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Abstract

In this paper, we study the existence of mild solutions for a impulsive semilinear neutral functional integrod-
ifferential equations with infinite delay in Banach spaces. The results are obtained by using the Hausdorff
measure of noncompactness. Examples are provided to illustrate the theory. c©2013 All rights reserved.
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1. Introduction

Measures of noncompactness are a very useful tool in many branches of mathematics. They are used in the
fixed point theory, linear operators theory, theory of differential and integral equations and others [5]. There
are two measures which are the most important ones. The Kuratowski measure of noncompactness σ(X) of
a bounded set X in a metric space is defined as infimum of numbers r > 0 such that X can be covered with
a finite number of sets of diameter smaller than r. The Hausdorff measure of noncompactness χ(X) defined
as infimum of numbers r > 0 such that X can be covered with a finite number of balls of radii smaller than
r. The Hausdorff measure is convenient in applications.

The notion of a measure of noncompactness turns out to be a very important and useful tool in many
branches of mathematical analysis. The notion of a measure of weak compactness was introduced by De Blasi
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[12] and was subsequently used in numerous branches of functional analysis and the theory of differential
and integral equations. Several authors have studied the measures of noncompactness in Banach spaces
[3, 5, 6, 7, 8, 9].

The study of the impulsive differential equations has attracted a great deal of attention. The theory of
impulsive differential and integrodifferential equations become an important area of invetigation in recent
years. In [13, 18, 19], the authors studied the existence of solutions for first-order impulsive partial neutral
functional differential equations with infinite delay in Banach space with the compactness assumption on
associated semigroups. Now impulsive partial neutral functional differential equations have become an
important object of investigation in recent years stimulated by their numerous applications to problems
arising in mechanics, electrical engineering, medicine, biology, ecology, etc. With regard to this matter, we
refer the reader to [10, 13, 17, 18, 19, 25, 26, 28, 29, 32, 33].

On the other hand, study of the existence and stability of the differential equations with delay was
initiated by Travis and Webb [30] and Webb [31]. Since such equations are often more realistic to describe
natural phenomena than those without delay, they have been investigated in variant aspects by many
authors. Neutral differential equations arise in many areas of applied mathematics and for this reason these
equations have received much attention in the past decades; see, for example, [4, 10, 11, 14, 15, 19, 20, 21,
22, 23] and the references therein.

In this paper, we study the following impulsive neutral functional integrodifferential equations with
infinite delay

d

dt
(x(t)− g(t, xt)) = A(x(t)− g(t, xt)) + f(t, xt,

∫ t

0
e(t, s, xs)ds), t ∈ J = [0, b] (1.1)

x0 = ϕ ∈ B, (1.2)

∆x(ti) = Ii(xti), i = 1, 2, ..., n, 0 < t1 < t2 < ... < tn < b, (1.3)

where A is the infinitesimal generator of an analytic semigroup of linear operators defined on a Banach
space X. The history xt : (−∞, 0] → X,xt(θ) = x(t + θ), belongs to some abstract phase space B defined
axiomatically; g : J × B → X, f : J × B × X → X, e : J × J × B → X , Ii : X → X, i = 1, 2, ..., p are
appropriate functions; 0 < t1 < t2 < ... < tn < b are fixed numbers and the symbol ∆ξ(t) represent the jump
of the function ξ at t, which is defined by ∆ξ(t) = ξ(t+)−ξ(t−). We give the existence of mild solution of the
initial value problem (1.1)-(1.3) under the condition in respect of Hausdorff’s measure of non-compactness.
The results obtained in this paper are generlizations of the results given by Arjunan [24, 27], Banas and
Goebel [5] and Hernandez [18, 19, 21, 22] .

2. Preliminaries

Let X be a Banach space and A : D(A) ⊂ X → X be the infinitesimal generator of an analytic semigroup
of linear operators (T (t))t≥0 on X, 0 ∈ ρ(A). M is a constant such that ‖T (t)‖ ≤M for every t ∈ J = [0, b].
The notation (−A)α, α ∈ (0, 1) is a closed linear operator on its domain D((−A)α). Furthermore, the
subspace D((−A)α) is dense in X and the expression
‖x‖α = ‖(−A)αx‖ , x ∈ D((−A)α)

defines a norm on D((−A)α). Hereafter we denote by Xα the Banach space D((−A)α) normed with ‖X‖α.
Then for each 0 < α ≤ 1, Xα is a Banach space. For semigroup {T (t) : t ≥ 0}, the following properties will
be used.

Lemma 2.1 ([19]). Let 0 < β < α ≤ 1, then the following properties hold :

(1) Xβ is a Banach space and Xβ ↪→ Xα and the imbedding is compact.

(2) there exists M ≥ 1 such that ‖T (t)‖ ≤M , for all 0 ≤ t ≤ b;
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(3) for any 0 ≤ α ≤ 1, there exists a positive constant Cα such that
‖(−A)αT (t)‖ ≤ Cα

tα , 0 < t ≤ b.

To describe appropriately our problems we say that a function u : [σ, τ ]→ X is a normalized piecewise
continuous function on [σ, τ ] if u is piecewise continuous and left continuous on (σ, τ ]. We denothe by
PC ([σ, τ ];X) the space formed by the normalized piecewise continuous fuction from [σ, τ ] into X. In
particular, we introduce the space PC fromed by the all functions u : [0, b] → X such that u is continuous
at t 6= ti, u(t−i ) = u(ti) and u(t+i ) exists, for all i = 1, ..., n. It is clear that PC endowed with the norm of
the uniform convergence is a Banach space.

In this work, we will employ an axiomatic definition of the phase space B which is similar to that
introduced by Hale and Kato [16] and it is appropiate to treat retarded impulsive differential equations.

Definition 2.1 ([16]). Let B be a linear space of functions mapping (−∞, 0] into X endowed with a seminorm
‖ · ‖B and we will assume that B satisfies the following axioms:

(A) If x : (−∞, σ + b] → X, b > 0, such that xσ ∈ B and x|[σ,σ+b] ∈ PC([σ, σ + b] : X), then for every
t ∈ [σ, σ + b) the following conditions hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t− σ) sup{‖x(s)‖ : σ ≤ s ≤ t}+M(t+ σ)‖xσ‖B,

where H > 0 is a constant; K,M : [0,∞) → [1,∞), K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Definition 2.2. The Hausdorff’s measures of noncompactness χY is defined by
χY (B) = inf {r > 0, B can be covered by finite number of balls with radii r} for bounded set B in
any Banach space Y .

Lemma 2.2 ([5]). Let Y be a real Banach space and B,C ⊆ Y be bounded, the following properties are
satisfied:

(1) B is pre-compact if and only if χY (B) = 0;

(2) χY (B) = χY (B̄) = χY (convB) where B̄ and convB mean the closure and convex hull of B respectively;

(3) χY (B) ≤ χY (C) when B ⊆ C;

(4) χY (B + C) ≤ χY (B) + χY (C), where B + C = {x+ y;x ∈ B, y ∈ C};

(5) χY (B ∪ C) ≤ max {χY (B), χY (C)};

(6) χY (λB) = |λ|χY (B) for any λ ∈ R;

(7) If the map Q : D(Q) ⊆ Y → Z is Lipschitsz continuous with constant k then
χZ(QB) ≤ kχY (B) for any bounded subset B ⊆ D(Q), where Z be a Banach space;

(8) If {Wn}+∞n=1 is a decreasing sequence of bounded closed nonempty subsets of Y
and lim

n→+∞
χY (Wn) = 0, then ∩+∞

n=1Wn is nonempty and compact in Y .

Definition 2.3 ([33]). The map Q : W ⊆ Y → Y is said to be a χY − contraction if there exists a positive
constant k < 1 such that χY (Q(C)) ≤ kχY (C) for any bounded closed subset C ⊆ W where Y is a Banach
space.
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Lemma 2.3 ([1] Darbo). If Q : W ⊆ Y is closed and convex and 0 ∈ W , the continuous map Q : W → W
is a χY -contraction, if the set {x ∈W : x = λΓx} is bounded for 0 < λ < 1, then the map Q has atleast one
fixed point in W .

Lemma 2.4 ([5] Darbo-Sadovskii). If W ⊆ Y is bounded closed and convex, the continuous map Q : W →W
is a χY − contraction, then the map Q has at least one fixed point in W .

In this paper, we denote χ by the Hausdorff’s measure of noncompactness of X and denote χc by the
Hausdorff’s measure of noncompactness of C([0; b];X). To discuss the existence we need the following
lemmas in this paper.

Lemma 2.5 ([5]). (1) If W ⊆ C([a, b];X) is bounded, then χ(W (t)) ≤ χc(W ), for any t ∈ [a, b], where
W (t) = {u(t);u ∈W} ⊆ X.

(2) If W is equicontinuous on [a, b], then χ(W (t)) is continuous for t ∈ [a, b] and
χc(W ) = sup{χ(W (t)), t ∈ [a, b]};

(3) If W ⊆ C([a, b];X) is bounded and equicontinuous, then χ(W (t)) is continuous
for t ∈ [a, b] and χ

( ∫ t
aW (s)ds

)
≤
∫ t
a χW (s)ds, for all t ∈ [a, b],

where
∫ t
aW (s)ds = {

∫ t
a x(s)ds : x ∈W}.

Lemma 2.6 ([29]). (1) If W ⊆ PC([a, b];X) is bounded, then χ(W (t)) ≤ χPC(W ),
for any t ∈ [a, b], where W (t) = {u(t);u ∈W} ⊆ X.

(2) If W is piecewise equicontinuous on [a, b], then χ(W (t)) is piecesise continuous
for t ∈ [a, b] and χPC(W ) = sup{χ(W (t)), t ∈ [a, b]};

(3) If W ⊆ C([a, b];X) is bounded and piecewise equicontinuous, then χ(W (t)) is piecewise
continuous for t ∈ [a, b], and χ

( ∫ t
aW (s)ds

)
≤
∫ t
a χW (s)ds, for all t ∈ [a, b],

where
∫ t
aW (s)ds = {

∫ t
a x(s)ds : x ∈W}.

Lemma 2.7. If the semigroup T (t) is equicontinuous η ∈ L([0, b];R+), then the set

{
t∫

0

T (t− s)u(s)ds : ‖u(s)‖ ≤ η(s)fora.e. s ∈ [0, b]} is equcontinuous for t ∈ [0, b].

3. Existence Results

Definition 3.4. A function x : (−∞, b] → Xis a mild solution of the initial value problem (1.1)-(1.3) if
x0 = ϕ, x(.)|J ∈ PC and

x(t) =T (t)(ϕ(0)− g(0, ϕ)) + g(t, xt) +

∫ t

0
T (t− s)f(s, xs,

∫ s

0
e(s, τ, xτ )dτ)ds

+
∑

0<ti<t

T (t− ti)Ii(xti), t ∈ J.

For the system (1.1)-(1.3), for some α ∈ (0, 1), we assume that the following hypotheses are satisfied:

(Hf) The function f : J × B ×X → X satisfies the following conditions:

(1) For each x : (−∞, b] → X,x0 = ϕ ∈ B and x|J ∈ PC, the function t → f(t, xt,
∫ t

0 e(t, s, xs)ds) is
strongly measurable and f(t, ., .) is continuous for a.e. t ∈ J ;

(2) There exists an integrable function α : J → [0,+∞) and a monotone continuous dondecreasing
function Ω : [0,+∞)→ (0,+∞) such that
f(t, v, w) ≤ α(t)Ω(‖v‖B + ‖w‖), t ∈ J, (v, w) ∈ B ×X;
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(3) There exists an integrable function η : J → [0,+∞) such that
χ(T (s)f(t,D1, D2)) ≤ η(t)( sup

−∞≤θ≤0
χ(D1(θ)) + χ(D2))

for a.e. s, t ∈ J, and any bounded subset D1 ⊂ PC([−∞, 0];X) and D2 ⊂ X, where D1(θ) =
{v(θ) : v ∈ D1}.

(4) There exists a positive constant Lf such that
‖f(t, v1, w1)− f(t, v2, w2)‖ ≤ Lf (‖v1 − v2‖ϕ + ‖w1 − w2‖),
where 0 < Lf < 1, (t, vi, wi) ∈ J × B ×X, i = 1, 2.

(He) (1) There exists a constant N1 > 0 such that∥∥∥∫ t0 [e(t, s, x)− e(t, s, y)]ds
∥∥∥ ≤ N1 ‖x− y‖B, for t, s ∈ J, x, y ∈ B

(2) For each (t, s) ∈ J×J, the function e(t, s, .) : B → X is continuous and for each x ∈ B, the function
e(., ., x) : J × J → X is strongly measurable. There exists an integrable function m : J → [0,∞)
and constant γ > 0, such that
‖e(s, τ, x)‖ ≤ γ m(τ)φ(‖x‖), where φ : [0,+∞)→ (0,+∞) is a continuous nondecreasing function.
Assume that the finite bound of

∫∞
0 γ m(s)ds is L0.

(Hg) (1) There exists 0 < β < 1, such that g(t, v) ∈ Xβ = D((−A)β), (−A)βg(.) is continuous for all
(t, v) ∈ J × B and there exist positive constants c1 and C2, such that∥∥(−A)βg(t, v)

∥∥ ≤ C1 ‖v‖B + C2

(2) There exists a positive constant Lg such that,∥∥(−A)βg(t, v1)− (−A)βg(t, v2)
∥∥ ≤ Lg ‖v1 − v2‖B , ∀v1, v2 ∈ B.

(HI) (1) There exist positive constants Li such that
‖Ii(u) = Ii(v)‖ ≤ ‖u− v‖B , ∀u, v ∈ B.

(2) There exist positive constants Cji , i = 1, ..., n, j = 1, 2, such tht
‖Ii(v)‖ = C1

i ‖v‖B + C2
i , v ∈ B.

(H) (1)
b∫

0

m̂(s)ds ≤
∞∫
c

ds
Ω(s)+φ(s)

where
µ1 = (KbMH +Mb +M

∥∥(−A)β
∥∥C1Kb) ‖ϕ‖B +Kb

∥∥(−A)β
∥∥C2(M + 1) +KbM

∑
0<ti<t

C2
i

and
µ2 = Kb

∥∥(−A)β
∥∥C1 +KbM

∑
0<ti<t

C1
i < 1, c = µ1

1−µ2 .

Let y : (−∞, b] → X be a function defined by y0 = ϕ and y(t) = T (t)ϕ(0) on J . Clearly, ‖yt‖ ≤
(KbMH +Mb) ‖ϕ‖B, where Kb = sup0≤t≤bK(t),Mb = sup0≤t≤bM(t).

Theorem 3.1. If the hypotheses (Hf), (Hg), (He), (HI) and (H) are satisfied, the the initial value problem
(1.1)-(1.3) has at least one mild solution.

Proof. Let S(b) be the space S(b) = {x : (−∞, b] → X|x0 = 0, x|J ∈ PC} endowed with the supremum
norm ‖.‖b. Let Γ : S(b)→ S(b) be the map defined by

Γx(t) =


0, t ∈ [−∞, 0]

T (t)g(0, ϕ) + g(t, xt + yt) +
∫ t

0 T (t− s)f(s, xs + ys,
∫ s

0 e(s, τ, xτ + yτ )dτ)ds

+
∑

0<ti<t
T (t− ti)Ii(xti + yti), t ∈ J.

(3.1)

It is easy to see that ‖xt + yt‖B ≤ (KbMH +Mb) ‖ϕ‖B +Kb ‖x‖t, where ‖x‖t = sup0≤s≤t ‖x(s)‖. Thus Γ is
well defined and with the values in S(b). In addition, from the axioms of phase space, the Lebesgue dominated
convergence theorem and the condition (Hf), (Hg), (He) and (HI), we can show that Γ is continuous.

Step 1. For 0 < λ < 1, set {x ∈ PC : x = λΓx} is bounded.
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Let xλ be a solution of x = λΓx for 0 < λ < 1, we have
‖xλt + yt‖B ≤ (KbMH +Mb) ‖ϕ‖B +Kb ‖xλ‖t.

Let vλ(t) = (KbMH +Mb) ‖ϕ‖B +Kb ‖xλ‖t, for each t ∈ J . Then

‖xλ(t)‖ = ‖λΓxλ(t)‖ ≤ ‖Γx(t)‖

≤M
∥∥∥(−A)−β

∥∥∥ (C1 ‖ϕ‖B + C2) +
∥∥∥(−A)−β

∥∥∥C2 +M
∑

0<ti<t

C2
i

+
(∥∥∥(−A)−β

∥∥∥C1 +M
∑

0<ti<t

C1
i

)
vλ(s) +M

∫ t

0
α(s)Ω

(
vλ(s) +

∫ s

0
γm(τ)φ(vλ(τ))dτ

)
ds

‖xλ‖t ≤M
∥∥∥(−A)−β

∥∥∥ (C1 ‖ϕ‖B + C2) +
∥∥∥(−A)−β

∥∥∥C2 +M
∑

0<ti<t

C2
i

+
(∥∥∥(−A)−β

∥∥∥C1 +M
∑

0<ti<t

C1
i

)
vλ(s) +M

∫ t

0
α(s)Ω

(
vλ(s) +

∫ s

0
γm(τ)φ(vλ(τ))dτ

)
ds,

which implies that

vλ(t) ≤ (KbMH +Mb +M
∥∥∥(−A)−β

∥∥∥C1Kb) ‖ϕ‖B +Kb

∥∥∥(−A)−β
∥∥∥C2(M + 1) +KbM

∑
0<ti<t

C2
i

+Kb

(∥∥∥(−A)−β
∥∥∥C1 +M

∑
0<ti<t

C1
i

)
vλ(s) +M

∫ t

0
α(s)Ω

(
vλ(s) +

∫ s

0
γm(τ)φ(vλ(τ))dτ

)
ds.

Consequently,

vλ(t) ≤ c+
MKb

1− µ2

∫ t

0
α(s)Ω

(
vλ(s) +

∫ s

0
γm(τ)φ(vλ(τ))dτ

)
ds.

Let us take the right-hand side of the above inequality as βλ(t). Then βλ(0) = c and

vλ(t) ≤ βλ(t), 0 ≤ t ≤ b

and

β′λ(t) ≤ MKb

1− µ2
α(t)Ω

(
vλ(t) +

∫ t

0
γm(s)φ(vλ(s))ds

)
.

Since Ω is nondecreasing

β′λ(t) ≤ MKb

1− µ2
α(t)Ω

(
βλ(t) +

∫ t

0
γm(s)φ(βλ(s))ds

)
.

Let Wλ(t) = βλ(t) +
∫ t

0 γm(s)φ(βλ(s))ds. Then Wλ(0) = βλ(0) and Wλ(t) ≤ βλ(t)

W ′λ(t) = β′λ(t) + γm(t)φ(βλ(t))

≤ MKb

1− µ2
α(t)Ω(Wλ(t)) + γm(t)φ(Wλ(t))

≤ m̂(t)
(

Ω(Wλ(t)) + φ(Wλ(t))
)

This implies that ∫ Wλ(t)

Wλ(0)

ds

Ω(s) + φ(s)
≤
∫ b

0
m̂(s)ds ≤

∫ ∞
c

ds

Ω(s) + φ(s)
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which implies that the functions βλ(t) are bounded on J . Thus, the function vλ(t) are bounded on J , and
xλ(.) are also bounded on J .
Step 2. Next, we show that Γ is χ-contraction. To clarify this, we decompose Γ in the form Γ = Γ1 + Γ2,
for t ≥ 0, where

Γ1x(t) = T (t)g(0, ϕ) + g(t, xt + yt) +
∑

0<ti<t

T (t− ti)Ii(xti + yti).

Γ2x(t) =

∫ t

0
T (t− s)f(s, xs + ys,

∫ s

0
e(s, τ, xτ + yτ )dτ)ds.

Firstly, we show that Γ1 is Lipschitz continuous.
Take x1, x2 ∈ S(b) arbitrary, on account of Definition 2.1 and hypotheses, we get

‖Γ1x1(t)− Γ1x2(t)‖ ≤
∥∥∥(−A)−β

∥∥∥Lg ‖x1t − x2t‖B +M
n∑
i=1

Li ‖x1ti − x2ti‖B

≤
(∥∥∥(−A)−β

∥∥∥LgKb +MKb

n∑
i=1

Li

)
‖x1 − x2‖b

≤ Kb

(∥∥∥(−A)−β
∥∥∥Lg +M

n∑
i=1

Li

)
‖x1 − x2‖b .

Hence Γ1 is Lipschitz continuous, and

L′ = Kb

(∥∥∥(−A)−β
∥∥∥Lg +M

n∑
i=1

Li

)
.

Next, take bounded subset W ⊂ S(b) arbitrary. Since analytic semigroup is equicontinuous, T (t−s)f(s, ws+
ys,
∫ s

0 e(s, τ, wτ + yτ )dτ) piecewise equicontinuous; and from Lemma 2.6 χPC(W ) = sup{χ(W (t)), t ∈ [0, b]},
and from [2], Lemma 3.4.7, χ(Ω(W (τ))) ≤ K1χ(W (τ)), where K1 is constant, we have

χ(Γ2(W (t))) ≤ χ
(∫ t

0
T (t− s)f(s, ws + ys,

∫ s

0
e(s, τ, wτ + yτ )dτ)

)
ds

≤
∫ t

0
η(s)

(
sup

−∞<θ≤0
χ[W (s+ θ) + y(s+ θ)] + χ[

∫ s

0
e(s, τ, xτ + yτ )dτ ]

)
ds

≤
∫ t

0
η(s) sup

−∞<θ≤0

(
χ[W (s+ θ) + y(s+ θ)] + Loχ[Ω(W (s+ θ) + y(s+ θ))]

)
ds

≤
∫ t

0
η(s) sup

0<τ≤s

(
χ(W (τ)) + L0χ(Ω(W (τ)))

)
ds

≤ χPC(W )(1 +K1L0)

∫ t

0
η(s)ds for each bounded set W ∈ PC.

Since

χPC(ΓW ) = χPC(Γ1W + Γ2W )

≤ χPC(Γ1W ) + χPC(Γ2W )

≤
(
L′ +

∫ t

0
η(s)ds

)
χPC(W ),

Γ is χ-contraction. In view of Lemma 2.3, i.e. Darbo fixed point theorem, we conclude that Γ has atleast
one fixed point in W . Let x be a fixed of Γ on S(b), then z = x+ y is a mild solution of (1.1)-(1.3). So we
deduce the existence of a mild solution of (1.1)-(1.3).
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Theorem 3.2. Assume that (Hf),(He),(HI),(H) are satisfied. Furthermore, we suppose

(H)(1′) Kb

[ ∥∥∥(−A)−β
∥∥∥C1 +M

n∑
i=1

C1
i +M

∫ b

0
α(s)ds lim

τ→∞
sup

Ω(τ + L0φ(τ))

τ

]
< 1.

Then the initial value problem (1.1)-(1.3) has at least one mild solution.

Proof. Proceeding in the proof of Theorem 3.1, we refer that the map Γ given by (3.1) is continuous from
S(b) into S(b). Furthermore, there exists k > 0 such that Γ(Bk) ⊂ Bk, where Bk = {x ∈ S(b) : ‖x‖b ≤ k}.
In fact, if we assume that the assertion is false, then k > 0 there exists xk ∈ Bk anf tk ∈ J such that
k < ‖Γxk(tk)‖. This yields that

k < ‖Γxk(tk)‖ ≤M ‖g(0, ϕ)‖+
∥∥∥(−A)−β

∥∥∥ (C1 ‖xktk + ytk‖B + C2)

+M

∫ tk

0
α(s)Ω

(
‖xks + ys‖B +

∥∥∥∥∫ s

0
e(s, τ, xkτ + yτ )dτ

∥∥∥∥)ds+M
∑

0<ti<t

(C1
i ‖xkti + yti‖B + C2

i )

≤M ‖g(0, ϕ)‖+
∥∥∥(−A)−β

∥∥∥ (C1(KbMH +Mb) ‖ϕ‖B + C1Kbk + C2)

+M

∫ b

0
α(s)ds Ω

[
(KbMH +Mb) ‖ϕ‖B +Kbk + L0φ((KbMH +Mb) ‖ϕ‖B +Kbk)

]
+M

n∑
i=1

(C1
i (KbMH +Mb) ‖ϕ‖B + C1

iKbk + C2
i ),

which implies that

1 < Kb

[ ∥∥∥(−A)−β
∥∥∥C1 +M

n∑
i=1

C1
i

]

+M

∫ b

0
α(s)ds lim

k→∞
sup

Ω
[
(KbMH +Mb) ‖ϕ‖B +Kbk + L0φ((KbMH +Mb) ‖ϕ‖B +Kbk)

]
k

≤ Kb

[ ∥∥∥(−A)−β
∥∥∥C1 +M

n∑
i=1

C1
i +M

∫ b

0
α(s)ds lim

τ→∞
sup

τ + L0φ(τ)

τ

]
< 1

a contradiction.
By means of lemma 2.4, as the proof of Theorem 3.1, we conclude that (1.1)-(1.3) has at least a mild

solution.

4. Example

In this section, we apply some of the results established in this paper . In the next applications, B will
be the phase space C0 × L2(h,X) (see [19]).

We study, the first-order neutral integrodifferential equation with unbounded delay

d

dt

(
u(t, ξ)−

∫ t

−∞

∫ π

0
b(t− s, η, ξ)u(s, η)dηds

)
=

∂2

∂x2

(
u(t, ξ)−

∫ t

−∞

∫ π

0
b(t− s, η, ξ)u(s, η)dηds

)
+

∫ t

0
a(t, ξ, s− t)F (u(s, ξ),

∫ s

0
q(s, τ, uτ )dτ)ds, t ∈ [0, b], ξ ∈ [0, π], (4.1)

u(t, 0) = u(t, π), t ∈ [0, b], (4.2)

u(τ, ξ) = ϕ(τ, ξ), τ ≤ 0, 0 ≤ ξ ≤ π, (4.3)

∆u(ti)(ξ) =

∫ ti

−∞
ai(ti − s)u(s, ξ)ds, (4.4)

where, ϕ ∈ C0 × L2(h,X), 0 < t1 < ... < tn < b and
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(a) The functions b(s, η, ξ), ∂b(s,η,ξ)∂ξ are measurable, b(s, η, π) = b(s, η, 0) = 0 and

Lg := max
{( ∫ π

0

∫ 0
−∞

∫ π
0

1
h(s)

(
∂ib(s,η,ξ)

∂ξi

)2
dηdsdξ

)1/2
: i = 0, 1

}
<∞;

(b) The function a(t, ξ, θ) is continuous in J × [0, π]× (−∞, 0] and∫ 0
−∞ a(t, ξ, θ)dθ = m(t, ξ) <∞

(c) The function q(.) is continuous such that 0 ≤ q(t, s, ξ) ≤ Ω0(|ξ|), where Ω(.) is positive, continuous
and nondecreasing in [0,∞).

(d) The function F (u1, u2) ≤ Ω1(|u1| + |u2|), where Ω1(.) is positive, continuous and nondecreasing in
[0,∞).

(e) The functions ai ∈ C([0,∞);R) and L1
i := (

∫ 0
−∞

(ai(s))
2

h(s) ds)1/2 <∞ for all i = 1, 2, ..., n.

Assuming that the conditions (a)-(e) are varified, the problem (4.1)-(4.4) can be modeled as the abstract
impulsive Cauchy problem (1.1)-(1.3) by defining

g(t, ψ)(ξ) :=

∫ 0

−∞

∫ π

0
b(s, v, ξ)ψ(s, v)dvds, (4.5)

f(t, φ, ψ)(ξ) :=

∫ 0

−∞
a(t, ξ, τ)F

(
φ(τ, ξ),

∫ τ

0
ψ(τ, θ, uθ)dθ

)
dτ, (4.6)

Ii(ψ)(ξ) :=

∫ 0

−∞
ai(s)ψ(s, ξ)ds. (4.7)

Moreover, g(t, .), f(t, ., .) and Ii, i = 1, ..., n, are bounded linear operators, the range of g(.) is contained in
X1/2,

∥∥(−A)1/2g(t, .)
∥∥ ≤ Lg, ‖Ii‖ ≤ L1

i , i = 1, ..., n and

‖f(t, φ, ψ)‖ ≤ α(t)Ω(‖φ‖B + ‖ψ‖) for every t ∈ [0, b], where α(t) := (
∫ 0
−∞

µ(t,s)2

h(s) ds)
1/2.
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