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Abstract

The purpose of this paper is to present a fixed point theorem for cyclic weak contractions in compact metric
spaces. (©2013 All rights reserved.

Keywords: Fixed point, weak contraction, cyclic representation.
2010 MSC: 47TH10.

1. Introduction and Preliminaries

Alber and Guerre-Delabriere in [1] define weakly contractive mappings and they prove some fixed point
theorems in the context of Hilbert spaces. In [5] Rhoades extends some results of [1] to complete metric
spaces.

Recently, E. Karapinar in [3] proves a fixed point theorem for an operator T' on a complete metric space
X when X has a cyclic representation with respect to 7.

Firstly, we present some definitions.

Definition 1.1. Let X be a nonempty set, m a positive integer and 7" : X — X an operator.
X =J", A; is said to be a cyclic representation of X with respect to T" if

(i) A;,i=1,2,...,m are nonempty subsets of X.

(ZZ) T(A1> C AQ, ... ,T(Am_l) C Am, T(Am) C Al.
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In [3] the author uses the class of functions J given by
J={¢:]0,00) — [0,00) : continuous, nondecreasing ¢(t) >0 for t € (0,00),$(0) = 0}.

Examples of functions in J are ¢(t) = At with A > 0; ¢(t) = In(1 + ¢); ¢(¢t) = arctan .
We use in this paper the class of functions § given by

§={p:]0,00) — [0,00) : mnondecreasing, ¢(t) >0 for t e (0,00) ¢(0)=0}.

Obviously, J C §.
The function ¢ : [0,00) — [0, 00) given by

(1) = t for t€]0,1
U= 2t for te(1,00)

belongs to § but it is not an element of J.
The following definition appears in [3] (Definition 2).

Definition 1.2. Let (X, d) be a metric space, m a positive integer, A, Ao, ..., A,, closed non-empty subsets
of X and X = J;2, A;. An operator T': X — X is called a cyclic weak contraction if

(i) X =J", A; is a cyclic representation of X with respect to T

(i7) d(Tx,Ty) < d(xz,y) — ¢(d(x,y)) for any x € A; and y € Ajy1,i=1,2,...,m, where A, 41 = A; and
¢ €.
The main result in [3] is the following.

Theorem 1.3. (Theorem 6 of [3]). Let (X, d) be a complete metric space, m a positive integer, Ay, Aa, ..., Ap
nonempty closed subsets of X and X =J" | A;. Let T : X — X be an operator such that

(a) X =" Ai is a cyclic representation of X with respect to T
(b) T is a cyclic weak contraction for certain ¢ € J.
Then T has a unique fized point z € ()" A;.

Remark 1.4. If we look at the proof of Theorem 1 in [3], the author starts with a point 29 € X and considers
the Picard iteration x,4+1 = T'x,. He proves that (z,) is a Cauchy sequence and, therefore, lim, o z, = =
for certain x € X.

Using (a), it is proved that the sequence (z,) has an infinite number of terms in each 4; (i =1,2,...,m)
and in this point, the author uses that the sets A; are closed and proves that x € ()", A4;.

Finally, as (i, 4; is closed (here, it is also used the fact that the sets 4; (i = 1,2,...,m) are closed)
and so complete, the author reduces the problem to an operator of the complete metric space (", A; into
itself and he applies a result of [5].

The purpose of this paper is to give a version of Theorem 1 when X is a compact metric space.

2. Main results

Theorem 2.1. Let (X,d) be a compact metric space and T : X — X a continuous operator.
Suppose that m is a positive integer, Ay, Aa, ..., Am nonempty subsets of X, X = Ji", A; satisfying

(1) X =U~, Ai is a cyclic representation of X with respect to T

(17) d(Tz,Ty) < d(x,y) — p(d(z,y)) for any x € A; and y € A1, where ¢ € §.
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Then T has a unique fixed point.

Proof. Firstly, we will prove that inf{d(z,Tx) :z € X} = 0.

In fact, we take o € X and consider the Picard iteration given by x,11 = Txy,.

If there exists ng € N with .41 = xy, then xp,41 = Tzy, = z,, and, thus, the existence of the fixed
point is proved.

Suppose that x,+1 # ©, for alln =0,1,2...

Then, by (4), for any n > 0 there exists i, € {1,2,...,m} such that z,_1 € A;, and z,, € 4;, and using
(71) we get

d(xny (L'n—l—l) = d(TCUn_l, Txn) < d(xn—la xn) - Sp(d(xn—la xn)) < d(xn—la wn) (21)

Therefore, {d(zy,xn+1)} is a nondecreasing sequence of nonnegative real numbers. This fact implies the
existence of r > 0 such that lim, o d(@p, Tpy1) = 7.
Now, taking n — oo in ([2.1]), we obtain

r S T — hm @(d(«fnflal‘n)) S r

n—o0

and, thus
lim o(d(zp—1,2,)) = 0. (2.2)

n—oo
Suppose that r > 0.
Since that r = inf{d(xy, x,41) : n € N},

0<r<d(zy,zpt1) for n=0,1,2...
and, since ¢ is nondecreasing and ¢(t) > 0 for t € (0, 00) we have

0 <op(r) < p(d(@n, Tni1))-

Letting n — oo in the last inequality

0 < o(r) < lim o(d(zn, Tnt1))

n—oo
and this contradicts to (2.2]).
Therefore, r = 0, i.e., lim,, o d(xy, Tp+1) = 0.
This fact and, since 41 = Tz, gives us that

inf{d(z,Tx):x € X} =0. (2.3)

Now, we consider the mapping
X — R

x—d(x,Tx).
This mapping is, obviously, continuous and, as X is compact, we find z € X such that
d(z,Tz) = inf{d(z,Tx) : z € X}.

By ([2.3), d(z,Tz) = 0 and, consequently, z = Tz.
This proves the existence of a fixed point of T
For the uniqueness, suppose that z and y are two fixed points of T'.
As X =%, A; is a cyclic representation of X with respect to T', we have that z,y € (-, 4;.
By (i)
d(z,y) = d(Tz Ty) < d(z,y) — ¢(d(z,y)) < d(z,y).
Therefore, ¢(d(z,y)) = 0.
Since ¢ € §, d(z,y) = 0 and, thus, z = y.
This finishes the proof. O



J. Harjani, B. Lépez, K. Sadarangani, J. Nonlinear Sci. Appl. 6 (2013), 279284 282

Remark 2.2. Under assumption that X is compact, Theorem 1 is true under weaker assumptions. More
precisely, the sets A; (i = 1,2,...,m) are not necessarily closed and the function ¢ is not necessarily
continuous.

Theorem 2.3. Under assumptions of Theorem 2, the fixed point problem for T is well posed, that is, if
there exists a sequence {yn} in X with d(yn, Tyn) — 0 as n — oo, then y, — z as n — oo, where z is the
unique fized point of T (whose existence is guaranteed by Theorem 2).

Proof. As z is a fixed point of T, by (i) of Theorem 2, z € (%, A4;.
Now, we take {y,} in X with d(yn,Tyn) — 0 as n — oc.
Using the triangular inequality, (ii) of Theorem 2 and the fact that z € ()%, A; we get

A(Yn,2) < dyn, Tyn) + d(Tyn, T2) < d(Yn, Tyn) + d(Yn, z) — ©(d(yn, 2)).

From the last inequality we have
Sp(d(yna Z)) < d(ym Tyn)

and letting n — oo we obtain
lim ¢(d(yn,2)) = 0. (2.4)

n—o0

In order to prove that lim,, o d(yn, z) = 0, suppose, that this is false. Then there exists ¢ > 0 such that
for any n € N we can find p, > n with d(y,,, z) > «.
Since ¢ is nondecreasing and ¢(t) > 0 for ¢t € (0, 00),

0 < ¢(e) < D(d(Ypn, 2))-

Letting n — oo, we get
0 < 6(e) < lim $(d(vp,.))

and this contradicts to (2.4]).
Therefore, lim, o0 d(yn, z) = 0.
This finishes the proof. O

Remark 2.4. In [3], the proof that lim, oo d(yn,z) = 0 in Theorem 3 is easily deduced from ([2.4)) because
the author uses the continuity of .

3. Examples and some remarks

In the sequel, we relate our results with the ones appearing in [4].
Previously, we present the main result of [4]

Theorem 3.1. Let (X,d) be a complete metric space, m a positive integer, Ay, Aa,--- , Ay nonempty
closed subsets of X, ¢ : Ry — R4 a (¢)-comparison function (this means that ¢ is increasing and the

oo
series Z " (t) converges for anyt € Ry ) and T : X — X an operator. Assume that
k=0

(1) X =%, Ai is a cyclic representation of X with respect to T.
(13) d(Tz,Ty) < p(d(z,y)) for any x € A; and y € Aijt1, i = 1,2,-,m, where Ap1 = Aj.

Then T has a unique fized point z* € (\"y A; and the Picard iteration {x,} converges to x* for any starting
point xg € X.

Since compact metric space is a complete metric space, Theorem 4 can be applied when (X, d) is compact.
In what follows, we present an example which can be treated by Theorem 2 and Theorem 4 cannot be
applied.
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Example 3.2. Consider ([0, 1], d) where d is the usual distance given by d(z,y) = [z —y|. Let T : [0,1] —
[0, 1] be the mapping defined by T'z =

1+
In this case, m = 1.
Moreover, for z,y € [0,1]
ATe.Ty) = |5 - Y| eyl |zl
1+ 14yl (A4+2)(1+y) ~ 1+ |z —y|

=T(|z —y|) = d(z,y) — (d(z,y) — T(|z - y])).

Therefore, condition (iz) of Theorem 2 is satisfied for the function ¢ : [0,00) — [0, 00) given by

Moreover, it is easily seen that ¢ € §.
By Theorem2, T" has a unique fixed point (which is z = 0).

t
On the other hand, the function ¥ : [0,00) — [0, 00) given by ¥(t) = e is not a (c¢)-comparison

function since W™ (t)

o
= 1o and, consequently, for ¢t > 0 the series kz_o Wk (t) diverges.

This proves that our example cannot be treated by Theorem 4.
For the following example, we need the following lemma whose proof appears in [2].

Lemma 3.3. Let p:[0,00) — [0, 5) be the function defined by p(x) = arctan(z). Then
plx) —ply) <plx—y)  for x=y.
Now, we consider the function ¥ : [0,00) — [0,00) given by

| arctanx if 0<zx<1
() = { a if 1<u,

wherel—g<a<1.
Example 3.4. Consider the same metric space ([0,1],d) that in Example 1 and the operator T : [0,1] —

[0, 1] given by
Tx = arctan x.

In this case, m = 1. Moreover, taking into account Lemma 1, for x,y € [0, 1] we can obtain

d(Tz,Ty) = |arctanz — arctany| < arctan(|z — y|)
= V(lz —yl) = d(z,y) — (d(z,y) — ¥(d(z,y)))

= d(x,y) - cp(d(x,y)),

where ¢ : [0,00) — [0, 00) is defined as p(z) =z — ¥(z).
Notice that

(z) = T — arctanx if 0<z<1
PU=Y e—a if z2>1

It is easily seen that ¢ € § and ¢ is not continuous. Therefore, this example can be studied by Theorem 2
while Theorem 4 cannot be applied.
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