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Abstract

We consider several hybrid probabilistic contractions with a gauge function . Without any continuity
or monotonicity conditions for ¢, we obtain some new common coupled fixed point theorems in Menger
PG M-spaces. Finally, an example is given to illustrate our main results. (©)2015 All rights reserved.
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1. Introduction and Preliminaries

The concept of a probabilistic metric space was introduced and studied by Menger [9] [I4]. Since then,
many authors have studied the fixed point property for mappings defined on probabilistic metric spaces (see
[4, 5, 16l 17, 18, 20, 21]). Jachymski [6] has proved some fixed point theorems for probabilistic nonlinear
contractions with a gauge function ¢ and discussed the relations between several assumptions concerning
. Mustafa and Sims [I0] defined the concept of a G-metric space and many fixed point theorems for
contractive mappings in G-metric spaces have been studied [1I, 2] [1T], 15]. Zhou et al. [19] defined the notion
of a generalized probabilistic metric space (or a PGM-space), which was a generalization of a PM-space
and a G-metric space. Since then, some results in Menger PGM-spaces have been studied [22].

Coupled fixed points and their applications for binary mappings have been studied by Bhaskar and
Lakshmikantham [3]. Let X be a non-empty set and 7' : X x X — X be a mapping; then an element
(u,v) € X x X is called a coupled fixed point of T if T'(u,v) = v and T'(v,u) = v. [7, 12} 13] have presented
some results for the existence and uniqueness of coupled fixed points for the cases of partially ordered metric
spaces, cone metric spaces and fuzzy metric spaces.
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In this paper, we introduce and investigate several hybrid probabilistic contractions with a gauge function
. Our main results prove some common coupled fixed point theorems in Menger PG M-spaces without
any continuity or monotonicity conditions for .

Let R denote the set of reals, RT the nonnegative reals and Z* be the set of all positive integers.
A mapping F : R — R7 is called a distribution function if it is nondecreasing and left continuous with

gné F(t) = 0 and sup F(t) = 1. We will denote by D the set of all distribution functions, while H will always
€ teR

denote the specific distribution function defined by

0, t<0,
H(t):{ 1, t>0.

A mapping A : [0,1] x [0,1] — [0,1] is called a triangular norm (for short, a ¢-norm) if the following
conditions are satisfied: A(a,1) = a;A(a,b) = A(b,a);a > b,c > d = A(a,c) > A(b,d); Ala, A(b,c)) =
A(A(a,b),c).

Definition 1.1. A t-norm A is said to be of H-type if the family of functions {A™(¢)}>°_, is equicontinuous
at t = 1, where
Al(t) = A(t,t),  A™(t) = A(t,A™ (), form=2,3,..,t€][0,1].
Two examples of t-norm are A,,(a,b) = min{a, b} and Ap(a,b) = ab.
Definition 1.2 ([10]). Let X be a nonempty set and G : X x X x X — R be a function satisfying the
following conditions:
G-1) G(z,y,2) =0ifx =y =z for all z,y,z € X;
G-2) G(z,z,y) > 0 for all z,y € X with x # y;
G-3) G(z,z,y) < G(z,y, z) for all z,y,z € X with z # y;
G-4) G(z,y,2) = G(z,2,y) = G(y,z,x) = --- for all z,y,z € X;
G-5) G(z,y,2) < G(z,a,a) + G(a,y, z) for all z,y,z,a € X.

Then G is called a generalized metric or a G-metric on X and the pair (X, G) is a G-metric space.

Definition 1.3 ([19]). A Menger probabilistic G-metric space (shortly, a PGM-space) is a triple (X, G*, A),
where X is a nonempty set, A is a continuous ¢t-norm and G* is a mapping from X x X x X into D (G}, .
denotes the value of G* at the point (z,y, z)) satisfying the following conditions:

PGM-1) G, .(t) =1forall z,y,2 € X and t > 0 if and only if z =y = z;

PGM-2) G}, ,(t) > G5, .(t) for all 2,y, 2 € X with 2z # y and t > 0;

PGM-3) G}, .(t) = G . ,(t) = Gy, .(t) = ...(symmetry in all three variables);

PGM-4) G% ., (t+s) > A(G ,.(5),GE ., .(t)) for all z,y,z,a € X and s,t > 0.

z,Y,2 a,y,%

o~ o~ o~ o~

z,a,a

Lemma 1.4. Let (X, G) be a G-metric space. Define a mapping G* : X x X x X — D by

G*(2,y,2)(t) = Gy - (1) = H(t = G(x,y,2)), (1.1)

x7y7z

forxz,y,z € X andt > 0. Then (X,G*,A) is a Menger PGM -space called the induced Menger PGM -space
by (X,G).

Definition 1.5 ([19]). Let (X, G*, A) be a Menger PGM-space and xo be any point in X. For any € > 0
and § with 0 < § < 1, and (¢, §)-neighborhood of zg is the set of all points y in X for which G (€) >1-¢
and G () >1—0. We write

Y,T0,T0

Nyo(€,0) ={ye X :G; ,, (6 >1—-0,G () >1—4},

z0,Y,Y Y,20,20

which means that Ny, (e, d) is the set of all points y in X for which the probability of the distance from zg
to y being less than € is greater than 1 — 4.
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Definition 1.6 ([19]). Let (X,G*, A) be a PGM-space, {x,} is a sequence in X.

(1) {xy} is said to be convergent to a point x € X (write x,, — ), if for any € > 0 and 0 < ¢ < 1, there
exists a positive integer M, 5 such that x,, € Ny, (€,0) whenever n > M, s;

(2) {zn} is called a Cauchy sequence, if for any € > 0 and 0 < ¢ < 1, there exists a positive integer M, ;
such that G () > 1 — 6 whenever n,m,l > M, ;

T, Tm, ]

(3) (X,G*,A) is said to be complete if every Cauchy sequence in X converges to a point in X.
Lemma 1.7 ([22]). Let (X,G*,A) be a Menger PGM-space. For each X € (0,1], define a function G by

I?y7z

Gi(z,y,2) = irtlf{t >0:G,,(t)>1—A}, (1.2)

for any x,y,z € X , then
(1) Gy(z,y,2) <t if and only if G}, .(t) > 1 —=A;
(2) Gx(z,y,2) =0 for all X € (0,1] if and only if v =y = z;
(3) Gi(z,y,2) = G}(y,2,2) = G} (y, 2, %) = ..;
(4) If A = Ay, then for every X € (0,1], GX(z,y,2) < Gx(z,a,a) + G}(a,y, 2).
Lemma 1.8 ([22]). Let (X,G*,A) be a Menger PGM -space and let {G}}, A € (0,1] be a family of functions
on X defined by (L.2). If A is a t-norm of H-type, then for each X € (0, 1], there exists p € [0, A], such that
for each m € T,

Gi(%, Tm, xm)

G, (xia Zi, xi-‘-l)v

*
G (Ti, Tit1, Tiy1),

*

G/\(.’L'O,.%'O,xm I

m—1
<2
=0
m—1
)< >
=0

for all xg,x1, ..., € X.
Lemma 1.9 ([6]). Suppose that F € D. For each n € Z*, let F,, : R — [0,1] be nondecreasing and
gn : (0, 4+00) = (0, +00) satisfy lim, o0 gn(t) =0 for any t > 0. If
Fa(gn(t)) =2 F(t)  for any t >0,
then limy, oo Fp,(t) = 1 for any t > 0.

Definition 1.10 ([13]). Let X be a non-empty set. Let T': X x X — X and A : X — X be two mappings.
A is said to be commutative with 7" if AT (x,y) = T(Az, Ay) for all z,y € X. A point v € X is called a
common coupled fixed point of T and A if v = Au = T'(u, u).

Lemma 1.11 ([I7]). Let X be a non-empty set. Let T : X x X — X and A: X — X be two mappings. If
T(X x X) C A(X), then there exist two sequences {xp}22 1 and {yn}o>, in X such that Axyi1 = T(xn, yn)
and Ayni1 =T (Yn, Tn).

2. Main results

Theorem 2.1. Let (X,G*,A) be a complete Menger PGM -space such that A is a t-norm of H-type and
A > A, Let p: RT — R be a gauge function such that = *({0}) = {0} and X ,¢"(t) < +oo for any
t>0. LetT: X xX — X and A: X — X be two mappings such that

* * * 1
G (2,9) T (00) T (h1) (P (1) 2 [A(G g ap an(t): Gay aga(1))]2, (2.1)

for all x,y,p,q,h,l € X, where T(X x X) C A(X), A is continuous and commutative with T. Then there
exists a unique uw € X such that u = Au = T (u, u).
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Proof. By Lemma [I.11] we can construct two sequences {z,}52; and {y,}3>, in X such that
Azxpi1 = T(xp,yn) and Aypy1 = T(ypn, xy). Suppose that ¢t > 0. From ({2.1]), we have

Glhen A1, Aznsz(P() = G Ly ) Twmy) T(@nsrymss) (P(0)

> [A(G*Axn_l,Axn,Axn+1 (t)v GZyn_LAyn,Ayn_,_l (t))] ) (22)

NI

GZyn’Ayn+1:Ayn+2 (90(75)) = *T(yn71,ﬂcn71),T(yn,zn)7T(yn+1,wn+1)(so(t))

> [A(GZyn_l,Ayn,Ayn+1 (t), Gan_l,Axn,Amn+1 (t))]

. Then, operating by t-norm A on 1)

D=

(2.3)

NI

Suppose that G, (t) = [A(szn_hAxmAan(t), Gzyn_l,Ayn,AynH (1))]
and (2.3, from A > A, we obtain

1
Gry1(p(t) = [A(Gn(t), Gn(t))]2 = Gnl(t). (2.4)
Thus, it follows from , , and that

G, Avn i1, Aansa (P"(1) = Gu(" (1) > -+ > Gi (1), (2.5)
Gy Ay i1 Ay (9" (1) 2 Gu(@" 71 () 2 -+ = Ga (1), (2.6)

Next, we show that {Ax,} is a Cauchy sequence. For each A € (0, 1], suppose that Dy = inf{t > 0 :
Gi1(t) > 1= A}. Then, G1(Dy +1) >1— A. From (2.5) we see that G%, 4, .\ 4z, (@"(Dx+1)) >1— A
By Lemma we have

GX\(Azy, ATpy1, Azpia) < " (Dy+1), X e (0,1]. (2.7)
By Lemma for each X\ € (0, 1] there exists u € (0, 1] such that

G\ (Axp, Axp, Azy) < GN(Axn, AT, Azp) + G (A, Az, Ax;)

m—1 -1
S Z G;(:CZ, $i+1,$i+1) + Z GZ($]',$]',$]'+1). (2.8)
i=n j=m

Suppose that € > 0 and A € (0, 1] are given. Since X°° ;0" (D) + 1) < oo, there exist Ny, No € Z* such that
S Lo (Dy +1) < § forall m > n > Ny and S22 o"(Dy +1) < § for all [ > m > No. Then b
and , we have G} (Axy, Ay, Az;) < €, for all I > m >n > N = max{Ny, No}. From Lemma (1.7 we
obtain G, 4, Az (€) >1— A foralll >m>n>N =max{Ny, Na}. i.e., {Az,} is a Cauchy sequence.
Similarly, we can also obtain {Ay,} is a Cauchy sequence. Since X is complete, there exist u,v € X such
that lim, 0 Az, = v and lim,_, o Ay, = v. From the continuity of A, we have

lim AAz, = Au and lim AAy, = Av. (2.9)

The commutativity of A with 7" implies that AAz,41 = AT (zp, yn) = T(Azy, Ayy). Since 302 10" () < 400,
we have lim,,_,~ ¢"(t) = 0, so there exists ng € Z* such that ¢"(¢) < t. Thus, from (2.1) we have
Ghnwn i, Adanso Tuw) () = Ghng, 1 Ao Tuw) (@ (1))
= G;’(Amn,Ayn),T(Axn_;_l,Ayn+1),T(u,v) ((Pno (t))

> [A(GZAzn,AA:anrl ,Au(('pno_l (t) )7 GZAyn,AAynJrl JAv (@no_l (t)))] .

N

(2.10)
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Letting n — oo in (2.10), we have lim,, o AAz, = lim, oo AAxpy1 = T(u,v). By ., Au
Similarly, we can also obtain T'(v,u) = Av. Following, we show that Au = v and Av = u. From we
have
G, Ay Agass (P(0) = G(u0) Ty 100 1), T ren) (P(D))
> [A(GZu,Aynfl,Ayn (t)’ GZU,Amnfl,Azn (t))]
* * 1
Z [GAU,Ayn_l,Ayn (t)GAv,Axn_l,A:cn (t)] 2. (211)

ol

Similarly, we can have

[NIES

GZU,A:En,Axn_,_l (Sp(t)) > [GZU,Aazn_l,Amn (t)GZu,Ayn_l,Ayn (t)] . (212)

Suppose that Qn(t) = Gy, ay, Ay,: (DG 4z, Az, (- By (2.11) and (2.12), we have Qn(¢(t)) = Qn-1(t),

and
Qu(@" (1) = Qn-1(" () = -+ > Qo(t). (2.13)
Furthermore, from , , and , it follows that
* n 1 * n 1
GAu,Ayn,Ayn_,_l(SO (t)) > [Qo(t)]% GAv,Aa:n,Azn_,_l((p (t)) > [Qo(t)]Q. (214)

It is obvious that Qo(t) € DF. Since lim, s ¢"(t) = 0 from (2.14) and Lemma [1.9] we have

lim Az, = Av, li_>m Ay, = Au.

n—oo

This shows that u = Av = T'(v,u) and v = Au = T'(u,v). Now, we prove that u = v. By (2.1) we have

G'Zvv( ( )) = G;(v,u),T(u,v),T(u,v) (sp(t))
> [GZU Au, Au(t)G*Au Av Av( )]% = [GZ’U’U( )G:uu( )] ’ (215)
Gl (0(1)) 2 (Gl (DG (1)) (2.16)

Suppose F'(t) = Gy, ,, ,(t)G} (1), then F(¢™(t)) > F(t). Using Lemma we have F(t) =1, i.e. u=v.
So, the proof is finished.

N

O

Theorem 2.2. Let (X,G*, A) be a complete Menger PGM -space such that A is a t-norm of H-type. Let
¢ :RT = R be a gauge function such that p=1({0}) = {0}, ¢(t) < t and lim, 0 ¢™(t) = 0 for any t > 0.
LetT: X xX = X and A: X — X be two mappings such that

*

* 1
GT(:c,y),T(p,q),T(h,l) (So(t)) 2 [GAx,Ap,Ah( )GAy,Aq,Al(t)]2 (217)

for all z,y,p,q,h,l € X, where T(X x X) C A(X), A is continuous and commutative with T. Then there
exists a unique u € X such that w = Au =T (u,u).

Proof. The process of the proof is similar to Theorem except the proof of { Az, } and {Ay, } are Cauchy
sequences. So, we just show the the difference in the following. By Lemma [1.11] we can construct two
sequences {a:n} 1 and {yn}22, in X such that Azp41 = T(zp,yn) and Ayp+1 = T(yn, Tn). Suppose that

t > 0. From , we have

G*Azn,A$n+17Axn+2 (gD(t)) = G;(In—l7yn—1)7T(-Tn,yn)yT(In+1yyn+1) (So(t))

D=

> [Ganfl,Amn,Aanrl (t)szlynfl,Ayn,AynJrl (t)] ) (218)
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G*Ayn7Ayn+17Ayn+2 (p(t) = G*T(yn_l,xn_1),T(yn,xn),T(yn+1,zn+1)(‘P(t»

* * 1
> [GAynfl,Ayn,Ayn+1 (t)GA$n71,AIn,AJ:n+1 (t)] 2. (219)
Suppose that P,(t) = [ Z:rn_l,Aa:n,Aan(t)G*Ayn_l,Ayn,Ayn+1(t)]%' Then, from (2.18)) and (2.19),we obtain
Poy1(p(t)) > Py(t), which implies that
Gty A1 Az (97 (1) = Pu(e"7H (1) > - > Pi(t), (2.20)
Gty Ay Ay (2" (1) = Pu(" (1) > - > Pi(1). (2.21)
Since Py (t) € DT and lim,,—,o0 ¢"(t) = 0 for each ¢ > 0, by Lemma [1.9| we have
nlggo GACCn7A96n+17A$n+2 (t) - 1’ nh_{go GAymAyn+17Ayn+2 (t) =1 (2‘22)
Thus, by (2.22)), we have
H_)m P,(t)y=1 forall t>D0. (2.23)
n—oo

We claim that, for any k € ZT,
Gl Ao Az s (8) = APt = 0(1)); Gl Ay dgnssss (8) = AF(Palt = (1)) (2.24)

In fact, this is obvious for k£ = 1 by (2.18) and (2.19)). Assume that ( - ) holds for some k. Since p(t) <t
by (2.18), we have Gy, ap 1 aznin() 2 Gz aw iy A, (9(1) = Pr(t). By (2.17) and (2.24) we have

> AM(Pa(t — o(t))).

S

G2$n+17A$n+k+1ann+k+2 (t) Z [sznyAxn+kvAmn+k+l (t)GZynyAyn+kaAyn+k+l( )]

Then, we can obtain

Gan,A:cn+k+1,A:cn+k+2 (t) - Gan,A:cn+k+17A:cn+k+2( (t) ( ))
Z A(GZmn,Axn+1,Aa:n+1 ( (t)>’ GA$H+1,A(E7L+]€+1 Axn+k+2 (t))
> A(Glhay Awyar, Azn o (= (1)), AR (Pa(t = 0(1))))

> A(P,(t — (1), AF(Po(t — ¢(t))))
= AFTY(P,(t — (1))

By the same process, we can obtain G = 4, 4, (t) > A*L(P,(t — ¢(t))). Therefore, by induction,
(2.24) holds for all k € ZT. Suppose that ¢ > 0 and X € (0, 1] are given. By the hypothesis, A is a t-norm
of H-type, there exists § > 0 such that

AF(s)>1-) se(1-6,1], kezZt. (2.25)

By (2.23)), there exists N € Z* such that P,(e — ¢(€)) > 1—4 for all n > N. Hence, from (2.24) and (2.25)
we get Gluu Az it Avnsrrs () > 1— X and G*Ayn7Ayn+k+laAyn+k+2( €) >1—\ for all n > N and keZt.
Therefore, { Az, } and {Ay,} are Cauchy sequences.

The next proof is similar to Theorem O

Theorem 2.3. Let (X,G*,A) be a complete Menger PGM -space such that A is a t-norm of H-type and
A > A, Let o : RY — RY be a gauge function such that ¢~ 1({0}) = {0}, p(t) >t and 0" (t) = +o
foranyt>0. LetT : X x X — X and A: X — X be two mappings such that

G (ay) T(pg)r(hy) (8) = MIin{(Glay ap an((t)), Gay ag a((1)))}, (2.26)

for all z,y,p,q,h,l € X, where T(X x X) C A(X), A is continuous and commutative with T. Then there
exists a unique u € X such that w = Au =T (u,u).
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Proof. By Lemma [I.11] we can construct two sequences {z,}52; and {y,}3>, in X such that
Azxpi1 = T(xp,yn) and Ayp+1 = T(ypn, Tn). Suppose that ¢ > 0. From ([2.26]), we have

sznyAszrl:Az’rH»Q (t) = G;(Inflaynfl)7T($nyyn)7T(In+17yn+1) (t)
= min{Gj}xn,l,Azn,Aanﬂ ((,0(75)), Gjlynfl,Ayn,Ay,wl ((p(t))}, (227)

G:ZynvAynlevAynﬂLQ (t) = G;‘(ynfl73777.71)7T(yn7xn)7T(yn+1ﬂ7n+1) (t)
2 min{G);}yn,l,Ayn,AynJrl (@(t))’ Gan,l,Azn,Aanrl (Qo(t))} (228)

Suppose that En(t) = min{G%, | 4, az..,(8):Ghy, | Ay, Ay, (0)} Then, from and -, we
obtain FE,11(t) > E,(¢(t)), which implies that

Eny1(t) > En(o(t)) > En1(9%(t) > - > Bi(¢"(t)). (2.29)

Since lim,, o ¢"(t) = 400 for each ¢t > 0, we have lim,_, F1(¢"(t)) = 1. Moreover, by (2.27)), (2.28]),

(2.29), we have G7y,  4p . az,.,(t) = E1(@"(t) and Gy ay o4y, ., (0) = E1(97(t)). Hence,
lim,, oo GZZH’A%HA%H (t) =1 and limy, 00 Gjlyn,AynH,AynJrz (t) = 1. This implies that

lim Ey(t) =1, ¢>0. (2.30)

In the next step we show that, for any k& € ZT,

Gt Az Ay (P(1) = AN (Ea(o(t) = 1), Gy, ay, gy, (1) = A(En(o(t) —1)). (2:31)
In fact, this is obvious for £k = 1 by (2.27) and (2.28]). Assume that (2.31]) holds for some k. Since
@(t) > t, by (2.27), we have Gy, 4y 1 aa,,, (1) = En(p(t)) = En(t). By (2.26) and (2.31) we have

Gz:vn+1,Axn+k+1,A:cn+k+2 (t) > min{GZ:cn,Amn+k,A:rn+k+1 (Qp(t)% GZyn,Ayn+k,Ayn+k+1 ((p(t))} > Ak(En“O(t) - t))

By the monotonicity of A, we can obtain

Gik4$n,A:Dn+k+1,Al‘n+k+2 (C)O(t)) = Gik4$n7A$n+k+1,A1'n+k+2 (gﬁ(t) - t + t)
> A(GZ:rn,Axn+1,Azn+1( (t) ) GAxn+1,A:En+k+1,A:rn+k+2 (t))
> MGy Aayir A ia (9() = 1), AR (Ep(p(t) — 1))
> A(En(p(t) — ), AF(En(e(t) — 1))
= AMH(EL(p(t) — 1))
By the same process, we can obtain G, 4, o4 L(p(t) > AFYE,(o(t) —t)). Therefore, by induc-
tion, (2.31]) holds for all k € ZT. Furthermore, by (2.26)) and (2.31)) we have
Cror o ieonins®) = A By 10 = 1), Giytgesstmnns (0 = A B (o) — 1), (2.32)

Suppose that € > 0 and A € (0,1] are given. By the hypothesis, A is a t-norm of H-type, there exists § > 0
such that

A¥s)>1-\ se(1-0,1], keZ". (2.33)

By (2.30), there exists N € Z* such that E,_1(p(e) —€) > 1 — ¢ for all n > N. Hence, from ([2.32)

and (2.33) we get szn7A5£n+k7Axn+k+l(€) > 1— X and G*AynvAyn-Q—kvAyn-!—k-kl(e) >1-— ), for all n > N and
k € Z™. Then, {Az,} and {Ay,} are Cauchy sequences. Since X is complete, there exist u,v € X such
that lim, o0 Az, = v and lim,_,o, Ay, = v. From the continuity of A, we have

lim AAx, = Au, lim AAy, = Av.

n—oo n—oo
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From (2.26)) and the commutativity of A with T" it follows that

G2A$n+1,AA1‘n+2,T(u,U) (t) = G}(Axn:Ayn)aT(AfznleaAyn+1)aT(u7U) (t)
> min{Ghaz,, Atz 1,40(P(1): Gany, Ady,,.a0(P()} (2.34)

Letting n — oo in (2.34), we have lim, o, AAx, = lim, ,o0c AAxy+1 = T(u,v). Hence, T(u,v) = Au.
Similarly, we can also obtain T'(v,u) = Av. Following, we show that Au = v and Av = u. From ([2.26]) we
have

Gfﬁlu,Ayn,Ayn+1 (t) - G;(u,v),T(yn,l,xnfl),T(yn,xn) (t)
2 min{G*Au7Ayn_1,Ayn (So(t))v G*Av,AcL‘n_l,Axn ((p(t»} (235)
Similarly, we can have
G*AU,AIn7Axn+1 (t) Z min{GZv,Axn_l,A:cn (90(t))? G*Au,Ayn_l,Ayn (@(t»} (236)

Suppose that My(t) = min{G%, 4, 4y, (P(1): Gy Az, , 42, (@)} By (2.35) and (2.36), we have
M, (t) > My_1(p(t)) > -+ > Mo(¢™(t)). Since lim, o0 ¢"(t) = 400, we have

Mo (" (t)) = min{ Gy, aye, ay, (0" (), Glaw, Ao, 4z, (#7 (1))} = 1 (1 = 00).

This shows that M, (t) — 1 as n — oo, and so

lim Ax, = Av, lim Ay, = Au.
n—oo n—o0

This shows that u = Av = T'(v,u) and v = Au = T'(u,v). Now, we prove that u = v. By (2.26)) we have

Gz,v,v(t) = G’}(v,u),T(u,v),T(u,v) <t)

> min{szlv,Au,Au(gp(t))? GZu,AU,Av(Qp(t))} = min{Gz,v,U(SO(t))v Gf;,u,u(@(t))}, (237)

G (t) 2 min{Gy , ,(0(1)), Gy u(0(2)) - (2.38)
Suppose F(t) = min{Gy, (1), Giua(B)}, since F(t) > F(g(t)), then Goy () > Flp(t) > F(g"(t))
Letting n — oo, we have G, , ,(t) = 1, i.e., u = v. So, the proof is completed. O

For each z € X, if we take the mapping A : X — X as Ax = x, then we can obtain the following
consequence from Theorem

Corollary 2.4. Let (X,G*, A) be a complete Menger PGM -space such that A is a t-norm of H-type and
A > A, Let p: Rt — RY be a gauge function such that ¢=1({0}) = {0} and X% ,¢"(t) < +oo for any
t>0. LetT: X x X = X be a mapping such that

N

G;(z,y),T(p,q),T(h,l) (gﬁ(t)) > [A( ;p,h(t)’ Z,q,l(t))] )
for all x,y,p,q,h,l € X. Then there ezists a unique u € X such that u = Au = T(u,u).

Since each hybrid contraction with a gauge function ¢ includes the case of linear contraction as a special
case if we take ¢(t) = at or ¢(t) = £ where a € (0,1). For example, from Theorem we obtain the
following consequence.

Corollary 2.5. Let (X,G*,A) be a complete Menger PGM -space such that A is a t-norm of H-type and
a€(0,1). Let T: X x X - X and A: X — X be two mappings such that
* * * 1
G T ) 7)) (1) 2 (Gl ap an () Gy, aq,41(8)]2,

for all z,y,p,q,h,l € X, where T(X x X) C A(X), A is continuous and commutative with T. Then there
exists a unique u € X such that w = Au =T (u,u).
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3. An application
In this section, we give an example to illustrate the validity of Theorem

Example 3.1. Suppose that A = A,,. Then A, is a t-norm of H-type. Define a function G* : X x X x X —
R* by

B RN
G::,y,z(t) = 1 ’ L < 0’

for all x,y,z € X, where G(z,y,2) = |r —y| + |y — 2| + |z — z|, then G* is a G-metric (see [19]). It is
easy to see that G* satisfies (PGM-1)-(PGM-3). Next we show G*(xz,y, 2)(t+5) > A{G} , (), G, .(5)} =
G 0at)Gy o (s) for all z,y,z,a € X and all s,¢ > 0.

Since

[z —yl+ly—z[+lz—a] _|r—a[t+]a—y[+]|y—=2+][z—a[+]a—2]

t+s t+s
C2z—a| la—yl+ly—z+]z—d
= +
t+ s t+ s
2l — a a—yl+ly—=z+1lz—a
<ItIJrl yl Iysll \7

_le—yl+ly—z[+|z—2| 2lz—al| | Ja—y|+ly—z|+|z—a]
t+s > 67{ t + s } =

then, G*(z,y,2)(t +s) = e
probabilistic G-metric.

Suppose that ¢(t) = £. For each z,y € X, define T': X x X — X as follows: T'(z,y) =z+y, A: X - X
as: Ar = 4x and T'(X x X) C A(X). A is continuous and commutative with 7. For each x,y,p,q, h,l € X
and ¢t > 0, we have

- —(h+D)|+|(h+1)— 4 |z— —h|+|h— - |+l
[(z+y) (p+q)|+\(p+q)£( D[+ (h+D) —(z+y)| < {lz—p|+|p—h|+| xl+\y al+lg—l+-yl} %7 and so

G;‘;,a’a(t)G;y’z(s). Then G* is a

2

t _ \(z+y)*(erq)\+\(;v+q)Z(h+z)\+|(h+l),(z+y)‘
p = L
GT(%?J)T(]D,(]),T(h,l)(i) =e€ 2

_ Hlz=pltlp=h|t|h—z|+ly—gl+lg=U+ll=yl} , 1
t 2

prd [e
* * 1
= [Ap(Gaz ap.an(t); Glay ag.21(1))]2

Thus all the conditions of Theorem are satisfied. Therefore, 0 is the unique common coupled fixed point
of T and A.

_ Mlz—pl+lp—h|+lh—z|} _ 4{ly—qltle—ll+[l-yl} 1
t e t ]2
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