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Abstract

We present a local convergence analysis for deformed Halley method in order to approximate a solution
of a nonlinear equation in a Banach space setting. Our methods include the Halley and other high order
methods under hypotheses up to the first Fréchet-derivative in contrast to earlier studies using hypotheses
up to the second or third Fréchet-derivative. The convergence ball and error estimates are given for these
methods. Numerical examples are also provided in this study. c©2015 All rights reserved.
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1. Introduction

Many problems in computational sciences and other disciplines can be brought in the form of

F (x) = 0, (1.1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a Banach space X with values
in a Banach space Y using mathematical modeling [2, 3, 4, 5, 11, 14, 15].

In this study we are concerned with approximating a solution x∗ of the equation (1.1). In general
the solutions of (1.1) can not be found in closed form, so one has to consider some iterative methods for
solving (1.1). Usually the convergence analysis of iterative methods are two types: semi-local and local
convergence analysis. The semi-local convergence analysis is, based on the information around an initial
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point, to give conditions ensuring the convergence of the iterative procedure; while the local one is, based
on the information around a solution, to find estimates of the radii of convergence balls. In particular, the
practice of Numerical Functional Analysis for finding solution x∗ of equation (1.1) is essentially connected to
variants of Newton’s method. This method converges quadratically to x∗ if the initial guess is close enough
to the solution. Iterative methods of convergence order higher than two such as Chebyshev-Halley-type
methods [1, 3, 5, 7]–[16] require the evaluation of the second Fréchet-derivative, which is very expensive in
general. However, there are integral equations, where the second Fréchet-derivative is diagonal by blocks and
inexpensive [10]–[13] or for quadratic equations the second Fréchet-derivative is constant [4, 12]. Moreover,
in some applications involving stiff systems [2], [5], [9], high order methods are usefull. That is why we
study the local convergence of deformed Halley method DHM defined for each n = 0, 1, 2, · · · by

yn = xn − F ′(xn)−1F (xn),

zn = xn + αF ′(xn)−1F (xn),

Hn =
1

λ
F ′(xn)−1[F ′(xn + λ(zn − xn))− F ′(xn)]

xn+1 = yn +
1

2
Hn(I − 1

2
Hn)−1(yn − xn), (1.2)

where x0 is an initial point, λ ∈ (0, 1] and α ∈ R are given parameters. Deformed methods have been
introduced to improve on the convergence order of Newton’s method or Newton-like methods [2, 3, 10, 11,
14, 15, 16]. In particular, DHM was proposed in [17] as an alternative to the famous Halley method defined
for each n = 0, 1, 2, · · · by

yn = xn − F ′(xn)−1F (xn),

Ln = F ′(xn)−1F ′′(xn)F ′−1(xn)F (xn)

xn+1 = yn +
1

2
Ln(I − 1

2
Ln)−1(yn − xn). (1.3)

Notice that the computation of the expensive in general second Fréchet derivative F ′′(xn) is required in
method (1.3) but not in DHM.

The semilocal convergence analysis of DHM was given in [17] under Lipschitz continuity conditions on
up to the second Fréchet-derivative in the special case when α = 1 and λ > 0.

The usual conditions for the semi-local convergence of these methods are (C): There exist constants
β, η, β1, β2 such that

(C1) There exists Γ0 = F ′(x0)
−1 and ‖Γ0‖ ≤ β;

(C2)
‖Γ0F (x0)‖ ≤ η;

(C3)
‖F ′′(x)‖ ≤ β1 for each x ∈ D;

(C4)
‖F ′′(x)− F ′′(y)‖ ≤ β2‖x− y‖p for each x, y ∈ D and some p ∈ (0, 1].

The local convergence conditions are similar but x0 is x∗ in (C1) and (C2). There is a plethora of local and
semi-local convergence results under the (C) conditions [1]–[17]. The conditions (C3) and (C4) restrict the
applicability of these methods.

As a motivational example, let us define function f on D = [−1
2 ,

5
2 ] by

f(x) =

{
x3 lnx2 + x5 − x4, x 6= 0
0, x = 0
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Choose x∗ = 1. We have that

f ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2,

f ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x

f ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Notice that f ′′′(x) is unbounded on D. That is condition (C4) is not satisfied. Hence, the results depending
on (C4) cannot apply in this case. However, using (2.8)-(2.11) that follow we have f ′(x∗) = 3 and f(x∗) = 0.
That is, conditions (2.8)-(2.8) are satisfied for p = 1, L0 = L = 146.6629073, M = 101.5578008. Hence,
the results of our Theorem 2.1 that follows can apply to solve equation f(x) = 0 using DHM. Hence, the
applicability of DHM is expanded under our new conditions.

In the rest of this study, U(w, q) and U(w, q) stand, respectively, for the open and closed ball in X with
center w ∈ X and of radius q > 0.

The rest of the paper is organized as follows: In Section 2 we present the local convergence of these
methods. The numerical examples are given in the concluding Section 3.

2. Local convergence

In this section we present the local convergence analysis of DHM. Let L0 > 0, L > 0,M > 0, α ∈ R, λ ∈
(0, 1] and p ∈ [0, 1] be given parameters. It is convenient for the local convergence analysis that follows to
introduce some functions and parameters.

Define functions on the interval [0, ( 1
L0

)p) by

g1(t) =
Ltp

(1 + p)(1− L0tp)
,

g2(t) = g1(t) +
|1 + α|M

1− Lp0
,

g3(t) =
L||α|pλ|p−1Mptp

2(1− L0tp)1+p
, (2.1)

ḡ3(t) = L||α|pλ|p−1Mptp − 2(1− L0t
p)1+p,

g4(t) = g1(t) +
g3(t)M

(1− g3(t))(1− L0tp)
,

ḡ4(t) = g4(t)− 1

and parameters

r1 = (
1 + p

(1 + p)L0 + L
)
1
p < (

1

L0
)
1
p

and

r2 = (
(1 + p)(1−M |1 + α|)

(1 + p)L0 + L
)
1
p .

Suppose that
M |1 + α| < 1. (2.2)

Then, r2 is well defined and
0 < r2 < r1.

We also have that
0 ≤ g1(t) < 1,

and
0 ≤ g2(t) < 1 for each t ∈ [0, r2].



I. K. Argyros, S. George, J. Nonlinear Sci. Appl. 8 (2015), 246–254 249

Using the definition of function ḡ3 we get that ḡ3(0) = −2 < 0 and ḡ3((
1
L0

)
1
p ) = L|λ|p−1|α|pMp

L0
> 0. It

then follows from the Intermediate Value Theorem that function ḡ3 has zeros in (0, ( 1
L0

)
1
p ). Denote by r3

the smallest such zero. Then, we have that

0 ≤ g3(t) < 1 for each t ∈ [0, r3). (2.3)

Similarly using the definition of function ḡ4 we have that ḡ4(0) = −1 < 0 and ḡ4(t)→∞ as t→ (( 1
L0

)
1
p )−.

Hence, function ḡ4 has zeros in (0, ( 1
L0

)
1
p ). Denote by r4 the smallest such zero. Define

r = min{r2, r3, r4} (2.4)

Then, we have that
0 ≤ g1(t) < 1, (2.5)

0 ≤ g2(t) < 1, (2.6)

0 ≤ g3(t) < 1 (2.7)

and
0 ≤ g4(t) < 1 for each t ∈ [0, r). (2.8)

Next using the preceding notation, we present the local convergence result for DHM.

Theorem 2.1. Let F : D ⊆ X → Y be a Fréchet-differentiable operator. Suppose that there exist x∗ ∈
D, L0 > 0, L > 0, M > 0, α ∈ R|, λ ∈ (0, 1] and p ∈ (0, 1] such that for each x, y ∈ D

M |1 + α| < 1,

F (x∗) = 0, F ′(x∗)−1 ∈ L(Y,X), (2.9)

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ L0‖x− x∗‖p, (2.10)

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ L‖x− y‖p, (2.11)

‖F ′(x∗)−1F ′(x)‖ ≤M, (2.12)

and
Ū(x∗, r) ⊆ D, (2.13)

where the radius r is given by (2.4). Then, sequence {xn} generated by DHM for x0 ∈ U(x∗, r) is well
defined, remains in U(x∗, r) for each n = 0, 1, 2, · · · and converges to x∗. Moreover, the following estimates
hold for each n = 0, 1, 2, · · · .

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ < r, (2.14)

‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖, (2.15)

‖1

2
Hn‖ ≤ g3(‖xn − x∗‖) < 1 (2.16)

and
‖xn+1 − x∗‖ ≤ g4(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖, (2.17)

where the “g“ functions are given by (2.1).
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Proof. By hypothesis x0 ∈ U(x∗, r). Using the definition of radius r and (2.9), we get that

‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ L0‖x− x∗‖p < L0r
p < 1. (2.18)

It follows from (2.18) and the Banach Lemma on invertible operators [14] that F ′(x0)
−1 ∈ L(Y,X) and

‖F ′(x∗)−1F ′(x∗)‖ ≤ 1

1− L0‖x− x∗‖p
<

1

1− L0rp
. (2.19)

Moreover y0, z0 are well defined by first and second substep of DHM for n = 0. Using the first substep
of DHM for n = 0, we get that

y0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0)

= [F ′(x0)
−1F ′(x∗)][

∫ 1

0
F ′(x∗)−1

×[F ′(x∗ + θ(x0 − x∗))− F ′(x0)](x0 − x∗)dθ]. (2.20)

Then, by the definition of function g1, (2.4), (2.10), (2.19) and (2.20), we obtain that

‖y0 − x∗‖ ≤ ‖F ′(x0)−1F ′(x∗)‖‖
∫ 1

0
F ′(x∗)−1

×[F ′(x∗ + θ(x0 − x∗))− F ′(x0)]dθ‖‖x0 − x∗‖

≤ L‖x0 − x∗‖1+p

(1 + p)(1− L0‖x0 − x∗‖)
≤ g1(‖x0 − x∗‖)‖x0 − x∗‖
< ‖xk − x∗‖ < r,

which shows (2.14) for n = 0 and y0 ∈ U(x∗, r). Similarly, using the second substep of DHM for n = 0, we
get that

z0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0) + (1 + α)F ′(x0)
−1F (x0). (2.21)

Then, by (2.5), (2.12), (2.19), (2.21) the definition of function g2 and (2.14) (for n = 0), we obtain for
F (x0) =

∫ 1
0 F

′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ

‖z0 − x∗‖ ≤ ‖x0 − x∗ − F ′(x0)−1F (x0)‖

+‖F ′(x0)−1F ′(x∗)‖‖
∫ 1

0
F ′(x∗)−1F ′(x∗ + θ(x0 − x∗))dθ‖

×‖x0 − x∗‖

≤ g2(‖x0 − x∗‖) +
|1 + α|M

1− L0‖x0 − x∗‖
]‖x0 − x∗‖

= g2(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

which shows (2.15) for n = 0 and z0 ∈ U(x∗, r). We have by the definition of λ and (2.14), (2.15)(for n = 0)
that

x0 − x∗ + λ(z0 − x0)‖ ≤ |1− λ|‖x0 − x∗‖+ |λ|‖z0 − x∗‖ < (|1− λ|+ |λ|)r ≤ r,

which shows that x0 + λ(z0 − x0) ∈ U(x∗, r) and H0 is well defined. We need an estimate on ‖H0‖. Using
the definition of H0, g3, (2.19) and (2.11) we get in turn that

‖1

2
H0‖ ≤

1

2|λ|
‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1[F ′(x∗ + λ(z0 − x0)− F ′(x0)]‖

≤ 1

2|λ|
L|λ|p‖z0 − x0‖p

1− L0‖x0 − x∗‖p
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≤ |α|pL|λ|p−1(‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1F (x0)‖)p

2(1− L0‖x0 − x∗‖p)

≤ |α|pL|λ|p−1Mp‖x0 − x∗‖p

2(1− L0‖x0 − x∗‖p)1+p

= g3(‖x0 − x∗‖) < 1,

which shows (2.16) for n = 0. Hence, we have

‖(I − 1

2
H0)

−1‖ ≤ 1

1− g3(‖x0 − x∗‖)
.

Then, using the last substep of DHM for n = 0, we get

‖x1 − x∗‖ ≤ ‖y0 − x∗‖+ ‖1

2
H0‖‖(I −

1

2
H0)

−1‖‖y0 − x0‖

≤ g1(‖x0 − x∗‖)‖x0 − x∗‖+
g3(‖x0 − x∗‖)

1− g3(‖x0 − x∗‖)

×‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1F (x0)‖

≤ g1(‖x0 − x∗‖)‖x0 − x∗‖+
g3(‖x0 − x∗‖)

1− g3(‖x0 − x∗‖)

× M‖x0 − x∗‖
1− L0‖x0 − x∗‖

= g4(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

which shows (2.17) for n = 0. By simply replacing x0, y0, z0, x1 by xk, yk, zk, xk+1 in the preceding estimates
we arrive at estimates (2.14)-(2.17). Finally using the estimate ‖xk+1 − x∗‖ < ‖xk − x∗‖ < r, we deduce
that xk+1 ∈ U(x∗, r) and limk→∞ xk = x∗.

�

Remark 2.2. (a) Condition (2.10) can be dropped, since this condition follows from (A3). Notice, however
that

L0 ≤ L (2.22)

holds in general and L
L0

can be arbitrarily large [2]–[6].

(b) In view of condition (2.10) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1[F ′(x)− F ′(x∗)] + I‖

≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖

≤ 1 + L0‖x− x∗‖p,

condition (2.12) can be dropped and M can be replaced by

M(t) = 1 + L0t
p. (2.23)
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(c) The convergence ball of radius r1 was given by us in [2, 3, 5] for Newton’s method under conditions
(2.10) and (2.11). Estimate r2 < r1 shows that the convergence ball of higher than two DHM methods
are smaller than the convergence ball DHM. The convergence ball given by Rheinboldt [15] for Newton’s
method is

rR =
2

3L
< r1 (for p = 1) (2.24)

if L0 < L and rR
r1
→ 1

3 as L0
L → 0. Hence, we do not expect r to be larger than r1 no matter how we

choose L0, L,M and α.

(d) The local results can be used for projection methods such as Arnoldi’s method, the generalized
minimum residual method (GMREM), the generalized conjugate method(GCM) for combined New-
ton/finite projection methods and in connection to the mesh independence principle in order to develop
the cheapest and most efficient mesh refinement strategy [2]– [5], [14, 15].

(e) The results can also be used to solve equations where the operator F ′ satisfies the autonomous differ-
ential equation [2]– [5], [14, 15]:

F ′(x) = T (F (x)),

where T is a known continuous operator. Since F ′(x∗) = T (F (x∗)) = T (0), F ′′(x∗) = F ′(x∗)T ′(F (x∗)) =
T (0)T ′(0), we can apply the results without actually knowing the solution x∗. Let as an example
F (x) = ex − 1. Then, we can choose T (x) = x+ 1 and x∗ = 0.

(f) We can compute the computational order of convergence (COC) defined by

ξ = ln

(
‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

(
‖xn − x∗‖
‖xn−1 − x∗‖

)
or the approximate computational order of convergence

ξ1 = ln

(
‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
,

since the bounds given in Theorem 2.1 may be very pessimistic.

(g) The restriction λ ∈ (0, 1] can be dropped, if (2.13) is replaced by

U1 = Ū(x∗, (|λ|+ |1− λ|)r) ⊆ D (2.25)

for λ ∈ R. Indeed, we will then have

‖xn + λ(yn − xn)− x∗‖ ≤ |λ|‖xn − x∗‖+ |1− λ|‖yn − x∗‖

≤ (|λ|+ |1− λ|)r

⇒ xn + λ(yn − xn) ∈ U1.

3. Numerical Examples

We present numerical examples where we compute the radii of the convergence balls.

Example 3.1. Let X = Y = R. Define function F on D = [1, 3] by

F (x) =
2

3
x

2
3 − x. (3.1)

Then, x∗ = 9
4 , F

′(x∗)−1 = 2, L0 = 1 < L = 2, p = 0.5, α = −0.6585, λ = 1 and M = 2(
√

3 − 1),
r1 = 0.6547, r2 = 0.4629, r3 = 0.1882, r4 = 0.0215 and r = 0.0215.
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Example 3.2. Let X = Y = R3, D = U(0, 1) and B(x) = F ′′(x) for each x ∈ D. Define F on D for
v = (x, y, z)T by

F (v) = (ex − 1,
e− 1

2
y2 + y, z)T . (3.2)

Then, the Fréchet-derivative is given by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that x∗ = (0, 0, 0), F ′(x∗) = F ′(x∗)−1 = diag{1, 1, 1}, L0 = e − 1 < L = M = e, p = 1, α =
−0.8161, λ = 0.5. The values of r1 = 0.3249, r2 = 0.1625, r3 = 0.1679, r4 = 0.0819 and r = 0.0819.

Example 3.3. Let X = Y = C[0, 1], the space of continuous functions defined on [0, 1] and be equipped
with the max norm. Let D = U(0, 1) and B(x) = F ′′(x) for each x ∈ D. Define function F on D by

F (ϕ)(x) = ϕ(x)− 5

∫ 1

0
xθϕ(θ)3dθ. (3.3)

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 15

∫ 1

0
xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that p = 1, x∗ = 0, L0 = 7.5, L = 15, α = −0.9412, λ = 0.5 and M = M(t) = 1 + 7.5t. The
values of r1 = 0.0667, r2 = 0.0333, r3 = 0.0135, r4 = 0.0065 and r = 0.0065.

Example 3.4. Returning back to the motivational example at the introduction of this study, we have
p = 1, L0 == L = 146.6629073, M = 101.5578008, α = −0.9951, λ = 0.5. The values of r1 = 0.0045, r2 =
0.0023, r3 = 0.0001, r4 = 0.00001 and r = 0.00001.
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