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1. Introduction and Preliminaries

Equilibrium problem which was introduced by Ky Fan [8] and further studied by Blum and Oettli [1]
has been intensively investigated based on fixed point methods. The equilibrium problem have emerged as
an effective and powerful tool for studying a wide class of problems which arise in economics, ecology, trans-
portation, network, elasticity and optimization; see [9, 11, 14, 15, 24] and the references therein. It is known
that the equilibrium problems cover variational inequality problems, saddle problems, inclusion problems,
complementarity problem and minimization problem; see [3]-[7], [17]-[20] and the references therein.

In this paper, a fixed point method is investigated for solving solutions of a generalized equilibrium
problem. The common solution is also a unique solution to another monotone variational inequality. Strong
convergence theorems are established in the framework of Hilbert spaces.

From now on, we always assume that H is a real Hilbert space, whose inner product and norm are
denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty closed convex subset of H and let PC be the
projection of H onto C.
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Let S : C → C be a mapping. Throughout this paper, we use F (S) to denote the fixed point set of S.
Recall that S is said to be nonexpansive iff

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Let A : C → H be a mapping. Recall that A is said to be monotone iff

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C.

A is said to be inverse-strongly monotone iff there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

For such a case, we say that A is α-inverse-strongly monotone. It is known if S : C → C is nonexpansive,
then A = I − S is 1

2 -inverse-strongly monotone. Recall that a set-valued mapping T : H → 2H is called
monotone if, for all x, y ∈ H, f ∈ Tx and g ∈ Ty imply 〈x−y, f−g〉 ≥ 0. A monotone mapping T : H → 2H

is maximal if the graph G(T ) of T is not properly contained in the graph of any other monotone mapping.
It is known that a monotone mapping T is maximal if and only if for (x, f) ∈ H × H, 〈x − y, f − g〉 ≥ 0
for every (y, g) ∈ G(T ) implies f ∈ Tx. Let B be a monotone map of C into H and let NCv be the normal
cone to C at v ∈ C, i.e., NCv = {w ∈ H : 〈v − u,w〉 ≥ 0, ∀u ∈ C} and define

Tv =

{
Bv +NCv, v ∈ C,
∅, v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if 〈Av, u − v〉 ≥ 0, for ∀u ∈ C; see [21] and the
references therein

Recall that the classical variational inequality is to find u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C. (1.1)

In this paper, we use V I(C,A) to denote the solution set of variational inequality (1.1). One can see that
variational inequality (1.1) is equivalent to a fixed point problem. The element u ∈ C is a solution of
variational inequality (1.1) if and only if u ∈ C is a fixed point of PC(I − λA), where λ > 0 is a constant
and I is an identity mapping. This alternative equivalent formulation has played a significant role in the
studies of the variational inequalities and related optimization problems.

Let A be an inverse-strongly monotone mapping and let F be a bifunction of C × C into R, where R is
the set of real numbers. We consider the following generalized equilibrium problem:

Find z ∈ C such that F (z, y) + 〈Az, y − z〉 ≥ 0, ∀y ∈ C. (1.2)

In this paper, EP (F,A) stands for the solution set of problem (1.2), i.e.,

EP (F,A) = {z ∈ C : F (z, y) + 〈Az, y − z〉 ≥ 0, ∀y ∈ C}.

If A ≡ 0, the zero mapping, then problem (1.2) is reduced to

Find z ∈ C such that F (z, y) ≥ 0, ∀y ∈ C. (1.3)

In this paper, we use EP (F ) to denote the solution set of problem (1.3). Problem (1.3) first introduced
by Fan [8]. In the terminology of Blum and Oettli [1], It is also said to an equilibrium problem. Since
many real world problems, for example, signal processing, network traffic and intensity modulated radiation
therapy, can be modelled as equilibrium problems (1.2) and (1.3), they have been investigated via fixed
point methods by many authors; see, for example, [10, 12],[25]-[30] and the references therein.

If F ≡ 0, then problem (1.2) is reduced to variational inequality (1.1).
To study the equilibrium problems, we assume that the bifunction F : C ×C → R satisfies the following

conditions:
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(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,
lim sup

t↓0
F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semi-continuous.

In order to prove our main results, we also need the following tools.

A space X is said to satisfy the Opial’s condition [16] if for each sequence {xn}∞n=1 in X which converges
weakly to point x ∈ X, we have

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, ∀y ∈ X, y 6= x.

It is well-known that the above inequality is equivalent to

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖, ∀y ∈ X, y 6= x.

It is known that Hilbert spaces have the Opial’s condition.
The following lemma can be found in [1].

Lemma 1.1. Let C be a nonempty closed convex subset of H and let F : C × C → R be a bifunction
satisfying (A1)− (A4). Then, for any r > 0 and x ∈ H, there exists z ∈ C such that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Further, if Trx = {z ∈ C : F (z, y) + 1
r 〈y − z, z − x〉 ≥ 0, ∀y ∈ C}, then the following hold:

Tr(x) = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all z ∈ H. Then the following hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;

(3) F (Tr) = EP (F );

(4) EP (F ) is closed and convex.

Lemma 1.2 ([25]). Let C, H, F and Tr be as in Lemma 1.1. Then the following holds:

‖Tsx− Ttx‖2 ≤
s− t
s
〈Tsx− Ttx, Tsx− x〉

for all s, t > 0 and x ∈ H.

Lemma 1.3 ([13]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1− γn)αn + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
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(a)
∑∞

n=1 γn =∞;

(b) lim supn→∞ δn/γn ≤ 0 or
∑∞

n=1 |δn| <∞.

Then limn→∞ αn = 0.

Definition 1.4 ([22]). Let C be a nonempty closed convex subset of H. Let {Si : C → C} be a family of
infinitely nonexpansive mappings and {γi} be a nonnegative real sequence with 0 ≤ γi < 1, ∀i ≥ 1. For
n ≥ 1 define a mapping Wn : C → C as follows:

Un,n+1 = I,

Un,n = γnSnUn,n+1 + (1− γn)I,

Un,n−1 = γn−1Sn−1Un,n + (1− γn−1)I,

...

Un,k = γkSkUn,k+1 + (1− γk)I,

un,k−1 = γk−1Sk−1Un,k + (1− γk−1)I,

...

Un,2 = γ2S2Un,3 + (1− γ2)I,

Wn = Un,1 = γ1S1Un,2 + (1− γ1)I.

(1.4)

Such a mapping Wn is nonexpansive from C to C and it is called a W -mapping generated by Sn, Sn−1, . . . , S1

and γn, γn−1, . . . , γ1.

Lemma 1.5 ([22]). Let C be a nonempty closed convex subset of H, {Si : C → C} be a family of infinitely
nonexpansive mappings with ∩∞i=1F (Si) 6= ∅, {γi} be a real sequence such that 0 < γi ≤ l < 1, ∀i ≥ 1. Then

(1) Wn is nonexpansive and F (Wn) = ∩∞i=1F (Si), for each n ≥ 1;

(2) for each x ∈ C and for each positive integer k, the limit limn→∞ Un,k exists.

(3) the mapping W : C → C defined by

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1x, x ∈ C,

is a nonexpansive mapping satisfying F (W ) = ∩∞i=1F (Si) and it is called the W -mapping generated by
S1, S2, . . . and γ1, γ2, . . . .

Lemma 1.6 ([2]). Let C be a nonempty closed convex subset of H. Let {Si : C → C} be a family of infinitely
nonexpansive mappings with ∩∞i=1F (Si) 6= ∅ and let {γi} be a real sequence such that 0 < γi ≤ l < 1, ∀i ≥ 1.
If K is any bounded subset of C, then

lim
n→∞

sup
x∈K
‖Wx−Wnx‖ = 0.

Throughout this paper, we always assume that 0 < γi ≤ l < 1, ∀i ≥ 1.

Lemma 1.7 ([23]). Let {xn} and {yn} be bounded sequences in H and let {βn} be a sequence in (0, 1) with
0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose that xn+1 = (1− βn)yn + βnxn for all n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.
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2. Main results

Theorem 2.1. Let C be a nonempty closed convex subset of H and let F be a bifunction from C ×C to R
which satisfies (A1)-(A4). Let A : C → H be an α-inverse-strongly monotone mapping and let {Si : C → C}
be a family of infinitely nonexpansive mappings. Assume that Ω := ∩∞i=1F (Si) ∩ EP (F,A) 6= ∅. Let
f : C → C be a contractive mapping with the constant κ ∈ (0, 1). Let x1 ∈ C be chosen arbitrarily and let
{xn} be a sequence generated in the following process: F (yn, y) + 〈Axn, y − yn〉 + 1

rn
〈y − yn, yn − xn〉 ≥ 0,

∀y ∈ C, xn+1 = βnxn +(1−βn)Wn

(
αnf(Wnxn)+(1−αn)yn

)
, ∀n ≥ 1, where {Wn} is the mapping sequence

defined by (1.4), {αn} and {βn} are sequences in (0, 1) and {rn} is a positive number sequence. Assume
that the above control sequences satisfy the following conditions: 0 < a ≤ βn ≤ b < 1, 0 < c ≤ rn ≤ d < 2α,
limn→∞ αn = 0,

∑∞
n=1 αn =∞ and limn→∞(rn− rn+1) = 0. Then {xn} converge strongly to a point x ∈ Ω,

where x = PΩf(x).

Proof. First, we show that the sequence {xn} and {yn} are bounded. Fixing x∗ ∈ Ω, we find that

‖yn − x∗‖2 = ‖Trn(xn − rnAxn)− Trn(x∗ − rnAx∗)‖2

≤ ‖(xn − rnAxn)− (x∗ − rnAx∗)‖2

= ‖xn − x∗‖2 − 2rn〈xn − x∗, Axn −Ax∗〉+ r2
n‖Axn −Ax∗‖2

≤ ‖xn − x∗‖2 + rn(rn − 2α)‖Axn −Ax∗‖2.

(2.1)

From the condition imposed on {rn}, we find that

‖yn − x∗‖ ≤ ‖xn − x∗‖. (2.2)

In the same way, we find that I − rnA is also nonexpansive. Putting zn = αnf(Wnxn) + (1−αn)yn, we find
from (2.2) that

‖zn − x∗‖ ≤ αn‖f(Wnxn)− x∗‖+ (1− αn)‖yn − x∗‖
≤
(
1− αn(1− κ)

)
‖xn − x∗‖+ αn‖f(x∗)− x∗‖.

(2.3)

It follows that

‖xn+1 − x∗‖ ≤ βn‖xn − x∗‖+ (1− βn)‖Wnzn − x∗‖
≤ βn‖xn − x∗‖+ (1− βn)‖zn − x∗‖
≤
(
1− αn(1− βn)(1− κ)

)
‖xn − x∗‖+ αn(1− βn)‖f(x∗)− x∗‖

≤ · · ·

≤ max{‖x1 − x∗‖,
‖f(x∗)− x∗‖

1− κ
}.

This yields that the sequence {xn} is bounded, so are {yn} and {zn}. Without loss of generality, we can
assume that there exists a bounded set K ⊂ C such that xn, yn, zn ∈ K.

‖yn+1 − yn‖ = ‖Trn+1(xn+1 − rn+1Axn+1)− Trn+1(xn − rnAxn)

+ Trn+1(xn − rnAxn)− Trn(xn − rnAxn)‖
≤ ‖(xn+1 − rn+1Axn+1)− (xn − rnAxn)‖

+ ‖Trn+1(xn − rnAxn)− Trn(xn − rnAxn)‖
≤ ‖xn+1 − xn‖+ |rn+1 − rn|‖Axn‖

+ ‖Trn+1(xn − rnAxn)− Trn(xn − rnAxn)‖.

(2.4)

It follows that

‖zn+1 − zn‖ ≤ αn+1‖f(Wn+1xn+1)− f(Wnxn)‖+ |αn+1 − αn|(‖f(Wn+1xn+1)‖+ ‖yn‖)
+ (1− αn+1)‖yn+1 − yn‖
≤ αn+1κ‖Wn+1xn+1 −Wnxn‖+ |αn+1 − αn|(‖f(Wn+1xn+1)‖+ ‖yn‖)

+ ‖xn+1 − xn‖+ |rn+1 − rn|‖Axn‖+ ‖Trn+1(xn − rnAxn)− Trn(xn − rnAxn)‖.

(2.5)
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Note that

‖Wn+1zn+1 −Wnzn‖ = ‖Wn+1zn+1 −Wzn+1 +Wzn+1 −Wzn +Wzn −Wnzn‖
≤ ‖Wn+1zn+1 −Wzn+1‖+ ‖Wzn+1 −Wzn‖+ ‖Wzn −Wnzn‖
≤ sup

x∈K
{‖Wn+1x−Wx‖+ ‖Wx−Wnx‖}+ ‖zn+1 − zn‖.

(2.6)

Combing (2.5) with (2.6) yields that

‖Wn+1zn+1 −Wnzn‖ − ‖xn+1 − xn‖
≤ sup

x∈K
{‖Wn+1x−Wx‖+ ‖Wx−Wnx‖}+ αn+1κ‖Wn+1xn+1 −Wnxn‖

+ |αn+1 − αn|(‖f(Wn+1xn+1)‖+ ‖yn‖)
+ |rn+1 − rn|‖Axn‖+ ‖Trn+1(xn − rnAxn)− Trn(xn − rnAxn)‖.

By using Lemma 1.6, we find that

lim sup
n→∞

{‖Wn+1zn+1 −Wnzn‖ − ‖xn+1 − xn‖} ≤ 0.

It follows from Lemma that
lim
n→∞

‖Wnzn − xn‖ = 0. (2.7)

Hence, we have
lim
n→∞

‖xn+1 − xn‖ = 0. (2.8)

In view of (2.1), we find that

‖xn+1 − x∗‖2 = ‖βnxn + (1− βn)Wnzn − x∗‖2

≤ βn‖xn − x∗‖2 + (1− βn)‖zn − x∗‖2

≤ βn‖xn − x∗‖2 + (1− βn)
(
αn‖f(Wnxn)− x∗‖2 + (1− αn)‖yn − x∗‖2

)
≤ ‖xn − x∗‖2 + αn‖f(Wnxn)− x∗‖2

+ rn(rn − 2α)(1− αn)(1− βn)‖Axn −Ax∗‖2,

which in turn leads to

rn(2α− rn)(1− αn)(1− βn)‖Axn −Ax∗‖2

≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + αn‖f(Wnxn)− x∗‖2

≤ (‖xn − x∗‖+ ‖xn+1 − x∗‖)‖xn − xn+1‖+ αn‖f(Wnxn)− x∗‖2.

By using (2.8), we find that
lim
n→∞

‖Axn −Ax∗‖ = 0. (2.9)

On the other hand, we have

‖yn − x∗‖2 = ‖Trn(I − rnA)xn − Trn(I − rnA)x∗‖2

≤ 〈(I − rnA)xn − (I − rnA)x∗, yn − x∗〉

≤ 1

2
(‖xn − x∗‖2 + ‖yn − x∗‖2 − ‖(xn − yn)− rn(Axn −Ax∗)‖2)

=
1

2
(‖xn − x∗‖2 + ‖yn − x∗‖2 − ‖xn − yn‖2

+ 2rn〈xn − yn, Axn −Ax∗〉 − r2
n‖Axn −Ax∗‖2).
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Hence, we have

‖yn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − yn‖2 + 2rn‖xn − yn‖‖Axn −Ax∗‖.

It follows that

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + αn‖f(Wnxn)− x∗‖2 − (1− αn)(1− βn)‖xn − yn‖2

+ 2rn(1− αn)(1− βn)‖xn − yn‖‖Axn −Ax∗‖
≤ ‖xn − x∗‖2 + αn‖f(Wnxn)− x∗‖2 − (1− αn)(1− βn)‖xn − yn‖2

+ 2rn‖xn − yn‖‖Axn −Ax∗‖.

This implies that

(1− αn)(1− βn)‖xn − yn‖2 ≤ (‖xn − x∗‖+ ‖xn+1 − x∗‖)‖xn − xn+1‖+ αn‖f(Wnxn)− x∗‖2

+ 2rn‖xn − yn‖‖Axn −Ax∗‖.

By using (2.8) and (2.9), we find that
lim
n→∞

‖xn − yn‖ = 0. (2.10)

Since zn = αnf(Wnxn) + (1− αn)yn, we find that

lim
n→∞

‖zn − yn‖ = 0. (2.11)

Notice that ‖xn+1 − xn‖ = (1− βn)‖Wnzn − xn‖. This implies from (2.8) gives that

lim
n→∞

‖Wnzn − xn‖ = 0. (2.12)

Note that ‖Wnzn − zn‖ ≤ ‖zn − yn‖+ ‖yn − xn‖+ ‖xn −Wnzn‖. From (2.10), (2.11) and (2.12), we obtain
that

lim
n→∞

‖Wnzn − zn‖ = 0. (2.13)

Since the mapping PΩf is contractive, we denote the unique fixed point by x. Next, we prove that
lim supn→∞〈f(x)− x, zn − x〉 ≤ 0. To see this, we choose a subsequence {zni} of {zn} such that

lim sup
n→∞

〈f(x)− x, zn − x〉 = lim
i→∞
〈f(x)− x, zni − x〉.

Since {zni} is bounded, there exists a subsequence {znij
} of {zni} which converges weakly to z. Without

loss of generality, we may assume that zni ⇀ z. Indeed, we also have yni ⇀ f .
First, we show that z ∈ ∩∞i=1F (Si). Suppose the contrary, Wz 6= z. Note that

‖zn −Wzn‖ ≤ ‖Wzn −Wnzn‖+ ‖Wnzn − zn‖
≤ sup

x∈K
{‖Wx−Wnx‖}+ ‖Wnzn − zn‖.

In view of Lemma 1.6, we obtain from (2.13) that limn→∞ ‖zn−Wzn‖ = 0. By using the Opial’s condition,
we see that

lim inf
i→∞

‖zni − z‖ < lim inf
i→∞

‖zni −Wz‖

≤ lim inf
i→∞

{‖zni −Wzni‖+ ‖Wzni −Wz‖}

≤ lim inf
i→∞

{‖zni −Wzni‖+ ‖zni − z‖}.

This implies that lim infi→∞ ‖zni−z‖ < lim infi→∞ ‖zni−z‖, which derives a contradiction. Hence, we have
z ∈ ∩∞i=1F (Si).
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Next, we show that f ∈ EP (F,A). Note that yn ⇀ z. Since yn = Trn(xn − rnAxn), we have

F (yn, y) + 〈Axn, y − yn〉+
1

rn
〈y − yn, yn − xn〉 ≥ 0, ∀y ∈ C.

By using condition (A2), we see that

〈Axn, y − yn〉+
1

rn
〈y − yn, yn − xn〉 ≥ F (y, yn), ∀y ∈ C.

Replacing n by ni, we arrive at

〈Axni , y − yni〉+ 〈y − yni ,
yni − xni

rni

〉 ≥ F (y, yni), ∀y ∈ C. (2.14)

For t with 0 < t ≤ 1 and ρ ∈ C, let ρt = tρ + (1 − t)z. Since ρ ∈ C and z ∈ C, we have ρt ∈ C. It follows
from (2.14) that

〈ρt − yni , Aρt〉 ≥ 〈ρt − yni , Aρt〉 − 〈Axni , ρt − yni〉 − 〈ρt − yni ,
yni − xni

rni

〉+ F (ρt, yni)

= 〈ρt − yni , Aρt −Ayn,i〉+ 〈ρt − yni , Ayn,i −Axni〉

− 〈ρt − yni ,
yni − xni

rni

〉+ F (ρt, yni).

(2.15)

It follows from (2.10) that Ayn,i − Axni → 0 as i → ∞. On the other hand, we get from the monotonicity
of A that 〈ρt − yni , Aρt −Ayn,i〉 ≥ 0. It follows from (A4) and (2.15) that

〈ρt − z,Aρt〉 ≥ F (ρt, z). (2.16)

From (A1) and (A4), we see from (2.16) that

0 = F (ρt, ρt) ≤ tF (ρt, ρ) + (1− t)F (ρt, z)

≤ tF (ρt, ρ) + (1− t)〈ρt − z,Aρt〉
= tF (ρt, ρ) + (1− t)t〈ρ− z,Aρt〉,

which leads to F (ρt, ρ) + (1 − t)〈ρ − f,A3ρt〉 ≥ 0. Letting t → 0 in the above inequality, we arrive at
F (z, ρ) + 〈ρ− z,Az〉 ≥ 0. This shows that f ∈ EP (F,A). It follows that

lim sup
n→∞

〈f(x)− x, zn − x〉 ≤ 0. (2.17)

Finally, we show that xn → x, as n→∞. Note that

‖zn − x‖2 = αn〈f(Wnxn)− x, zn − x〉+ (1− αn)〈yn − x, zn − x〉
≤
(
1− αn(1− κ)

)
‖xn − x‖‖zn − x‖+ αn〈f(x)− x, zn − x〉

≤ 1− αn(1− κ)

2
(‖xn − x‖2 + ‖zn − x‖2) + αn〈f(x)− x, zn − x〉.

Hence, we have
‖zn − x‖2 ≤ (1− αn(1− κ))‖xn − x‖2 + 2αn〈f(x)− x, zn − x〉.

This implies that

‖xn+1 − x‖2 = ‖βnxn + (1− βn)Wnzn − x‖2

≤ βn‖xn − x‖2 + (1− βn)‖zn − x‖2

≤
(
1− αn(1− βn)(1− κ)

)
‖xn − x‖2 + 2αn(1− βn)〈f(x)− x, zn − x〉.

By using Lemma 1.3 and (2.17), we find that limn→∞ ‖xn − x‖ = 0. This completes the proof.



L. Zhang, Y. Hao, J. Nonlinear Sci. Appl. 9 (2016), 149–159 157

Remark 2.2. The well known convex feasibility problem which captures applications in various disciplines
such as image restoration, and radiation therapy treatment planning is to find a point in the intersection of
convex set. In Theorem 2.1, a generalized equilibrium problem is investigated via fixed point methods. An
infinite family of nonexpansive mappings are considered. To complement of algorithm, there is no metric
projection involved in the strong convergence theorem. It also deserve mentioning that the common solution
is also another monotone variational inequality.

3. Applications

For a single mapping, we find from Theorem 2.1 the following result.

Theorem 3.1. Let C be a nonempty closed convex subset of H and let F be a bifunction from C × C to
R which satisfies (A1)-(A4). Let A : C → H be an α-inverse-strongly monotone mapping and let S be a
nonexpansive mapping.
Assume that Ω := F (S) ∩ EP (F,A) 6= ∅. Let f : C → C be a contractive mapping with the constant
κ ∈ (0, 1). Let x1 ∈ C be chosen arbitrarily and let {xn} be a sequence generated in the following process:
F (yn, y)+〈Axn, y−yn〉+ 1

rn
〈y−yn, yn−xn〉 ≥ 0, ∀y ∈ C, xn+1 = βnxn+(1−βn)Wn

(
αnf(Sxn)+(1−αn)yn

)
,

∀n ≥ 1, where {Wn} is the mapping sequence defined by (1.4), {αn} and {βn} are sequences in (0, 1)
and {rn} is a positive number sequence. Assume that the above control sequences satisfy the conditions:
0 < a ≤ βn ≤ b < 1, 0 < c ≤ rn ≤ d < 2α, limn→∞ αn = 0,

∑∞
n=1 αn = ∞ and limn→∞(rn − rn+1) = 0.

Then {xn} converge strongly to a point x ∈ Ω, where x = PΩf(x).

If S is the identity, we find the following result on the generalized equilibrium problem.

Corollary 3.2. Let C be a nonempty closed convex subset of H and let F be a bifunction from C × C to
R which satisfies (A1)-(A4). Let A : C → H be an α-inverse-strongly monotone mapping. Assume that
EP (F,A) 6= ∅. Let f : C → C be a contractive mapping with the constant κ ∈ (0, 1). Let x1 ∈ C be chosen
arbitrarily and let {xn} be a sequence generated in the following process:
F (yn, y)+〈Axn, y−yn〉+ 1

rn
〈y−yn, yn−xn〉 ≥ 0, ∀y ∈ C, xn+1 = βnxn+(1−βn)Wn

(
αnf(xn)+(1−αn)yn

)
,

∀n ≥ 1, where {Wn} is the mapping sequence defined by (1.4), {αn} and {βn} are sequences in (0, 1)
and {rn} is a positive number sequence. Assume that the above control sequences satisfy the conditions:
0 < a ≤ βn ≤ b < 1, 0 < c ≤ rn ≤ d < 2α, limn→∞ αn = 0,

∑∞
n=1 αn = ∞ and limn→∞(rn − rn+1) = 0.

Then {xn} converge strongly to a point x ∈ EP (F,A), where x = PEP (F,A)f(x).

Next, we give a result on equilibrium problem (1.3).

Corollary 3.3. Let C be a nonempty closed convex subset of H and let F be a bifunction from C ×
C to R which satisfies (A1)-(A4). Let {Si : C → C} be a family of infinitely nonexpansive mappings
with a nonempty common fixed point set. Let f : C → C be a contractive mapping with the constant
κ ∈ (0, 1). Let x1 ∈ C be chosen arbitrarily and let {xn} be a sequence generated in the following process:
F (yn, y)+ 1

rn
〈y−yn, yn−xn〉 ≥ 0, ∀y ∈ C, xn+1 = βnxn+(1−βn)Wn

(
αnf(Wnxn)+(1−αn)yn

)
, ∀n ≥ 1, where

{Wn} is the mapping sequence defined by (1.4), {αn} and {βn} are sequences in (0, 1) and {rn} is a positive
number sequence. Assume that the above control sequences satisfy the conditions 0 < a ≤ βn ≤ b < 1,
0 < c ≤ rn ≤ d < +∞, limn→∞ αn = 0,

∑∞
n=1 αn = ∞ and limn→∞(rn − rn+1) = 0. Then {xn} converge

strongly to a point x ∈ ∩∞i=1F (Si), where x = P∩∞i=1F (Si)f(x).

Proof. By putting A3 ≡ 0, the zero operator, we find the desired conclusion easily. This completes the
proof.

Next, we give a result on the classical variational inequality.

Theorem 3.4. Let C be a nonempty closed convex subset of H. Let A : C → H be an α-inverse-strongly
monotone mapping and let {Si : C → C} be a family of infinitely nonexpansive mappings. Assume that
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Ω := ∩∞i=1F (Si) ∩ V I(C,A) 6= ∅. Let f : C → C be a contractive mapping with the constant κ ∈ (0, 1). Let
x1 ∈ C be chosen arbitrarily and let {xn} be a sequence generated in the following process:
xn+1 = βnxn + (1− βn)Wn

(
αnf(Wnxn) + (1− αn)yn

)
,, where yn = PC(xn − rnAxn), ∀n ≥ 1, where {Wn}

is the mapping sequence defined by (1.4), {αn} and {βn} are sequences in (0, 1) and {rn} is a positive
number sequence. Assume that the above control sequences satisfy the conditions 0 < a ≤ βn ≤ b < 1,
0 < c ≤ rn ≤ d < 2α, limn→∞ αn = 0,

∑∞
n=1 αn = ∞ and limn→∞(rn − rn+1) = 0. Then {xn} converge

strongly to a point x ∈ Ω, where x = PΩf(x).

Proof. Putting F ≡ 0, we see from Theorem 2.1 that

〈Axn, y − yn〉+
1

rn
〈y − yn, yn − xn〉 ≥ 0, ∀y ∈ C, ∀y ∈ C,∀n ≥ 1.

This implies that
〈y − yn, xn − rnAxn − yn〉 ≤ 0, ∀y ∈ C.

It follows that
yn = PC(xn − rnAxn).

This completes the proof.

Remark 3.5. The convex feasibility problem finds a lot applications in diverse areas of mathematics and
physical sciences. It consists of trying to a solution satisfying certain constraints. In this paper, we investigate
a generalized equilibrium problem via a fixed point method. A viscosity algorithm is proposed and strong
convergence is obtained. Consider the following optimization problem:

min
x∈C

h(x),

where C is a nonempty closed convex subset of H, and h : C → R is a convex and lower semi-continuous
functional. Let F : C ×C → R be a bifunction defined by F (x, y) = h(y)− h(x). We consider the following
equilibrium problem, that is to find x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C.

It is easy to see that the bifunction F satisfies conditions (A1)-(A4) and EP (F ) = Ω, the solution set.
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