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Abstract

We consider several hybrid probabilistic contractions with a gauge function ϕ. Without any continuity
or monotonicity conditions for ϕ, we obtain some new common coupled fixed point theorems in Menger
PGM -spaces. Finally, an example is given to illustrate our main results. c©2015 All rights reserved.
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1. Introduction and Preliminaries

The concept of a probabilistic metric space was introduced and studied by Menger [9, 14]. Since then,
many authors have studied the fixed point property for mappings defined on probabilistic metric spaces (see
[4, 5, 16, 17, 18, 20, 21]). Jachymski [6] has proved some fixed point theorems for probabilistic nonlinear
contractions with a gauge function ϕ and discussed the relations between several assumptions concerning
ϕ. Mustafa and Sims [10] defined the concept of a G-metric space and many fixed point theorems for
contractive mappings in G-metric spaces have been studied [1, 2, 11, 15]. Zhou et al. [19] defined the notion
of a generalized probabilistic metric space (or a PGM -space), which was a generalization of a PM -space
and a G-metric space. Since then, some results in Menger PGM -spaces have been studied [22].

Coupled fixed points and their applications for binary mappings have been studied by Bhaskar and
Lakshmikantham [3]. Let X be a non-empty set and T : X × X → X be a mapping; then an element
(u, v) ∈ X ×X is called a coupled fixed point of T if T (u, v) = u and T (v, u) = v. [7, 12, 13] have presented
some results for the existence and uniqueness of coupled fixed points for the cases of partially ordered metric
spaces, cone metric spaces and fuzzy metric spaces.
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In this paper, we introduce and investigate several hybrid probabilistic contractions with a gauge function
ϕ. Our main results prove some common coupled fixed point theorems in Menger PGM -spaces without
any continuity or monotonicity conditions for ϕ.

Let R denote the set of reals, R+ the nonnegative reals and Z+ be the set of all positive integers.
A mapping F : R → R+ is called a distribution function if it is nondecreasing and left continuous with
inf
t∈R

F (t) = 0 and sup
t∈R

F (t) = 1. We will denote by D the set of all distribution functions, while H will always

denote the specific distribution function defined by

H(t) =

{
0, t ≤ 0,
1, t > 0.

A mapping ∆ : [0, 1] × [0, 1] → [0, 1] is called a triangular norm (for short, a t-norm) if the following
conditions are satisfied: ∆(a, 1) = a; ∆(a, b) = ∆(b, a); a ≥ b, c ≥ d ⇒ ∆(a, c) ≥ ∆(b, d); ∆(a,∆(b, c)) =
∆(∆(a, b), c).

Definition 1.1. A t-norm ∆ is said to be of H-type if the family of functions {∆m(t)}∞m=1 is equicontinuous
at t = 1, where

∆1(t) = ∆(t, t), ∆m(t) = ∆(t,∆m−1(t)), for m = 2, 3, ..., t ∈ [0, 1].
Two examples of t-norm are ∆m(a, b) = min{a, b} and ∆p(a, b) = ab.

Definition 1.2 ([10]). Let X be a nonempty set and G : X × X × X → R+ be a function satisfying the
following conditions:

(G-1) G(x, y, z) = 0 if x = y = z for all x, y, z ∈ X;

(G-2) G(x, x, y) > 0 for all x, y ∈ X with x 6= y;

(G-3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y;

(G-4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · for all x, y, z ∈ X;

(G-5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.

Then G is called a generalized metric or a G-metric on X and the pair (X,G) is a G-metric space.

Definition 1.3 ([19]). A Menger probabilistic G-metric space (shortly, a PGM -space) is a triple (X,G∗,∆),
where X is a nonempty set, ∆ is a continuous t-norm and G∗ is a mapping from X ×X ×X into D (G∗x,y,z
denotes the value of G∗ at the point (x, y, z)) satisfying the following conditions:

(PGM-1) G∗x,y,z(t) = 1 for all x, y, z ∈ X and t > 0 if and only if x = y = z;

(PGM-2) G∗x,x,y(t) ≥ G∗x,y,z(t) for all x, y, z ∈ X with z 6= y and t > 0;

(PGM-3) G∗x,y,z(t) = G∗x,z,y(t) = G∗y,x,z(t) = ...(symmetry in all three variables);

(PGM-4) G∗x,y,z(t+ s) ≥ ∆(G∗x,a,a(s), G
∗
a,y,z(t)) for all x, y, z, a ∈ X and s, t ≥ 0.

Lemma 1.4. Let (X,G) be a G-metric space. Define a mapping G∗ : X ×X ×X → D by

G∗(x, y, z)(t) = G∗x,y,z(t) = H(t−G(x, y, z)), (1.1)

for x, y, z ∈ X and t > 0. Then (X,G∗,∆) is a Menger PGM -space called the induced Menger PGM -space
by (X,G).

Definition 1.5 ([19]). Let (X,G∗,∆) be a Menger PGM -space and x0 be any point in X. For any ε > 0
and δ with 0 < δ < 1, and (ε, δ)-neighborhood of x0 is the set of all points y in X for which G∗x0,y,y(ε) > 1−δ
and G∗y,x0,x0(ε) > 1− δ. We write

Nx0(ε, δ) = {y ∈ X : G∗x0,y,y(ε) > 1− δ,G∗y,x0,x0(ε) > 1− δ},

which means that Nx0(ε, δ) is the set of all points y in X for which the probability of the distance from x0
to y being less than ε is greater than 1− δ.
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Definition 1.6 ([19]). Let (X,G∗,∆) be a PGM -space, {xn} is a sequence in X.

(1) {xn} is said to be convergent to a point x ∈ X (write xn → x), if for any ε > 0 and 0 < δ < 1, there
exists a positive integer Mε,δ such that xn ∈ Nx0(ε, δ) whenever n > Mε,δ;

(2) {xn} is called a Cauchy sequence, if for any ε > 0 and 0 < δ < 1, there exists a positive integer Mε,δ

such that G∗xn,xm,xl(ε) > 1− δ whenever n,m, l > Mε,δ;

(3) (X,G∗,∆) is said to be complete if every Cauchy sequence in X converges to a point in X.

Lemma 1.7 ([22]). Let (X,G∗,∆) be a Menger PGM -space. For each λ ∈ (0, 1], define a function G∗λ by

G∗λ(x, y, z) = inf
t
{t ≥ 0 : G∗x,y,z(t) > 1− λ}, (1.2)

for any x, y, z ∈ X , then

(1) G∗λ(x, y, z) < t if and only if G∗x,y,z(t) > 1− λ;

(2) G∗λ(x, y, z) = 0 for all λ ∈ (0, 1] if and only if x = y = z;

(3) G∗λ(x, y, z) = G∗λ(y, x, z) = G∗λ(y, z, x) = ...;

(4) If ∆ = ∆m, then for every λ ∈ (0, 1], G∗λ(x, y, z) ≤ G∗λ(x, a, a) +G∗λ(a, y, z).

Lemma 1.8 ([22]). Let (X,G∗,∆) be a Menger PGM -space and let {G∗λ}, λ ∈ (0, 1] be a family of functions
on X defined by (1.2). If ∆ is a t-norm of H-type, then for each λ ∈ (0, 1], there exists µ ∈ [0, λ], such that
for each m ∈ Z+,

G∗λ(x0, xm, xm) ≤
m−1∑
i=0

G∗µ(xi, xi+1, xi+1),

G∗λ(x0, x0, xm) ≤
m−1∑
i=0

G∗µ(xi, xi, xi+1),

for all x0, x1, ..., xm ∈ X.

Lemma 1.9 ([6]). Suppose that F ∈ D. For each n ∈ Z+, let Fn : R → [0, 1] be nondecreasing and
gn : (0,+∞)→ (0,+∞) satisfy limn→∞ gn(t) = 0 for any t > 0. If

Fn(gn(t)) ≥ F (t) for any t > 0,

then limn→∞ Fn(t) = 1 for any t > 0.

Definition 1.10 ([13]). Let X be a non-empty set. Let T : X ×X → X and A : X → X be two mappings.
A is said to be commutative with T if AT (x, y) = T (Ax,Ay) for all x, y ∈ X. A point u ∈ X is called a
common coupled fixed point of T and A if u = Au = T (u, u).

Lemma 1.11 ([17]). Let X be a non-empty set. Let T : X ×X → X and A : X → X be two mappings. If
T (X ×X) ⊂ A(X), then there exist two sequences {xn}∞n=1 and {yn}∞n=1 in X such that Axn+1 = T (xn, yn)
and Ayn+1 = T (yn, xn).

2. Main results

Theorem 2.1. Let (X,G∗,∆) be a complete Menger PGM -space such that ∆ is a t-norm of H-type and
∆ ≥ ∆p. Let ϕ : R+ → R+ be a gauge function such that ϕ−1({0}) = {0} and Σ∞n=1ϕ

n(t) < +∞ for any
t > 0. Let T : X ×X → X and A : X → X be two mappings such that

G∗T (x,y),T (p,q),T (h,l)(ϕ(t)) ≥ [∆(G∗Ax,Ap,Ah(t), G∗Ay,Aq,Al(t))]
1
2 , (2.1)

for all x, y, p, q, h, l ∈ X, where T (X ×X) ⊂ A(X), A is continuous and commutative with T . Then there
exists a unique u ∈ X such that u = Au = T (u, u).
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Proof. By Lemma 1.11, we can construct two sequences {xn}∞n=1 and {yn}∞n=1 in X such that
Axn+1 = T (xn, yn) and Ayn+1 = T (yn, xn). Suppose that t > 0. From (2.1), we have

G∗Axn,Axn+1,Axn+2
(ϕ(t)) = G∗T (xn−1,yn−1),T (xn,yn),T (xn+1,yn+1)

(ϕ(t))

≥ [∆(G∗Axn−1,Axn,Axn+1
(t), G∗Ayn−1,Ayn,Ayn+1

(t))]
1
2 , (2.2)

G∗Ayn,Ayn+1,Ayn+2
(ϕ(t)) = G∗T (yn−1,xn−1),T (yn,xn),T (yn+1,xn+1)

(ϕ(t))

≥ [∆(G∗Ayn−1,Ayn,Ayn+1
(t), G∗Axn−1,Axn,Axn+1

(t))]
1
2 . (2.3)

Suppose that Gn(t) = [∆(G∗Axn−1,Axn,Axn+1
(t), G∗Ayn−1,Ayn,Ayn+1

(t))]
1
2 . Then, operating by t-norm ∆ on (2.2)

and (2.3), from ∆ ≥ ∆p we obtain

Gn+1(ϕ(t)) ≥ [∆(Gn(t), Gn(t))]
1
2 = Gn(t). (2.4)

Thus, it follows from (2.2), (2.3), and (2.4) that

G∗Axn,Axn+1,Axn+2
(ϕn(t)) ≥ Gn(ϕn−1(t)) ≥ · · · ≥ G1(t), (2.5)

G∗Ayn,Ayn+1,Ayn+2
(ϕn(t)) ≥ Gn(ϕn−1(t)) ≥ · · · ≥ G1(t). (2.6)

Next, we show that {Axn} is a Cauchy sequence. For each λ ∈ (0, 1], suppose that Dλ = inf{t > 0 :
G1(t) > 1− λ}. Then, G1(Dλ + 1) > 1− λ. From (2.5) we see that G∗Axn,Axn+1,Axn+2

(ϕn(Dλ + 1)) > 1− λ.
By Lemma 1.7, we have

G∗λ(Axn, Axn+1, Axn+2) < ϕn(Dλ + 1), λ ∈ (0, 1]. (2.7)

By Lemma 1.8, for each λ ∈ (0, 1] there exists µ ∈ (0, 1] such that

G∗λ(Axn, Axm, Axl) < G∗λ(Axn, Axm, Axm) +G∗λ(Axm, Axm, Axl)

≤
m−1∑
i=n

G∗µ(xi, xi+1, xi+1) +
l−1∑
j=m

G∗µ(xj , xj , xj+1). (2.8)

Suppose that ε > 0 and λ ∈ (0, 1] are given. Since Σ∞n=1ϕ
n(Dλ + 1) <∞, there exist N1, N2 ∈ Z+ such that

Σm−1
i=n ϕ

n(Dλ + 1) < ε
2 for all m > n > N1 and Σl−1

j=mϕ
n(Dλ + 1) < ε

2 for all l > m > N2. Then by (2.7)
and (2.8), we have G∗λ(Axn, Axm, Axl) < ε, for all l > m > n > N = max{N1, N2}. From Lemma 1.7, we
obtain G∗Axn,Axm,Axl(ε) > 1− λ, for all l > m > n > N = max{N1, N2}. i.e., {Axn} is a Cauchy sequence.
Similarly, we can also obtain {Ayn} is a Cauchy sequence. Since X is complete, there exist u, v ∈ X such
that limn→∞Axn = u and limn→∞Ayn = v. From the continuity of A, we have

lim
n→∞

AAxn = Au and lim
n→∞

AAyn = Av. (2.9)

The commutativity of A with T implies that AAxn+1 = AT (xn, yn) = T (Axn, Ayn). Since Σ∞n=1ϕ
n(t) < +∞,

we have limn→∞ ϕ
n(t) = 0, so there exists n0 ∈ Z+ such that ϕn0(t) < t. Thus, from (2.1) we have

G∗AAxn+1,AAxn+2,T (u,v)
(t) ≥ G∗AAxn+1,AAxn+2,T (u,v)

(ϕn0(t))

= G∗T (Axn,Ayn),T (Axn+1,Ayn+1),T (u,v)
(ϕn0(t))

≥ [∆(G∗AAxn,AAxn+1,Au(ϕn0−1(t)), G∗AAyn,AAyn+1,Av(ϕ
n0−1(t)))]

1
2 . (2.10)
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Letting n → ∞ in (2.10), we have limn→∞AAxn = limn→∞AAxn+1 = T (u, v). By (2.9), T (u, v) = Au.
Similarly, we can also obtain T (v, u) = Av. Following, we show that Au = v and Av = u. From (2.1) we
have

G∗Au,Ayn,Ayn+1
(ϕ(t)) = G∗T (u,v),T (yn−1,xn−1),T (yn,xn)

(ϕ(t))

≥ [∆(G∗Au,Ayn−1,Ayn(t), G∗Av,Axn−1,Axn(t))]
1
2

≥ [G∗Au,Ayn−1,Ayn(t)G∗Av,Axn−1,Axn(t)]
1
2 . (2.11)

Similarly, we can have

G∗Av,Axn,Axn+1
(ϕ(t)) ≥ [G∗Av,Axn−1,Axn(t)G∗Au,Ayn−1,Ayn(t)]

1
2 . (2.12)

Suppose that Qn(t) = G∗Au,Ayn,Ayn+1
(t)G∗Av,Axn,Axn+1

(t). By (2.11) and (2.12), we have Qn(ϕ(t)) ≥ Qn−1(t),
and

Qn(ϕn(t)) ≥ Qn−1(ϕn−1(t)) ≥ · · · ≥ Q0(t). (2.13)

Furthermore, from (2.11), (2.12), and (2.13), it follows that

G∗Au,Ayn,Ayn+1
(ϕn(t)) ≥ [Q0(t)]

1
2 , G∗Av,Axn,Axn+1

(ϕn(t)) ≥ [Q0(t)]
1
2 . (2.14)

It is obvious that Q0(t) ∈ D+. Since limn→∞ ϕ
n(t) = 0 from (2.14) and Lemma 1.9 we have

lim
n→∞

Axn = Av, lim
n→∞

Ayn = Au.

This shows that u = Av = T (v, u) and v = Au = T (u, v). Now, we prove that u = v. By (2.1) we have

G∗u,v,v(ϕ(t)) = G∗T (v,u),T (u,v),T (u,v)(ϕ(t))

≥ [G∗Av,Au,Au(t)G∗Au,Av,Av(t)]
1
2 = [G∗u,v,v(t)G

∗
v,u,u(t)]

1
2 , (2.15)

G∗u,u,v(ϕ(t)) ≥ [G∗u,v,v(t)G
∗
v,u,u(t)]

1
2 . (2.16)

Suppose F (t) = G∗u,v,v(t)G
∗
v,u,u(t), then F (ϕn(t)) ≥ F (t). Using Lemma 1.9, we have F (t) = 1, i.e. u = v.

So, the proof is finished.

Theorem 2.2. Let (X,G∗,∆) be a complete Menger PGM -space such that ∆ is a t-norm of H-type. Let
ϕ : R+ → R+ be a gauge function such that ϕ−1({0}) = {0}, ϕ(t) < t and limn→∞ ϕ

n(t) = 0 for any t > 0.
Let T : X ×X → X and A : X → X be two mappings such that

G∗T (x,y),T (p,q),T (h,l)(ϕ(t)) ≥ [G∗Ax,Ap,Ah(t)G∗Ay,Aq,Al(t)]
1
2 , (2.17)

for all x, y, p, q, h, l ∈ X, where T (X ×X) ⊂ A(X), A is continuous and commutative with T . Then there
exists a unique u ∈ X such that u = Au = T (u, u).

Proof. The process of the proof is similar to Theorem 2.1, except the proof of {Axn} and {Ayn} are Cauchy
sequences. So, we just show the the difference in the following. By Lemma 1.11, we can construct two
sequences {xn}∞n=1 and {yn}∞n=1 in X such that Axn+1 = T (xn, yn) and Ayn+1 = T (yn, xn). Suppose that
t > 0. From (2.17), we have

G∗Axn,Axn+1,Axn+2
(ϕ(t)) = G∗T (xn−1,yn−1),T (xn,yn),T (xn+1,yn+1)

(ϕ(t))

≥ [G∗Axn−1,Axn,Axn+1
(t)G∗Ayn−1,Ayn,Ayn+1

(t)]
1
2 , (2.18)
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G∗Ayn,Ayn+1,Ayn+2
(ϕ(t)) = G∗T (yn−1,xn−1),T (yn,xn),T (yn+1,xn+1)

(ϕ(t))

≥ [G∗Ayn−1,Ayn,Ayn+1
(t)G∗Axn−1,Axn,Axn+1

(t)]
1
2 . (2.19)

Suppose that Pn(t) = [G∗Axn−1,Axn,Axn+1
(t)G∗Ayn−1,Ayn,Ayn+1

(t)]
1
2 . Then, from (2.18) and (2.19),we obtain

Pn+1(ϕ(t)) ≥ Pn(t), which implies that

G∗Axn,Axn+1,Axn+2
(ϕn(t)) ≥ Pn(ϕn−1(t)) ≥ · · · ≥ P1(t), (2.20)

G∗Ayn,Ayn+1,Ayn+2
(ϕn(t)) ≥ Pn(ϕn−1(t)) ≥ · · · ≥ P1(t). (2.21)

Since P1(t) ∈ D+ and limn→∞ ϕ
n(t) = 0 for each t > 0, by Lemma 1.9 we have

lim
n→∞

G∗Axn,Axn+1,Axn+2
(t) = 1, lim

n→∞
G∗Ayn,Ayn+1,Ayn+2

(t) = 1. (2.22)

Thus, by (2.22), we have
lim
n→∞

Pn(t) = 1 for all t > 0. (2.23)

We claim that, for any k ∈ Z+,

G∗Axn,Axn+k,Axn+k+1
(t) ≥ ∆k(Pn(t− ϕ(t))), G∗Ayn,Ayn+k,Ayn+k+1

(t) ≥ ∆k(Pn(t− ϕ(t))). (2.24)

In fact, this is obvious for k = 1 by (2.18) and (2.19). Assume that (2.24) holds for some k. Since ϕ(t) < t,
by (2.18), we have G∗Axn,Axn+1,Axn+2

(t) ≥ G∗Axn,Axn+1,Axn+2
(ϕ(t)) ≥ Pn(t). By (2.17) and (2.24) we have

G∗Axn+1,Axn+k+1,Axn+k+2
(t) ≥ [G∗Axn,Axn+k,Axn+k+1

(t)G∗Ayn,Ayn+k,Ayn+k+1
(t)]

1
2 ≥ ∆k(Pn(t− ϕ(t))).

Then, we can obtain

G∗Axn,Axn+k+1,Axn+k+2
(t) = G∗Axn,Axn+k+1,Axn+k+2

(t− ϕ(t) + ϕ(t))

≥ ∆(G∗Axn,Axn+1,Axn+1
(t− ϕ(t)), G∗Axn+1,Axn+k+1,Axn+k+2

(t))

≥ ∆(G∗Axn,Axn+1,Axn+2
(t− ϕ(t)),∆k(Pn(t− ϕ(t))))

≥ ∆(Pn(t− ϕ(t)),∆k(Pn(t− ϕ(t))))

= ∆k+1(Pn(t− ϕ(t))).

By the same process, we can obtain G∗Ayn,Ayn+k+1,Ayn+k+2
(t) ≥ ∆k+1(Pn(t−ϕ(t))). Therefore, by induction,

(2.24) holds for all k ∈ Z+. Suppose that ε > 0 and λ ∈ (0, 1] are given. By the hypothesis, ∆ is a t-norm
of H-type, there exists δ > 0 such that

∆k(s) > 1− λ, s ∈ (1− δ, 1], k ∈ Z+. (2.25)

By (2.23), there exists N ∈ Z+ such that Pn(ε− ϕ(ε)) > 1− δ for all n > N . Hence, from (2.24) and (2.25)
we get G∗Axn,Axn+k+1,Axn+k+2

(ε) > 1 − λ and G∗Ayn,Ayn+k+1,Ayn+k+2
(ε) > 1 − λ, for all n ≥ N and k ∈ Z+.

Therefore, {Axn} and {Ayn} are Cauchy sequences.
The next proof is similar to Theorem 2.1.

Theorem 2.3. Let (X,G∗,∆) be a complete Menger PGM -space such that ∆ is a t-norm of H-type and
∆ ≥ ∆p. Let ϕ : R+ → R+ be a gauge function such that ϕ−1({0}) = {0}, ϕ(t) > t and Σ∞n=1ϕ

n(t) = +∞
for any t > 0. Let T : X ×X → X and A : X → X be two mappings such that

G∗T (x,y),T (p,q),T (h,l)(t) ≥ min{(G∗Ax,Ap,Ah(ϕ(t)), G∗Ay,Aq,Al(ϕ(t)))}, (2.26)

for all x, y, p, q, h, l ∈ X, where T (X ×X) ⊂ A(X), A is continuous and commutative with T . Then there
exists a unique u ∈ X such that u = Au = T (u, u).
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Proof. By Lemma 1.11, we can construct two sequences {xn}∞n=1 and {yn}∞n=1 in X such that
Axn+1 = T (xn, yn) and Ayn+1 = T (yn, xn). Suppose that t > 0. From (2.26), we have

G∗Axn,Axn+1,Axn+2
(t) = G∗T (xn−1,yn−1),T (xn,yn),T (xn+1,yn+1)

(t)

≥ min{G∗Axn−1,Axn,Axn+1
(ϕ(t)), G∗Ayn−1,Ayn,Ayn+1

(ϕ(t))}, (2.27)

G∗Ayn,Ayn+1,Ayn+2
(t) = G∗T (yn−1,xn−1),T (yn,xn),T (yn+1,xn+1)

(t)

≥ min{G∗Ayn−1,Ayn,Ayn+1
(ϕ(t)), G∗Axn−1,Axn,Axn+1

(ϕ(t))}. (2.28)

Suppose that En(t) = min{G∗Axn−1,Axn,Axn+1
(t), G∗Ayn−1,Ayn,Ayn+1

(t)}. Then, from (2.27) and (2.28), we
obtain En+1(t) ≥ En(ϕ(t)), which implies that

En+1(t) ≥ En(ϕ(t)) ≥ En−1(ϕ2(t)) ≥ · · · ≥ E1(ϕ
n(t)). (2.29)

Since limn→∞ ϕ
n(t) = +∞ for each t > 0, we have limn→∞E1(ϕ

n(t)) = 1. Moreover, by (2.27), (2.28),
(2.29), we have G∗Axn,Axn+1,Axn+2

(t) ≥ E1(ϕ
n(t)) and G∗Ayn,Ayn+1,Ayn+2

(t) ≥ E1(ϕ
n(t)). Hence,

limn→∞G
∗
Axn,Axn+1,Axn+2

(t) = 1 and limn→∞G
∗
Ayn,Ayn+1,Ayn+2

(t) = 1. This implies that

lim
n→∞

En(t) = 1, t > 0. (2.30)

In the next step we show that, for any k ∈ Z+,

G∗Axn,Axn+k,Axn+k+1
(ϕ(t)) ≥ ∆k(En(ϕ(t)− t)), , G∗Ayn,Ayn+k,Ayn+k+1

(t) ≥ ∆k(En(ϕ(t)− t)). (2.31)

In fact, this is obvious for k = 1 by (2.27) and (2.28). Assume that (2.31) holds for some k. Since
ϕ(t) > t, by (2.27), we have G∗Axn,Axn+1,Axn+2

(t) ≥ En(ϕ(t)) ≥ En(t). By (2.26) and (2.31) we have

G∗Axn+1,Axn+k+1,Axn+k+2
(t) ≥ min{G∗Axn,Axn+k,Axn+k+1

(ϕ(t)), G∗Ayn,Ayn+k,Ayn+k+1
(ϕ(t))} ≥ ∆k(En(ϕ(t)− t)).

By the monotonicity of ∆, we can obtain

G∗Axn,Axn+k+1,Axn+k+2
(ϕ(t)) = G∗Axn,Axn+k+1,Axn+k+2

(ϕ(t)− t+ t)

≥ ∆(G∗Axn,Axn+1,Axn+1
(ϕ(t)− t), G∗Axn+1,Axn+k+1,Axn+k+2

(t))

≥ ∆(G∗Axn,Axn+1,Axn+2
(ϕ(t)− t),∆k(En(ϕ(t)− t)))

≥ ∆(En(ϕ(t)− t),∆k(En(ϕ(t)− t)))
= ∆k+1(En(ϕ(t)− t)).

By the same process, we can obtain G∗Ayn,Ayn+k+1,Ayn+k+2
(ϕ(t)) ≥ ∆k+1(En(ϕ(t)− t)). Therefore, by induc-

tion, (2.31) holds for all k ∈ Z+. Furthermore, by (2.26) and (2.31) we have

G∗Axn,Axn+k,Axn+k+1
(t) ≥ ∆k(En−1(ϕ(t)− t)), G∗Ayn,Ayn+k,Ayn+k+1

(t) ≥ ∆k(En−1(ϕ(t)− t)). (2.32)

Suppose that ε > 0 and λ ∈ (0, 1] are given. By the hypothesis, ∆ is a t-norm of H-type, there exists δ > 0
such that

∆k(s) > 1− λ, s ∈ (1− δ, 1], k ∈ Z+. (2.33)

By (2.30), there exists N ∈ Z+ such that En−1(ϕ(ε) − ε) > 1 − δ for all n ≥ N . Hence, from (2.32)
and (2.33) we get G∗Axn,Axn+k,Axn+k+1

(ε) > 1 − λ and G∗Ayn,Ayn+k,Ayn+k+1
(ε) > 1 − λ, for all n > N and

k ∈ Z+. Then, {Axn} and {Ayn} are Cauchy sequences. Since X is complete, there exist u, v ∈ X such
that limn→∞Axn = u and limn→∞Ayn = v. From the continuity of A, we have

lim
n→∞

AAxn = Au, lim
n→∞

AAyn = Av.
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From (2.26) and the commutativity of A with T it follows that

G∗AAxn+1,AAxn+2,T (u,v)
(t) = G∗T (Axn,Ayn),T (Axn+1,Ayn+1),T (u,v)

(t)

≥ min{G∗AAxn,AAxn+1,Au(ϕ(t)), G∗AAyn,AAyn+1,Av(ϕ(t))}. (2.34)

Letting n → ∞ in (2.34), we have limn→∞AAxn = limn→∞AAxn+1 = T (u, v). Hence, T (u, v) = Au.
Similarly, we can also obtain T (v, u) = Av. Following, we show that Au = v and Av = u. From (2.26) we
have

G∗Au,Ayn,Ayn+1
(t) = G∗T (u,v),T (yn−1,xn−1),T (yn,xn)

(t)

≥ min{G∗Au,Ayn−1,Ayn(ϕ(t)), G∗Av,Axn−1,Axn(ϕ(t))}. (2.35)

Similarly, we can have

G∗Av,Axn,Axn+1
(t) ≥ min{G∗Av,Axn−1,Axn(ϕ(t)), G∗Au,Ayn−1,Ayn(ϕ(t))}. (2.36)

Suppose that Mn(t) = min{G∗Au,Ayn−1,Ayn
(ϕ(t)), G∗Av,Axn−1,Axn

(ϕ(t))}. By (2.35) and (2.36), we have
Mn(t) ≥Mn−1(ϕ(t)) ≥ · · · ≥M0(ϕ

n(t)). Since limn→∞ ϕ
n(t) = +∞, we have

M0(ϕ
n(t)) = min{G∗Au,Ay0,Ay1(ϕn(t)), G∗Av,Ax0,Ax1(ϕn(t))} → 1 (n→∞).

This shows that Mn(t)→ 1 as n→∞, and so

lim
n→∞

Axn = Av, lim
n→∞

Ayn = Au.

This shows that u = Av = T (v, u) and v = Au = T (u, v). Now, we prove that u = v. By (2.26) we have

G∗u,v,v(t) = G∗T (v,u),T (u,v),T (u,v)(t)

≥ min{G∗Av,Au,Au(ϕ(t)), G∗Au,Av,Av(ϕ(t))} = min{G∗u,v,v(ϕ(t)), G∗v,u,u(ϕ(t))}, (2.37)

G∗u,u,v(t) ≥ min{G∗u,v,v(ϕ(t)), G∗v,u,u(ϕ(t))}. (2.38)

Suppose F (t) = min{G∗u,v,v(t), G∗v,u,u(t)}, since F (t) ≥ F (ϕ(t)), then G∗u,v,v(t) ≥ F (ϕ(t)) ≥ F (ϕn(t)).
Letting n→∞, we have G∗u,v,v(t) = 1, i.e., u = v. So, the proof is completed.

For each x ∈ X, if we take the mapping A : X → X as Ax = x, then we can obtain the following
consequence from Theorem 2.1.

Corollary 2.4. Let (X,G∗,∆) be a complete Menger PGM -space such that ∆ is a t-norm of H-type and
∆ ≥ ∆p. Let ϕ : R+ → R+ be a gauge function such that ϕ−1({0}) = {0} and Σ∞n=1ϕ

n(t) < +∞ for any
t > 0. Let T : X ×X → X be a mapping such that

G∗T (x,y),T (p,q),T (h,l)(ϕ(t)) ≥ [∆(G∗x,p,h(t), G∗y,q,l(t))]
1
2 ,

for all x, y, p, q, h, l ∈ X. Then there exists a unique u ∈ X such that u = Au = T (u, u).

Since each hybrid contraction with a gauge function ϕ includes the case of linear contraction as a special
case if we take ϕ(t) = αt or ϕ(t) = t

α where α ∈ (0, 1). For example, from Theorem 2.2 we obtain the
following consequence.

Corollary 2.5. Let (X,G∗,∆) be a complete Menger PGM -space such that ∆ is a t-norm of H-type and
α ∈ (0, 1). Let T : X ×X → X and A : X → X be two mappings such that

G∗T (x,y),T (p,q),T (h,l)(αt) ≥ [G∗Ax,Ap,Ah(t)G∗Ay,Aq,Al(t)]
1
2 ,

for all x, y, p, q, h, l ∈ X, where T (X ×X) ⊂ A(X), A is continuous and commutative with T . Then there
exists a unique u ∈ X such that u = Au = T (u, u).
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3. An application

In this section, we give an example to illustrate the validity of Theorem 2.1.

Example 3.1. Suppose that ∆ = ∆p. Then ∆p is a t-norm of H-type. Define a function G∗ : X×X×X →
R+ by

G∗x,y,z(t) =

{
e−

G(x,y,z)
t , t > 0,

1, t ≤ 0.

for all x, y, z ∈ X, where G(x, y, z) = |x − y| + |y − z| + |z − x|, then G∗ is a G-metric (see [19]). It is
easy to see that G∗ satisfies (PGM-1)-(PGM-3). Next we show G∗(x, y, z)(t+ s) ≥ ∆{G∗x,a,a(t), G∗a,y,z(s)} =
G∗x,a,a(t)G

∗
a,y,z(s) for all x, y, z, a ∈ X and all s, t > 0.

Since

|x− y|+ |y − z|+ |z − x|
t+ s

≤ |x− a|+ |a− y|+ |y − z|+ |z − a|+ |a− x|
t+ s

=
2|x− a|
t+ s

+
|a− y|+ |y − z|+ |z − a|

t+ s

<
2|x− a|

t
+
|a− y|+ |y − z|+ |z − a|

s
,

then, G∗(x, y, z)(t + s) = e−
|x−y|+|y−z|+|z−x|

t+s ≥ e−{
2|x−a|

t
+
|a−y|+|y−z|+|z−a|

s
} = G∗x,a,a(t)G

∗
a,y,z(s). Then G∗ is a

probabilistic G-metric.
Suppose that ϕ(t) = t

2 . For each x, y ∈ X, define T : X×X → X as follows: T (x, y) = x+y, A : X → X
as: Ax = 4x and T (X ×X) ⊂ A(X). A is continuous and commutative with T . For each x, y, p, q, h, l ∈ X
and t > 0, we have
|(x+y)−(p+q)|+|(p+q)−(h+l)|+|(h+l)−(x+y)|

t
2

≤ 4{|x−p|+|p−h|+|h−x|+|y−q|+|q−l|+|l−y|}
t × 1

2 , and so

G∗T (x,y),T (p,q),T (h,l)(
t

2
) = e

− |(x+y)−(p+q)|+|(p+q)−(h+l)|+|(h+l)−(x+y)|
t
2

≥ e−
4{|x−p|+|p−h|+|h−x|+|y−q|+|q−l|+|l−y|}

t
× 1

2

= [e−
4{|x−p|+|p−h|+|h−x|}

t e−
4{|y−q|+|q−l|+|l−y|}

t ]
1
2

= [∆p(G
∗
Ax,Ap,Ah(t), G∗Ay,Aq,Al(t))]

1
2

Thus all the conditions of Theorem 2.1 are satisfied. Therefore, 0 is the unique common coupled fixed point
of T and A.
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