does not depend on the representatives of the representatives
of the equivalence classes) and satisfies the axioms of a G-metric, except, as Example 1.2(a) shows, that it
may take infinite values.

In what follows we are interested in the equivalence classes X◦ν (x). Note that the quotient-pair (X/
ν∼, G̃)

may degenerate in interesting and important cases: e.g., in Example 1.2(c) we have X◦ν (x) = X for all x ∈ X
and G̃ ≡ 0.

Let us fix an element x0 ∈ X arbitrarily and set Xν = X◦ν (x0). The set Xν is call a modular set.
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Theorem 1.5. If ν is G-metric modular on X, then the modular set Xν is a G-metric space with G-metric
given by

G◦ν(x, y, z) = inf{λ > 0 : νλ(x, y, z) ≤ λ},

for all x, y, z ∈ Xν .

Proof. Given x, y, z ∈ Xν , the value G◦ν(x, y, z) ∈ R+ is well defined: in fact, since x
ν∼ y, then, by virtue of

(1.1), there exists λ0 > 0 such that νλ(x, y, z) ≤ 1 for all λ ≥ λ0, and so, setting λ1 = max{1, λ0}, we get

νλ1(x, y, z) ≤ 1 ≤ λ1,

which together with the definition of G◦ν(x, y, z) gives

G◦ν(x, y, z) ≤ λ1 <∞.

Given x ∈ Xν , (V1) implies

νλ(x, x, x) = 0 < λ for all λ > 0,

and so, G◦ν(x, x, x) = 0. Condition (G2) and (G3) are clear by axioms (V2) and (V3). Due to axiom (V4),
the equalities G◦ν(x, y, z) = G◦ν(x, z, y) = G◦ν(y, z, x) = · · · , x, y, z ∈ Xν , is clear.

Let us show that G◦ν(x, y, z) ≤ G◦ν(x, a, a) + G◦ν(a, y, z) for all x, y, z, a ∈ Xν . In fact, by the definition
of G◦ν , for any λ > G◦ν(x, a, a) and µ > G◦ν(y, z, a) we find νλ(x, a, a) ≤ λ and νµ(a, y, z) ≤ µ, and so, axiom
(V5) implies

νλ+µ(x, y, z) ≤ νλ(x, a, a) + νµ(a, y, z) ≤ λ+ µ.

It follows from the definition of G◦ν that G◦ν(x, y, z) ≤ λ + µ, and it remains to pass to the limits as
λ −→ G◦ν(x, a, a) and µ −→ G◦ν(a, y, z).

Theorem 1.6. Let ν be a modular G-metric on a set X. put

G1
ν(x, y, z) = inf

λ>0

(
λ+ νλ(x, y, z)

)
,

for all x, y, z ∈ Xν . Then G1
ν is a G-metric on Xν such that G◦ν ≤ G1

ν ≤ 2G◦ν .

Proof. Since, for x, y, z ∈ Xν , the value νλ(x, y, z) is finite due to (1.1) for λ > 0 large enough, then the set
{λ + νλ(x, y, z) : λ > 0} ⊂ R+ is nonempty and bounded from below, and so, G1

ν(x, y, z) ∈ R+. Condition
(G2) and (G3) are trivial by axioms (V2) and (V3). Axiom (V4) implies the symmetry of G1

ν .
Let us establish the triangle inequality:

G1
ν(x, y, z) ≤ G1

ν(x, a, a) +G1
ν(a, y, z).

By the definition of G1
ν , for any ε > 0 we find λ = λ(ε) > 0 and µ = µ(ε) > 0 such that

λ+ νλ(x, a, a) ≤ G1
ν(x, a, a) + ε and µ+ νµ(a, y, z) ≤ G1

ν(a, y, z) + ε,

whence, applying axiom (V5),

G1
ν(x, y, z) ≤ (λ+ µ) + νλ+µ(x, y, z) ≤ λ+ µ+ νλ(x, a, a) + νµ(a, y, z)

≤ G1
ν(x, a, a) + ε+G1

ν(a, y, z) + ε,

and it remains to take into account the arbitrariness of ε > 0.
Let us prove that metrics G◦ν and G1

ν are equivalent on Xν . In order to obtain the left-hand side
inequality, suppose that λ > 0 is arbitrary. If νλ(x, y, z) ≤ λ, then the definition of G◦ν implies G◦ν ≤ λ.
Now if νλ(x, y, z) > λ, then G◦ν(x, y, z) ≤ νλ(x, y, z): in fact, setting µ = νλ(x, y, z) we find µ > λ, and so, it
follows from Remark 1.3 that νµ(x, y, z) ≤ νλ(x, y, z) = µ, whence G◦ν(x, y, z) ≤ µ = νλ(x, y, z). Therefore,
for any λ > 0 we have

G◦ν(x, y, z) ≤ max{λ, νλ(x, y, z)} ≤ λ+ νλ(x, y, z),
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and so, taking the infimum over all λ > 0, we arrive at the inequality

G◦ν(x, y, z) ≤ G1
ν(x, y, z).

To obtain the right-hand side inequality, we note that, given λ > 0 such that G◦ν(x, y, z) < λ, by the
definition of G◦ν , we get νλ(x, y, z) ≤ λ, and so, G1

ν(x, y, z) ≤ λ + νλ(x, y, z) ≤ 2λ. passing to the limit as
λ→ G◦ν(x, y, z), we get

G1
ν(x, y, z) ≤ 2G◦ν(x, y, z).

Theorem 1.7. Given a modular G-metric ν on X, x, y, z ∈ Xν and λ > 0, we have:
(a) if G◦ν(x, y, z) < λ, then νλ(x, y, z) ≤ G◦ν(x, y, z) < λ;
(b) if νλ(x, y, z) = λ, then G◦ν(x, y, z) = λ;
(c) if λ = G◦ν(x, y, z) > 0, then νλ+0(x, y, z) ≤ λ ≤ νλ−0(x, y, z).

If the function µ 7→ νµ(x, y, z) is continuous from the right on (0,∞), then along with (a)-(c) we have:
(d) G◦ν(x, y, z) ≤ λ if and only if νλ(x, y, z) ≤ λ.

If the function µ 7→ νµ(x, y, z) is continuous from the left on (0,∞), then along with (a)-(c) we have:
(e) G◦ν(x, y, z) < λ if and only if νλ(x, y, z) < λ.

If the function µ 7→ νµ(x, y, z) is continuous on (0,∞), then along with (a)-(c) we have:
(f) G◦ν(x, y, z) = λ if and only if νλ(x, y, z) = λ.

Proof. (a) For any µ > 0 such that G◦ν(x, y, z) < µ < λ, by the definition of G◦ν and Remark 1.3, we have
νµ(x, y, z) ≤ µ and νλ(x, y, z) ≤ νµ(x, y, z), whence νλ(x, y, z) ≤ µ, and it remains to pass to the limit as
µ −→ G◦ν(x, y, z).

(b) By the definition, G◦ν(x, y, z) ≤ λ, and item (a) implies G◦ν(x, y, z) = λ.
(c) For any µ > λ = G◦ν(x, y, z), the definition of G◦ν implies νµ(x, y, z) ≤ µ, and so,

νλ+0(x, y, z) = lim
µ→λ+0

νµ(x, y, z) ≤ lim
µ→λ+0

µ = λ.

For any 0 < µ < λ we find νµ(x, y, z) > µ (otherwise, the definition of G◦ν , we have λ = G◦ν(x, y, z) ≤ µ),
and so,

νλ−0(x, y, z) = lim
µ→λ−0

νµ(x, y, z) ≥ lim
µ→λ−0

µ = λ.

(d) The implication ⇐ follows from the definition of G◦ν . Let us prove the reverse implication. If
G◦ν(x, y, z) < λ, then, by virtue of item (a), νλ(x, y, z) < λ, and if G◦ν(x, y, z) = λ, then

νλ(x, y, z) = νλ+0(x, y, z) ≤ λ,

which is a consequence of the continuity from the right of the function µ 7→ νµ(x, y, z) and item (c).
(e) By virtue of item (a), it suffices to prove the implication⇐. The definition of G◦ν gives G◦ν(x, y, z) ≤ λ,

but if, on the contrary, λ = G◦ν(x, y, z), then, by item (c), we would have

νλ(x, y, z) = νλ−0(x, y, z) ≥ λ,

which contradicts the assumption.
(f) ⇐ follows from (b). For the reverse assertion, the two inequalities

νλ(x, y, z) ≤ λ ≤ νλ(x, y, z)

follow from (c).
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2. properties

Proposition 2.1. Let (X, ν) be a modular G-metric space, for any x, y, z, a ∈ X it follows that:
(1) If νλ(x, y, z) = 0 for all λ > 0, then x = y = z.
(2) νλ(x, y, z) ≤ νλ

2
(x, x, y) + νλ

2
(x, x, z) for all λ > 0.

(3) νλ(x, y, y) ≤ 2νλ
2
(x, x, y) for all λ > 0.

(4) νλ(x, y, z) ≤ νλ
2
(x, a, z) + νλ

2
(a, y, z) for all λ > 0.

(5) νλ(x, y, z) ≤ 2
3

(
νλ

2
(x, y, a) + νλ

2
(x, a, z) + νλ

2
(a, y, z)

)
for all λ > 0.

(6) νλ(x, y, z) ≤
(
νλ

2
(x, a, a) + νλ

4
(y, a, a) + νλ

4
(z, a, a)

)
for all λ > 0.

If (X,ω) is an ordinary modular metric space, then (X,ω) can define modular G-metric on X by
(Fs) ν

s
λ(x, y, z) = 1

3{ωλ(x, y) + ωλ(y, z) + ωλ(x, z)},
(Fm) νmλ (x, y, z) = max{ωλ(x, y), ωλ(y, z), ωλ(x, z)}, for all λ > 0.
For any nonempty set X. We have seen that from any modular metric ω on X we can construct a modular
G-metric (by (Fs) or (Fm)), for any modular G-metric νλ on X, (Fω) ωνλ(x, y) = νλ(x, y, y) + νλ(x, x, y),
for all λ > 0 is readily seen to define a modular metric on X, for all λ > 0, which satisfies

νλ(x, y, z) ≤ νsλ(x, y, z) ≤ 2νλ(x, y, z),

for all λ > 0. Similarly,

1

2
νλ(x, y, z) ≤ νmλ (x, y, z) ≤ 2νλ(x, y, z),

for all λ > 0. Further, starting from a modular metric ω on X, we have

ων
s

λ (x, y) =
4

3
ωλ(x, y), and ων

m

λ (x, y) = 2ωλ(x, y),

for all λ > 0.

Definition 2.2. Let (X, ν) be a modular G-metric space then for x0 ∈ Xν and r > 0, the ν-ball with center
x0 and radius r is

Bν(x0, r) = {y ∈ Xν : νλ(x0, y, y) < r for all λ > 0}.

Proposition 2.3. Let (X, ν) be a modular G-metric space, then for any x0 ∈ Xν and r > 0, we have
(1) if νλ(x0, x, y) < r, for all λ > 0 then x, y ∈ Bν(x0, r).
(2) if y ∈ Bν(x0, r) then there exists a δ > 0 such that Bν(y, δ) ⊆ Bν(x0, r).

Proof. (1) follow directly from (V3), while (2) follows from (V5) with δ = r − νλ(x0, y, y).

It follows from Proposition 2.3 that the familly of all ν-balls

β = {Bν(x, r)|x ∈ X, r > 0}

is the base of a topology τ(νλ) on Xν .

Proposition 2.4. Let (X, ν) be a modular G-metric space, then for any x0 ∈ Xν and r > 0, we have

Bν

(
x0,

1

3
r

)
⊆ Bωνλ(x0, r) = {y ∈ Xω : ωνλ(x0, y) < r for all λ > 0} ⊆ Bν(x0, r).

Definition 2.5. Let (X, ν) be a modular G-metric space. The sequence {xn}n∈N in Xν is ν-convergent to
x, if it converges to x in the topology τ(νλ).
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Proposition 2.6. Let (X, ν) be a modular G-metric space and {xn}n∈N be a sequence in Xν . Then the
following are equivalent:
(1) {xn}n∈N is ν-convergent to x,
(2) ωνλ(xn, x) −→ 0 as n −→∞, i.e., {xn}n converges to x relative to the modular metric ωνλ.
(3) νλ(xn, xn, x) −→ 0 as n −→∞ for all λ > 0,
(4) νλ(xn, x, x) −→ 0 as n −→∞ for all λ > 0,
(5) νλ(xm, xn, x) −→ 0 as m,n −→∞ for all λ > 0.

Proof. The equivalence of (1) and (2) follows from proposition 2.4. That (2) implies (3) (and(4)) follows
from the definition of ωνλ. (3) implies (4) is a consequence of (3) of proposition 2.1, while (4) entails (5)
follows from (2) of proposition 2.1. Finally, that (5) implies (2) follows from (Fω) and axiom (V3).

Definition 2.7. Let (X, ν) be a modular G-metric space, then a sequence {xn}n∈N ⊆ Xν is said to be
ν-cauchy if for every ε > 0, there exists nε ∈ N such that νλ(xn, xm, xl) < ε for all n,m, l ≥ nε and λ > 0.
A modular G-metric space X is said to be ν-complete if every ν-Cauchy sequence in X is a ν-convergen
sequence in X.

Proposition 2.8. Let (X, ν) be a modular G-metric space and {xn}n∈N be a sequence in Xν . Then the
following are equivalent:
(1) {xn}n∈N is ν-Cauchy.
(2) For every ε > 0, there exist nε ∈ N such that νλ(xn, xm, xm) < ε, for any n,m ≥ nε and λ > 0.
(3) {xn}n∈N is a cauchy sequence in the modular metric space (X,ωνλ).

Proof. 1 −→ 2) It is trivial by axiom (V3). 2 −→ 3) By definition ωνλ is trivial.
3 −→ 2) By definition ωνλ(xn, xm) is trivial.
2 −→ 1) By axiom (V5) and put a = xm is trivial.

Theorem 2.9. Let ν be a modular G-metric on a set X. Given a sequence {xn}∞n=1 ⊆ Xν and x ∈ Xν ,
we have: G◦ν(xn, xn, x) → 0 as n → ∞ if and only if νλ(xn, xn, x) → 0 as n → ∞ for all λ > 0. A similar
assertion holds for Cauchy sequences.

Proof. Given arbitrary ε > 0. Let νλ(xn, xn, x) → 0 as n → ∞ for all λ > 0. We put λ = ε then
νε(xn, xn, x)→ 0, there is a number n0(ε) such that νε(xn, xn, x) ≤ ε for all n ≥ n0(ε), whenceG◦ν(xn, xn, x) ≤
ε for all n ≥ n0(ε).

Necessity. Let us fix λ > 0 arbitrarily. Then, for each ε > 0, we have: either (a) 0 < ε < λ, or (b) ε ≥ λ.
In case (a), by the assumption, there is a number n0(ε) such that G◦ν(xn, xn, x) < ε for all n ≥ n0(ε), and
so, by theorem 1.7(a), we get νε(xn, xn, x) < ε for all n ≥ n0(ε). Since ε < λ, then, in view of Remark 1.3,
we find

νλ(xn, xn, x) ≤ νε(xn, xn, x) < ε

for all n ≥ n0(ε).
In case (b) we set n1(ε) = n0(

λ
2 ). From Remark 1.3 and the just established fact (when ε = λ

2 < λ), we
get:

νλ(xn, xn, x) ≤ νλ
2
(xn, xn, x) <

λ

2
<
ε

2
< ε forall n ≥ n1(ε).

Hence, νλ(xn, xn, x)→ 0 as n→∞ for all λ > 0.
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3. Fixed point theorems

In this section we will prove the existence of fixed point of contractive mapping defined on modular
G–metric spaces, where the completeness is replaced with weaker conditions.

Definition 3.1. A function T : Xν −→ Xν at x ∈ Xν is called ν-continuous if νλ(xn, x, x) −→ 0 then
νλ(Txn, Tx, Tx) −→ 0, for all λ > 0.

Theorem 3.2. Let (X, ν) be a modular G-metric space and let T : Xν −→ Xν be a mapping such that T
satisfies that
(I1) νλ(Tx, Ty, Tz) ≤ aνλ(x, Tx, Tx) + bνλ(y, Ty, Ty) + cνλ(z, Tz, Tz) for all x, y, z ∈ Xν and λ > 0 where
0 < a+ b+ c < 1,
(I2) T is ν-continuous at a point u ∈ Xν ,
(I3) there is x ∈ Xν ; {Tn(x)}n∈N has a subsequence {Tni(x)}n∈N ν-converges to u. Then u is a unique fixed
point.

Proof. ν-continuity of T at u implies that {Tni+1(x)}n∈N ν-convergent to T (u) = u. Suppose T (u) 6= u,
consider the two ν-open balls B1 = B(u, ε) and B2 = B(Tu, ε) where ε < 1

6min{νλ(u, Tu, Tu), νλ(Tu, u, u)}
for all λ > 0.
Since Tni(x) −→ u and Tni+1(x) −→ Tu, then there exist N1 ∈ N such that if i > N1 implies Tni(x) ∈ B1

and Tni+1(x) ∈ B2. Hence our assumption implies that we must have

νλ(Tni(x), Tni+1(x), Tni+1(x)) > ε (i > N1), (3.1)

for all λ > 0. We have from (I1),

νλ(Tni+1(x), Tni+2(x), Tni+3(x)) ≤ aνλ(Tni(x), Tni+1(x), Tni+1(x))

+bνλ(Tni+1(x), Tni+2(x), Tni+2(x))

+cνλ(Tni+2(x), Tni+3(x), Tni+3(x))

for all λ > 0. By axioms of modular G-metric (V3), we have

νλ(Tni+1(x), Tni+2(x), Tni+2(x)) ≤ νλ(Tni+1(x), Tni+2(x), Tni+3(x)), (3.2)

νλ(Tni+2(x), Tni+3(x), Tni+3(x)) ≤ νλ(Tni+1(x), Tni+2(x), Tni+3(x)), (3.3)

for all λ > 0. Whence, from (3.2) and (3.3), we get

νλ(Tni+1(x), Tni+2(x), Tni+3(x)) ≤ rνλ(Tni(x), Tni+1(x), Tni+1(x)), (3.4)

for all λ > 0 where r = a
(1−(b+c)) and r < 1, since 0 < a+ b+ c < 1. On the other hand by inequality (3.2)

and (3.4) we get

νλ(Tni+1(x), Tni+2(x), Tni+2(x)) ≤ rνλ(Tni(x), Tni+1(x), Tni+1(x)), (3.5)

for all λ > 0. For k > j > N1 and by repeated application of (3.5) we have

νλ(Tnk(x), Tnk+1(x), Tnk+1(x)) ≤ rνλ(Tnk−1(x), Tnk(x), Tnk(x))

≤ r2νλ(Tnk−2(x), Tnk−1(x), Tnk−1(x))

≤ · · ·
≤ rnk−njνλ(Tnj (x), Tnj+1(x), Tnj+1(x)),

for all λ > 0. Thus limk−→∞νλ(Tnk(x), Tnk+1(x), Tnk+1(x)) = 0 for all λ > 0, which contradict (3.1), hence
Tu = u.
Suppose there is w ∈ Xν ; Tw = w, then from (I1), we have

νλ(u,w,w) = νλ(Tu, Tw, Tw) ≤ aνλ(u, Tu, Tu) + (b+ c)νλ(w, Tw, Tw) = 0,

for all λ > 0. This prove the uniqueness of u.
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Theorem 3.3. Let (X, ν) be a ν-complete modular G-metric space and let T : Xν −→ Xν be a mapping
satisfies the following condition for all x, y, z ∈ Xν

νλ(Tx, Ty, Tz) ≤ aνλ(x, Tx, Tx)

+bνλ(y, Ty, Ty) + cνλ(z, Tz, Tz) + dνλ(x, y, z), (3.6)

for any λ > 0 where 0 ≤ a+ b+ c+ d < 1, then T has a unique fixed point, say u, and T is ν-continuous at
u.

Proof. Let x0 ∈ Xν be an arbitrary point and define the sequence {xn}n∈N by xn = Tn(x0). By inequality
(3.6) we have

νλ(xn, xn+1, xn+1) ≤ aνλ(xn−1, xn, xn) + (b+ c)νλ(xn, xn+1, xn+1) + dνλ(xn−1, xn, xn),

for all λ > 0. Whence

νλ(xn, xn+1, xn+1) ≤
a+ d

1− (b+ c)
νλ(xn−1, xn, xn),

for all λ > 0. Let r = a+d
1−(b+c) then 0 ≤ r < 1 since 0 ≤ a+ b+ c+ d < 1. So

νλ(xn, xn+1, xn+1) ≤ rνλ(xn−1, xn, xn)

, for all λ > 0. Continuing in the same argument, we will get

νλ(xn, xn+1, xn+1) ≤ rnνλ(xn−1, xn, xn)

, for all λ > 0. Moreover for all n,m ∈ N; n < m we have by axiom (V5)

νλ(xn, xm, xm) ≤ ν λ
m−n

(xn, xn+1, xn+1) + ν λ
m−n

(xn+1, xn+2, xn+2)

+νλ(xn+2, xn+3, xn+3) + · · ·+ ν λ
m−n

(xm−1, xm, xm)

≤ (rn + rn+1 + · · ·+ rm−1)νλ(x0, x1, x1)

≤ rn

1− r
νλ(x0, x1, x1),

for all λ > 0. Hence νλ(xn, xm, xm) −→ 0 as n −→ ∞ for all λ > 0. Thus {xn}n∈N is ν-cauchy sequence.
Due to the completeness of Xν there exists u ∈ Xν such that {xn}n∈N is ν-converge to u. Suppose that
Tu 6= u, then

νλ(xn, Tu, Tu) ≤ aνλ(xn−1, xn, xn) + (b+ c)νλ(u, Tu, Tu) + dνλ(xn−1, u, u),

for all λ > 0. Taking the limit as n −→ ∞ then νλ(u, Tu, Tu) ≤ (b+ c)νλ(u, Tu, Tu) for all λ > 0. This is
contradiction implies that Tu = u. To prove uniqueness, suppose u 6= w such that Tw = w, then

νλ(u,w,w) ≤ aνλ(u, Tu, Tu) + (b+ c)νλ(w, Tw, Tw) + dνλ(u,w,w)

= dνλ(u,w,w),

for all λ > 0 which implies that u = w. To show that T is ν-continuous at u, let {yn}n∈N ⊆ Xν be a sequence
such that limn−→∞ yn = u. We can deduce that

νλ(u, Tyn, T yn) ≤ aνλ(u, Tu, Tu) + (b+ c)νλ(yn, Tyn, T yn) + dνλ(u, yn, yn)

= (b+ c)νλ(yn, T yn, Tyn) + dνλ(u, yn, yn)

and since νλ(yn, T yn, Tyn) ≤ νλ
2
(yn, u, u) + νλ

2
(u, Tyn, T yn), for all λ > 0. We have that

νλ(u, Tyn, T yn)− (b+ c)νλ(u, Tyn, T yn) ≤ νλ(u, Tyn, T yn)− (b+ c)νλ
2
(u, Tyn, T yn)

≤ (b+ c)νλ
2
(yn, u, u) + dνλ(u, yn, yn)
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for all λ > 0, whence

νλ(u, Tyn, T yn) ≤ (b+ c)

1− (b+ c)
νλ

2
(yn, u, u) +

d

1− (b+ c)
νλ(u, yn, yn),

for all λ > 0. Taking the limit as n −→∞ from which we see that νλ(u, Tyn, Tyn) −→ 0 and so by definition
ν-continuous Tyn −→ u = Tu. If is proved that T is ν-continuous at u.

We see that if we take d = 0, the following theorem becomes a direct result.

Theorem 3.4. Let (X, ν) be a ν-complete modular G-metric space and let T : Xν −→ Xν be a mapping
satisfies for all x, y, z ∈ Xν

νλ(Tx, Ty, Tz) ≤ aνλ(x, Tx, Tx) + bνλ(y, Ty, Ty) + cνλ(z, Tz, Tz),

for any λ > 0 where 0 < a+ b+ c < 1, then T has a unique fixed point, say u, and T is ν-continuous at u.

The following examples support that condition (I2) and (I3) in theorem 3.2 do not guarantee the com-
pleteness of the modular G-metric space.

Example 3.5. Let X = [0, 1), λ ∈ (0,∞), T (x) = x
4 and νλ(x, y, z) = G(x,y,z)

λ such that G(x, y, z) =
max{|x− y|, |y − z|, |x− z|}. Then (X, ν) is modular G-metric space but not complete, since the sequence
xn = 1− 1

n is ν-cauchy which is not ν-convergent in (X, ν). However, condition (I2) and (I3) in theorem 3.2
are satisfied.

Theorem 3.6. Let (X, ν) be a modular G-metric space and let T : Xν −→ Xν be a G-continuous mapping
satisfies the following conditions:
(II1) νλ(Tx, Ty, Tz) ≤ k{νλ(x, Tx, Tx) + νλ(y, Ty, Ty) + νλ(z, Tz, Tz)} for all x, y, z ∈M and λ > 0 where
M is an every where dense subset of Xν (whit respect the topology of modular G-metric convergence) and
0 < k < 1

6 ,
(II2) there is x ∈ Xν ; {Tn(x)}n∈N −→ u. Then u is a unique fixed point.

Proof. It is enough to show that condition (I1) in theorem 3.2 holds for any x, y, z ∈ Xν and λ > 0.
Case 1: If x, y, z ∈ Xν\M , let {xn}n, {yn}n, and {zn}n be a sequences in M such that xn −→ x, yn −→ y
and zn −→ z. By axioms of modular G-metric (V5), we have

νλ(Tx, Ty, Tz) ≤ νλ
2
(Tx, Ty, Ty) + νλ

2
(Tz, Ty, Ty)

for all λ > 0, also

νλ
2
(Tz, Ty, Ty) ≤ νλ

4
(Tz, Tzn, T zn) + νλ

8
(Tzn, Tyn, T yn) + νλ

8
(Tyn, T y, Ty) (3.7)

for any λ > 0 and by (II1), we get

νλ
8
(Tzn, T yn, T yn) ≤ k{νλ

8
(zn, T zn, T zn) + 2νλ

8
(yn, T yn, Tyn)} (3.8)

for all λ > 0, again by (V5) we have

νλ
8
(zn, T zn, T zn) ≤ ν λ

16
(zn, z, z) + ν λ

32
(z, Tz, Tz) + ν λ

32
(Tz, Tzn, T zn), (3.9)

νλ
8
(yn, T yn, T yn) ≤ ν λ

16
(yn, y, y) + ν λ

32
(y, Ty, Ty) + ν λ

32
(Ty, Tyn, T yn), (3.10)
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for all λ > 0. So from (3.8), (3.9) and (3.10) we get

νλ
2
(Tz, Ty, Ty) ≤ νλ

4
(Tz, Tzn, T zn) + νλ

8
(Tyn, Ty, Ty)

+kν λ
16

(zn, z, z) + kν λ
32

(Tz, Tzn, T zn) + 2kν λ
16

(yn, y, y)

+2kν λ
32

(Ty, Tyn, T yn) + kν λ
32

(z, Tz, Tz) + 2kν λ
32

(y, Ty, Ty)

≤ (1 + k)ν λ
32

(Tz, Tzn, T zn) + νλ
8
(Tyn, Ty, Ty) (3.11)

+kν λ
16

(zn, z, z) + 2kν λ
16

(yn, y, y) + 2kν λ
32

(Ty, Tyn, T yn)

+kν λ
32

(z, Tz, Tz) + 2kν λ
32

(y, Ty, Ty)

for all λ > 0, similarly we deduce that

νλ
2
(Tx, Ty, Ty) ≤ (1 + k)ν λ

32
(Tx, Txn, Txn) + νλ

8
(yn, T y, Ty)

+kν λ
16

(xn, x, x) + 2kν λ
16

(yn, y, y) (3.12)

+2kν λ
32

(Ty, Tyn, Tyn) + kν λ
32

(x, Tx, Tx) + 2kν λ
32

(y, Ty, Ty)

for all λ > 0. Hence, by inequality (3.11) and (3.12) we get

νλ(Tx, Ty, Tz) ≤ νλ
2
(Tx, Ty, Ty) + νλ

2
(Tz, Ty, Ty)

≤ {(1 + k)ν λ
32

(Tx, Txn, Txn) + νλ
8
(yn, Ty, Ty)

+kν λ
16

(xn, x, x) + 2kν λ
16

(yn, y, y) + 2kν λ
32

(Ty, Tyn, T yn)

+kν λ
32

(x, Tx, Tx) + 2kν λ
32

(y, Ty, Ty)}

+{(1 + k)ν λ
32

(Tz, Tzn, T zn) + νλ
8
(Tyn, Ty, Ty)

+kν λ
16

(zn, z, z) + 2kν λ
16

(yn, y, y) + 2kν λ
32

(Ty, Tyn, T yn)

+kν λ
32

(z, Tz, Tz) + 2kν λ
32

(y, Ty, Ty)}

for all λ > 0. Since T is ν-continuous as n −→∞ in the above inequality we obtain

νλ(Tx, Ty, Tz) ≤ k
{
ν λ

32
(x, Tx, Tx) + 4ν λ

32
(y, Ty, Ty) + ν λ

32
(z, Tz, Tz)

}
for all λ > 0.
Case 2: If x, y ∈M , z ∈ Xν\M , let {zn}n be a sequence in M such that zn −→ z then by (V5) we have

νλ(Tx, Ty, Tz) ≤ νλ
2
(Tx, Ty, Ty) + νλ

2
(Tz, Ty, Ty)

for all λ > 0. On the other hand by (II1) and (V5) we have

νλ
2
(Tx, Ty, Ty) ≤ k

{
νλ

2
(x, Tx, Tx) + 2νλ

2
(y, Ty, Ty)

}
(3.13)

νλ
2
(Tz, Ty, Ty) ≤ νλ

4
(Tz, Tzn, T zn) + νλ

4
(Tzn, Ty, Ty) (3.14)

for all λ > 0. Again by (II1) and (V5) we have

νλ
4
(Tzn, T y, Ty) ≤ k

{
νλ

4
(zn, T zn, T zn) + 2νλ

4
(y, Ty, Ty)

}
(3.15)

and

νλ
4
(zn, T zn, T zn) ≤ νλ

8
(zn, z, z) + ν λ

16
(z, Tz, Tz) + ν λ

16
(Tz, Tzn, T zn) (3.16)

for all λ > 0. By inequality (3.13), (3.14), (3.15) and (3.16) we get

νλ(Tx, Ty, Tz) ≤ kνλ
2
(x, Tx, Tx) + 2kνλ

2
(y, Ty, Ty) + kνλ

8
(zn, z, z) + kν λ

16
(z, Tz, Tz)

+kν λ
16

(Tz, Tzn, T zn) + νλ
4
(Tz, Tzn, T zn) + 2kνλ

4
(y, Ty, Ty)
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for all λ > 0. Since ν is nonincreasing function we have

νλ(Tx, Ty, Tz) ≤ kνλ
2
(x, Tx, Tx) + 2kνλ

4
(y, Ty, Ty) + kνλ

8
(zn, z, z) + kν λ

16
(z, Tz, Tz)

+kν λ
16

(Tz, Tzn, T zn)}+ νλ
4
(Tz, Tzn, T zn) + 2kνλ

4
(y, Ty, Ty)

for all λ > 0. Now letting n −→∞ in the inequality, we get

νλ(Tx, Ty, Tz) ≤ k
{
νλ

2
(x, Tx, Tx) + 4νλ

4
(y, Ty, Ty) + ν λ

16
(z, Tz, Tz)

}
≤ k

{
ν λ

32
(x, Tx, Tx) + 4ν λ

32
(y, Ty, Ty) + ν λ

32
(z, Tz, Tz)

}
for all λ > 0.
Case 3: If y ∈M and x, z ∈ Xν\M , let {xn} and {zn} be a sequences in M such that xn −→ x and zn −→ z,
but by (V5) we have

νλ(Tx, Ty, Tz) ≤ νλ
2
(Tx, Ty, Ty) + νλ

2
(Tz, Ty, Ty) (3.17)

νλ
2
(Tx, Ty, Ty) ≤ νλ

4
(Tx, Txn, Txn) + νλ

4
(Txn, T y, Ty) (3.18)

for all λ > 0. Also from (II1) and (V5) we have

νλ
4
(Txn, T y, Ty) ≤ k{νλ

4
(xn, Txn, Txn) + 2νλ

4
(y, Ty, Ty)} (3.19)

νλ
4
(xn, Txn, Txn) ≤ νλ

8
(xn, x, x) + ν λ

16
(x, Tx, Tx) + ν λ

16
(Tx, Txn, Txn) (3.20)

for all λ > 0. So, by (3.19) and (3.20), we have

νλ
4
(Txn, T y, Ty) ≤ kνλ

8
(xn, x, x) + kν λ

16
(x, Tx, Tx) (3.21)

+kν λ
16

(Tx, Txn, Txn) + 2kνλ
4
(y, Ty, Ty)

for all λ > 0. Then from (3.17) and (3.21) we have

νλ
2
(Tx, Ty, Ty) ≤ kνλ

8
(xn, x, x) + kν λ

16
(x, Tx, Tx) (3.22)

+(1 + k)ν λ
16

(Tx, Txn, Txn) + 2kνλ
4
(y, Ty, Ty)

for all λ > 0. By similaly

νλ
2
(Tz, Ty, Ty) ≤ kνλ

8
(zn, z, z) + kν λ

16
(z, Tz, Tz) (3.23)

+(1 + k)ν λ
16

(Tz, Tzn, T zn) + 2kνλ
4
(y, Ty, Ty)

for all λ > 0. Then from (3.22) and (3.23), we get

νλ(Tx, Ty, Tz) ≤ νλ
2
(Tx, Ty, Ty) + νλ

2
(Tz, Ty, Ty)

≤ (1 + k)ν λ
16

(Tx, Txn, Txn) + 2kνλ
4
(y, Ty, Ty)

+kνλ
8
(xn, x, x) + kν λ

16
(x, Tx, Tx)

+(1 + k)ν λ
16

(Tz, Tzn, T zn) + kνλ
8
(zn, z, z)

+kν λ
16

(z, Tz, Tz) + 2kνλ
4
(y, Ty, Ty)

for all λ > 0. Now letting n −→∞ in the above inequality and using the fact that T is ν-continuous, we get

νλ(Tx, Ty, Tz) ≤ k
{
ν λ

16
(x, Tx, Tx) + 4νλ

4
(y, Ty, Ty) + ν λ

16
(z, Tz, Tz)

}
≤ k

{
ν λ

32
(x, Tx, Tx) + 4ν λ

32
(y, Ty, Ty) + ν λ

32
(z, Tz, Tz)

}
for all λ > 0. So, in all case we have for any x, y, z ∈ Xν and λ > 0

νλ(Tx, Ty, Tz) ≤ aν λ
32

(x, Tx, Tx) + bν λ
32

(y, Ty, Ty) + cν λ
32

(z, Tz, Tz)
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where a = k, b = 4k, c = k and a + b + c < 1 since 0 < k < 1
6 then by theorem , T has a unique fixed

point.
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