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Abstract

In the paper, the authors establish some Hermite-Hadamard type inequalities for the product of two (a, m)-
convex functions. (©2015 All rights reserved.
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1. Introduction
The following definitions are well known in the literature.
Definition 1. A function f : I CR = (—o0,00) = R is said to be conver if
fOz+ (1= Ny) <Af(x) + (1 =N f(y) (1.1)
holds for all x,y € I and X € [0, 1].
Definition 2 ([7]). For f:[0,b] = R and m € (0,1], if
fz+m(1—t)y) <tf(z) +m(d—1)f(y) (1.2)

is valid for all x,y € [0,b] and t € [0,1], then we say that f(x) is m-convezx on [0,b].

*Corresponding author
Email addresses: hongpingyin@qq.com (Hong-Ping Yin), qifeng6180gmail.com, qifeng618Chotmail.com (Feng Qi)

Received 2015-1-11



H.-P. Yin, F. Qi, J. Nonlinear Sci. Appl. 8 (2015), 231-236 232

Definition 3 ([4]). For f :]0,b] = R and (o, m) € (0,1] x (0, 1], if
[tz +m(1 —t)y) <t f(x) +m(l —1%)f(y) (1.3)
is valid for all xz,y € [0,b] and t € [0,1], then we say that f(z) is (o, m)-convex on [0,b].

In recent decades, many inequalities of the Hermite-Hadamard type for various kinds of convex functions
have been established. Some of them may be recited as follows.

Theorem 1.1 ([3]). Let f : [a,b] C Ry = [0,00) — R be m-convez for fired m € (0,1]. Then

’ . f fla) +mf(b/m) mf(a/m)+ f(b)
b—a/a f(az)dasgmln{ 5 , 5 } (1.4)

Theorem 1.2 ([5]). Let f,g: [a,b] C R — Ry be convex functions. Then

b—a/ f(z é (a,b)+éN(a,b), (1.5)

where M(a,b) = f(a)g(a) + f(b)g(b) and N(a,b) = f(a)g(b) + f(b)g(a).
[a,

Theorem 1.3 ([2]). Let f,g: Ry — Ry satisfy fg € L([a,b]), where 0 < a < b < oco. If f is my-conver and
g is mg-convex on [a,b] for some fired my, mo € (0, 1], then

/ f(@)g(x)dx < min{M;, My}, (1.6)

b—a

s o Ml oo
Mz = 31000+ mmar (o ()] + s ()90 + masra (2]

Theorem 1.4 ([2]). Let f,g: Rog — Rq satisfy fg € L([a,b]) with 0 < a < b < oco. If f is (a1, m1)-convex
and g is (a2, ma)-convex on |a,b] for (a1, m1), (ag, ma) € (0,1] x (0,1], then

where

and

ba/ f(z)g(x)dx < min{Ny, Ny}, (1.7)

where
f(a)g(a) 1 1 b 1
Ni= — 27 — SR -
(i S o dbomraparn i EAC)UL e Bt ] ey

1 ) () <b> mm(l 1 1 1 ) <b> <b>
o+ 1 ! mi - oa1+1 ax+1 aj+ax+1 my : mso
and

f(b)g(b) [ 1 1 ] <a> < 1
Ny =S98 - g =) —my [ ————
2 o1+ a9+ 1 2 a1+ 1 o1 +ag+ 1 f()g mo m o1 +ag+ 1

1)005 () (= = S ) (o)
- — mim - - — — ).
as +1 g mi H a1+1 ax+1 aj+ax+1 my g me

In recent years, some inequalities of the Hermite-Hadamard type for other kinds of convex functions
were created in, for example, [11 6] [, 9 10, 11}, 12] and closely related references therein.

The aim of this paper is to present some new inequalities of the Hermite-Hadamard type for the product
of two (a, m)-convex functions, which generalizes those results mentioned above.
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2. Main results

We are now in a position to establish some new integral inequalities of the Hermite-Hadamard type for
the product of two (a, m)-convex functions.

Theorem 2.1. Let f,g : Ry — Ry satisfy f, fg? € L([a,b]), where 0 < a < b < oo and g > 1. If f is
(a1, my)-convez on [0, mil] and g? is (o, mg)-convez on [0, Tr%} for (aq,my), (a2, m2) € (0,1] x (0,1], then

Lo [N (a, b £, a1,m)]' Y9 min{[M (a, b £, g%)]"/4, [M (b, a; £, g%)]"/9}
[ st ds < oot e L1 ,
where )
N(a,b; f,a,m) = f(a) + amf<m> (2.1)
and

M(a,b; f,9) = (a1 + 1) (a2 + 1) f(a)g(a) + azma(as + 1) f(a)g (;;)

+ aama(ar + Dgla)f <n21> + onas(ar + o + 2)mimaf <b>g<b>. (2.2)

mi ma

Proof. Letting x = ta 4+ (1 — t)b for t € [0, 1] and making use of the Hélder integral inequality yield

1
b—a

b 1
/ F(@)g(z) da :/0 Flta+ (1—Db)g(ta+ (1—D)b)dt

1/q

< [/01 flta+ (1 — t)b)dt} o [/01 f(ta+ (1 —t)b)g(ta+ (1 — t)b)dt}

Further employing the conditions that f is («,m;)-convex on [0 i] and g7 is (awg, mg)-convex on [O, i]

’ my m2
leads to

/Olf(m+(1—t)b)dt§/Ol[to‘lf(a)+m1(1—tm)f<b>]dt: 1 1N(a,b;f,oz1,m1)

my ap +
and
/1 flta+ (1 —=t)b)gi(ta+ (1 —t)b)dt
0
1
< [ @ mi = enr (20| [eat@+ ma - e ()| a
_ 1 Q22 b
@)+ ()
Q1M b 041042(041 —+ ag + 2)m1m2 b b
e Far 0! ()70 e Dt s ()2 (o)
1
= o 7 Dloa 1 D{or 7 s 1 1) @b /9.
The proof of Theorem is complete. O

Remark 4. Theorem applied to ¢ = 1 becomes the inequality (1.7]).

Corollary 5. Under the conditions of Theorem 2.1
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1. if a1 = as = a, we have

1
b—a

[N(a,b; f,a,m1)]' =Y min{[M (a, b; f, g")]"/9, [M(b,a; f,g7)]"/ 7}

b
/a f(@)g(z)dz < (o + D)Fa(20 1 1)1/

2. if m1 = mo = m, we have

1

’ a,b; f,a1,m)]" /% min a.b: f. g?)|1/4 a: . q?)1/a
b_a/ f)g(@) da < @B S onm)] {[M(a,bs £, g1/, (M (b,as £, g1}

(a1 + D[(ag + 1) (a1 + ag + 1))/

3. if a1 = as = m1 = mo =1, we have

b 1/q
i / fa)g(z)dz < ;(;) [f(a) + F(B)) V0

[2f(a)g?(a) + f(a)g"(b) + F(b)g"(a) + 2 (b)g(b)] """

Theorem 2.2. Let f, g : Ry — Ry be such that f4, 974~ ¢ L([a,b]), where 0 < a < b < co and q > 1. If f4

is (a1, m1)-convez on |0, mil] and g7/ @) s (aa, ma)-convex on [0, mig] for (a1, m1), (a2, ma) € (0,1]x(0,1],

then

X

1 b min{N(a, b; f4, a1,my1),N(b,a; f4,a1,m1)} 1/a
<
i [tz < | N
y min{N (a, b; g‘Z/(q_l),ag,mg),N(b, a;gq/(q_l),ag,mg)} 1-1/q
o+ 1

. (23)
where N(a,b; f,a,m) is defined by (2.1)).
Proof. Taking x = ta + (1 —t)b for t € [0,1] and using the Holder integral inequality generate

1 b 1
b—a/a f(x)g(x)da;—/o flta+ (1 —t)b)g(ta+ (1 —t)b)dt

1-1/q

< [/01 Fi(ta+ (1 —t)b) dt] v [/Olgq/@—l)(m + (1 —t)b)dt

Utilizing properties that f? is (a1, m1)-convex on [0, mil] and that ¢7/(@Y is (a2, mg)-convex on [O b ]

9 m72
discovers

/olfq(ta+(1—t)b)dt§/Ol[t"‘lfq(a)erl(l—t“l)fq(b)]dtz ! N(a,b; 9, o1, mq).

m1 o+ 1
Considering the symmetry of the estimated definite integral with respect to a and b results in

min{ N (a, b; f4, a1, m1), N(b,a; f9, a1, m1)}
ap+ 1 '

/1 Fllta+ (1 —t)b)dt <
0

Similarly, we have

[ o s - omas min{ N(a, b %0, a3, ma), N (b, a5 9%/, az,mz}
0 - a9 + 1

Theorem is thus proved. O
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Corollary 6. Under the conditions of Theorem if oy = a0 =my =mg =1, then

’ IUa a(p)|V/4a[qe/(@=D(q a/(g=1) (11— 1/a

Theorem 2.3. Let f,g: Ry — Rg be such that fPga=ta=1) fla=p)/(a=D 4t ¢ [([a,b]), where 0 < a < b < oo,
qg>1,qg>p>0, and qfql > 0> 0. If fP and f=P/@D gre (aq,my)-convex on [0, mil} and if g¢ and

g7t~ are (az, ms)-convez on [0, mig] for (a1, mq), (a2, ma) € (0,1] x (0, 1], then

1
b—a

1
b—a

b
/a f@y@)de < oo T 1)(041 +az +1)
M (b, a; fp’gq—e(q—l))}}l/q [min{ M (a, b; f@ /@D g8 M (b, a; f(q—p)/(q—n?g/!)}}l—l/q’
where M(a,b; f, g) is defined by (2.2).
Proof. Letting x = ta+ (1 —t)b for t € [0, 1] and using the Holder integral inequality figure out

[min{M(a, b; [P, gq_e(q_l)) ,

1
b—a

b 1
/ f(z)g(z)dx = /0 flta+ (1 —t)b)g(ta+ (1 —t)b)dt

1 1/q
P(ta _ a—ta=1) (¢4 -
< [/0 fP(ta+ (1 —1t)b)g (ta+ (1 t)b)dt]

1-1/
X Ulf(q—f’>/<q—1>(ta+ (1 —t)b)g (ta+ (1 — t)b)dt] !
0

Further by virtue of properties that the function f? is («aq,mq)-convex on [O, mil] and that the function

gt t/(a=1) ig (a2, m2)-convex on [0, n%], we have

/1 FPlta+ (1 —t)b)g? " D(ta + (1 — t)b) dt
0

< | 1 = 7@ ma(1 = e o ()] [t a) (1 = gD (2

m1 ma

1 aom b
_ e q—4(q—1) 277t2 p g—4g-1)(
a1+a2+1f (a)g (a) + (a1+1)(a1+a2+1)f (a)g (mz)

aimi p( 0 a—tia-1)
" (a2+1)(a1+a2+1)f <m1>g (a)

041042(041 + oo + 2)m1m2 » <b>gq_f(q_1) <b>
(a1 +1)(az +1)(a1 +az +1)" \my ma
1
_ M(a,b; P, g 41,
o1+ Dlos Do ragr 1y (@579 )
Changing the order of a and b in the above arguments reveals
min{M (a,b; f7, g*"""V), M (b, a; f7, g "7V} }
(Ckl -+ 1)(0&2 + 1)(@1 + ag + 1)

/1 fP(ta+ (1 —t)b)g? @V (ta+ (1 —t)b)dt <
0
and
/1 P @D (g 4 (1 — 1)b)g  (ta + (1 — t)b) d t
0

min{ M (a,b; f@=P/@=1 g M (b, a; fla=P)/ (=1 g6)1
< .
B (a1 +1)(2 +1)(a1 + a2 + 1)
The proof of Theorem is complete. O
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Corollary 7. Under the conditions of Theorem ifp=1L< min{q, qfql}, then we have

b

b
1
<
/a felale)de < e T en + a2 1)
M(b’a;fp’gq—p(q—l))}]l/q [min{ M (a, b; f(q—p)/(q—l)’gp%M(b’a;f(q—p)/(q—l)’gp)}}l—l/q‘

1

—a

[min{M(a, b; [P, gq*p(qfl)) ,

Corollary 8. Under the conditions of Theorem when a; = ag = my1 = mg = 1, we have

b

1
—a

b
/ f(x)g(x)dz < é[gfp(a)gq—é(q—l)(a) + fP(a)g? D (p)

+ fP(b)g7 V) (a) 4 2fP(b) g7~ @V (0)] /g [2f(q—p)/(q—1) (a)gt(a)
+ 0P @)y () + PO b)g (@) + 2P D ) )]
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