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Abstract

The purpose of this paper is to study fixed point result for generalized contractive condition on cyclic
mappings in complete partial metric spaces. The effectiveness of the result is also illustrated through an
example. c©2016 All rights reserved.
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1. Introduction and preliminaries

The concept of partial metric space, a generalization of metric space, was introduced by Steve Matthews
[18] in 1992 (see also [1, 3]). He proved that the Banach’s contraction mapping principle [7] can be generalized
to the partial metric context for applications in program verification (see also [2]). Later many researchers
studied fixed point theorems in complete partial metric spaces. For more details, see [4]-[11].

Banach’s contraction mapping principle is one of the most important results in nonlinear analysis. Gen-
eralization of this principle has been a very active field of research. Particularly, in 2003 Kirk, Srinivasan and
Veeramani [12] introduced the notion of cyclic representation and characterized the Banach’s contraction
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mapping principle in context of a cyclic mapping. In the last decade, many theorems for cyclic mappings
have been obtained (see e.g. [13]-[20]).

We state some definitions and results needed in the sequel.

Definition 1.1 ([1, 3]). Let X be a non-empty set. A partial metric ”p” on X is a function from X ×X
to R+ such that for every element x, y and z of X it satisfies following axioms.

p1 : 0 ≤ p (x, x) ≤ p (x, y) ;

p2 : p (x, x) = p (x, y) = p(y, y) if and only if x = y;

p3 : p (x, y) = p (y, x) ; (Symmetry)

p4 : p(x, z) ≤ p (x, y) + p (y, z)− p (y, y) . (Triangular inequality)

If ”p” is a partial metric on X then (X, p) is called a partial metric space.

In partial metric space self distance of a point not necessarily zero. For a partial metric p on X, the
function dp : X ×X → R+ defined by dp (x, y) = 2p (x, y)− p (x, x)− p (y, y) for all x, y ∈ X is a metric on
X.

Example 1.2 ([3, 20]). Let X = [0,∞) define the function p : [0,∞) × [0,∞) → [0,∞) by p (x, y) =
max {x, y} , for all x, y ∈ X. Then (X, p) is a partial metric space and the self-distance p (x, x) = x for every
point x of X.

Example 1.3 ([3, 20]). Let X be the collection of non-empty closed bounded interval in R, such that
X = {[a, b] : a ≤ b & a, b ∈ R} . Define the function p : X × X → [0,∞) by p ([a, b] , [c, d]) = max {b, d} −
min {a, c} , for every element x, y of X. Then (X, p) is a partial metric space and the self-distance of any
member of X is p ([a, b] , [a, b]) = max {b, b} −min {a, a} = b− a.

Each partial metric ”p” on X generates a T0 topology τp on X for which the collection

{Bp (x, ε) : x ∈ X, ε > 0}

of all open balls forms a base. Where Bp (x, ε) = {y ∈ X : p (x, y) < p (x, x) + ε} for each ε > 0 and x ∈ X.
Remark 1.4. It is obvious from the definition of partial metric that if p (x, y) = 0, then x = y. But if x = y,
then p (x, y) may not be zero.

Definition 1.5 ([1, 3, 22]).

1. A sequence {xn} in a partial metric space (X, p) converges to the limit x ∈ X if and only if
lim
n→∞

p (x, xn) = p (x, x).

2. A sequence {xn} in a partial metric space (X, p) is called Cauchy if and only if lim
m,n→∞

p (xm, xn) exists

and is finite.

3. A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn} in X converges,
with respect to τp, to a point x ∈ X such that lim

n,m→∞
p (xm, xn) = p (x, x).

Lemma 1.6 ([1, 3, 22]).

1. A sequence {xn} is a Cauchy sequence in a partial metric space (X, p) if and only if it is a Cauchy
sequence in the metric space (X, dp).

2. A partial metric space (X, p) is complete if and only if the metric space (X, dp) is complete. Moreover,
lim
n→∞

dp (x, xn) = 0, if and only if p (x, x) = lim
n→∞

p (x, xn) = lim
n,m→∞

p (xn, xm) ,

where x is the limit of {xn} in (X, dp) .
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3. Let (X, p) be a complete partial metric space. Then
(a) If p (x, y) = 0, then x = y.
(b) If x 6= y, then p (x, y) > 0.

4. Let (X, p) be a partial metric space. Assume that the sequence {xn} is converging to z as n → ∞.
such that p (z, z) = 0. Then lim

n→∞
p (xn, y) = p (z, y) for all elements y of X.

Definition 1.7 ([12]). Let A and B be non-empty subsets of a metric space (X, d) and F : A∪B → A∪B.
F is called cyclic map if F (A) ⊂ B and F (B) ⊂ A.

In order to prove our main result we shall need the following lemma.

Lemma 1.8 ([23, 24]). Let φ : [0,∞) → [0,∞) be non-decreasing and let t > 0. If lim
n→∞

φn (t) = 0, then

φ (t) < t.

2. Main Result

In this section we establish a fixed point result involving generalized contraction defined on cyclic map-
pings in setting of partial metric spaces.

Theorem 2.1. Let A and B be non-empty closed subsets of a complete partial metric space (X, p) . Suppose
that F : A ∪B → A ∪B is a cyclic map and the condition

p (Fx, Fy) ≤ φ (M (x, y)) , (2.1)

is satisfied for all x ∈ A and y ∈ B, where

M (x, y) = max

{
p (x, y) , p (x, Fx) , p (y, Fy) ,

1

2
[p (x, Fy) + p (y, Fx)]

}
, (2.2)

and φ : [0,∞) → [0,∞) is a non-decreasing function such that lim
n→∞

φn (t) = 0 for all t > 0. Then F has a

unique fixed point in A ∩B.

Proof. Let x0 ∈ A be an arbitrary point and define the sequence {xn} as xn = Fxn−1 for all n ∈ N. Since
F is cyclic map so the subsequence

{x2k} ⊂ A and {x2k+1} ⊂ B. (2.3)

If xl+1 = xl for some natural number l then xl is the required fixed point. Assume that xn+1 6= xn for all
n ∈ N. Suppose that n is even that is n = 2k. Substituting x = x2k and y = x2k+1 in (2.1), we have

p (Fx2k, Fx2k+1) ≤ φ(max{p (x2k, x2k+1) , p (x2k, Fx2k) , p (x2k+1, Fx2k+1) ,

1

2
[p (x2k, Fx2k+1) + p (x2k+1, Fx2k)]})

and

p (x2k+1, x2k+2) ≤ φ(max{p (x2k, x2k+1) , p (x2k+1, x2k+2) ,

1

2
[p (x2k, x2k+2) + p (x2k+1, x2k+1)]}). (2.4)

From the triangular inequality

p (x2k, x2k+2) + p (x2k+1, x2k+1) ≤ p (x2k, x2k+1) + p (x2k+1, x2k+2) ,
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so

max

{
p (x2k, x2k+1) , p (x2k+1, x2k+2) ,

1

2
[p (x2k, x2k+2) + p (x2k+1, x2k+1)]

}
≤ max {p (x2k, x2k+1) , p (x2k+1, x2k+2)} .

Using this in (2.4) we have

p (x2k+1, x2k+2) ≤ φ (max {p (x2k, x2k+1) , p (x2k+1, x2k+2)}) . (2.5)

If
max {p (x2k, x2k+1) , p (x2k+1, x2k+2)} = p (x2k+1, x2k+2) ,

then inequality (2.5) becomes p (x2k+1, x2k+2) ≤ φ (p (x2k+1, x2k+2)) < p (x2k+1, x2k+2) , (by lemma 1.8)
which is a contradiction. Therefore

max {p (x2k, x2k+1) , p (x2k+1, x2k+2)} = p (x2k, x2k+1)

and (2.5) becomes
p (x2k+1, x2k+2) ≤ φ (p (x2k, x2k+1)) ,

for all k ∈ N, since φ is non-decreasing, we deduce that

p (x2k+1, x2k+2) ≤ φ2k (p (x0, x1)) , for all k ∈ N. (2.6)

Now, assume that n is odd that is n = 2k + 1. Then the inequality (2.1) with x = x2k+1 and y = x2k+2

becomes

p (Fx2k+1, Fx2k+2) ≤ φ
(

max

{
p (x2k+1, x2k+2) , p (x2k+1, Fx2k+1) , p (x2k+2, Fx2k+2)
, 12 [p (x2k+1, Fx2k+2) + p (x2k+2, Fx2k+1)]

})
and

p (x2k+2, x2k+3) ≤ φ
(

max
{
p (x2k+1, x2k+2) , p (x2k+2, x2k+3) ,

1

2
[p (x2k+1, x2k+3) + p (x2k+2, x2k+2)]

})
. (2.7)

Again from the triangular inequality we have

p (x2k+1, x2k+3) + p (x2k+2, x2k+2) ≤ p (x2k+1, x2k+2) + p (x2k+2, x2k+3) .

Therefore

max

{
p (x2k+1, x2k+2) , p (x2k+2, x2k+3) ,

1

2
[p (x2k+1, x2k+3) + p (x2k+2, x2k+2)]

}
≤ max {p (x2k+1, x2k+2) , p (x2k+2, x2k+3)} .

Using this in (2.7) we get

p (x2k+2, x2k+3) ≤ φ (max {p (x2k+1, x2k+2) , p (x2k+2, x2k+3)}) . (2.8)

If max {p (x2k+1, x2k+2) , p (x2k+2, x2k+3)} = p (x2k+2, x2k+3) , then (2.8) becomes

p (x2k+2, x2k+3) ≤ φ (p (x2k+2, x2k+3)) < p (x2k+2, x2k+3) , (by lemma 1.8).

Which is a contradiction. Therefore,

max {p (x2k+1, x2k+2) , p (x2k+2, x2k+3)} = p (x2k+1, x2k+2) .
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Using this in (2.8) we have p (x2k+2, x2k+3) ≤ φ (p (x2k+1, x2k+2)) , for all k ∈ N.
Then since φ is non-decreasing we obtain

p (x2k+2, x2k+3) ≤ φ2k+1 (p (x0, x1)) , (2.9)

for all k ∈ N. Combining (2.6) and (2.9), we get

p (xn, xn+1) ≤ φn (p (x0, x1)) , for all n ∈ N. (2.10)

Hence,
lim
n→∞

p (xn, xn+1) = 0. (2.11)

Also by p1 and p2
lim
n→∞

p (xn, xn) = 0. (2.12)

Now we shall prove that {xn} is a Cauchy sequence in (X, dp), for this firstly we show that {x2n} is Cauchy
sequence in (X, dp) . By using the definition of dp

dp (x2n, x2n+1) = 2p (x2n, x2n+1)− p (x2n, x2n)− p (x2n+1, x2n+1)

≤ 2p (x2n, x2n+1) + p (x2n, x2n) + p (x2n+1, x2n+1)

≤ 2p (x2n, x2n+1) + p (x2n, x2n+1) + p (x2n, x2n+1)

= 4p (x2n, x2n+1) .

Hence,
dp (x2n, x2n+1) ≤ 4p (x2n, x2n+1) ≤ 4φ2n (p (x0, x1)) . (2.13)

From the above inequality we have
lim
n→∞

dp (x2n, x2n+1) = 0. (2.14)

Now, we consider

dp (x2n+k, x2n) ≤ dp (x2n+k, x2n+k−1) + dp (x2n+k−1, x2n+k−2) + · · ·+ dp (x2n−1, x2n)

≤ 4φ2n+k−1 (p (x0, x1)) + 4φ2n+k−2 (p (x0, x1)) + ...+ 4φ2n−1 (p (x0, x1)) .

Since lim
n→∞

φn (t) = 0 for all t > 0, thus from the above inequality we deduce that {x2n} is a cauchy sequence

and hence {x2n} ⊆ A converges to a point z ∈ A. Using similar arguments we can prove that {x2n+1} is a
Cauchy sequence in B. Therefore {x2n+1} ⊆ B converges to a point y ∈ B. Then,

lim
n→∞

dp (x2n, z) = 0, and lim
n→∞

dp (x2n+1, y) = 0. (2.15)

It is clear that
0 ≤ dp (z, y) ≤ dp (z, x2n) + dp (x2n, x2n+1) + dp (x2n+1, y)

by taking limit as n → ∞, and using (2.14) and (2.15), we get dp (z, y) = 0 which implies that z = y.
Thus both sequences converge to the same limit z and moreover {x2n}∪ {x2n+1} = {xn} . Hence, {xn} ∈ X
converges to z ∈ X. By using lemma 1.6 (ii) we have lim

n→∞
dp (xn, z) = 0 if and only if

p (z, z) = lim
n→∞

p (z, xn) = lim
m,n→∞

p (xn, xm) . (2.16)

Suppose that p (z, z) 6= 0, then p (z, z) > 0. Applying (2.1) with x = xn and y = xm, we have

p (xn+1, xm+1) ≤ φ
(

max
{
p (xn, xm) , p (xn, xn+1) , p (xm, xm+1) ,
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1

2
[p (xn, xm+1) + p (xm, xn+1)]

})
.

Letting n,m→∞, using (2.11) and (2.16), we get

p (z, z) ≤ φ (p (z, z)) < p (z, z) ,

which is a contradiction hence, p (z, z) = 0. Also from (2.16), we have

p (z, z) = lim
n→∞

p (z, xn) = lim
m,n→∞

p (xn, xm) = 0. (2.17)

Now, we show that z is the fixed point of F. Assume the contrary that p (z, Fz) > 0. It follows that there
is n0 ∈ N such that for all n > n0

max

{
p (xn−1, z) , p (xn−1, xn) , p (z, Fz) ,

1

2
[p (xn−1, Fz) + p (z, xn)]

}
≤ p (z, Fz) . (2.18)

Consider (2.1) with x = xn−1 and y = z, then we have

p (xn, Fz) ≤ φ
(

max

{
p (xn−1, z) , p (xn−1, xn) , p (z, Fz) ,

1

2
[p (xn−1, Fz) + p (z, xn)]

})
≤ φ (p (z, Fz)) < p (z, Fz) .

Taking limit as n→∞, in the above inequality we obtain

lim
n→∞

p (xn, F z) ≤ p (z, Fz) . (2.19)

Also for each n > n0,

p (z, Fz) ≤ p (z, xn) + p (xn, Fz)− p (xn, xn) ≤ p (z, xn) + p (xn, Fz) .

Taking limit as n → ∞, in the above inequality, and taking into account (2.19), we get p (z, Fz) ≤
φ (p (z, Fz)) < p (z, Fz) , which forces p (z, Fz) = 0, according to lemma 1.6 (iii) Fz = z, that is z ∈ A ∩B
is the fixed point of F. Now, assume that z∗ ∈ X is another fixed point of F such that z 6= z∗. Put x = z
and y = z∗ in (2.1), we have

p (Fz, Fz∗) ≤ φ
(

max

{
p (z, z∗) , p (z, Fz) , p (z∗, Fz∗) ,

1

2
[p (z, Fz∗) + p (z∗, Fz)]

})
,

which gives p (z, z∗) ≤ φ (p (z, z∗)) < p (z, z∗) , and hence p (z, z∗) = 0, by Lemma 1.6 (iii) z = z∗. Thus the
fixed point of F is unique.
Now we give an example of cyclic map satisfying the conditions of Theorem 2.1.

Example 2.2. Let X = [0, 1] . Define the function p : X ×X → R+ by p (x, y) = max {x, y} then (X, p) is
a complete partial metric space. Let A = B = [0, 1] and define the mapping F : A∪B → A∪B by Fx = x

3
and φ : [0,∞)→ [0,∞) by φ (t) = t

2 . Let x ∈ A and y ∈ B. Assume that x ≥ y. p (Fx, Fy) = p
(
x
3 ,

y
3

)
= x

3 .
Now consider

φ

(
max

{
p (x, y) , p (x, Fx) , p (y, Fy) ,

1

2
[p (x, Fy) + p (y, Fx)]

})
= φ

(
max

{
p (x, y) , p

(
x,
x

3

)
, p
(
y,
y

3

)
,
1

2

[
p
(
x,
y

3

)
+ p

(
y,
x

3

)]})
= φ (x) =

x

2
.

Hence x
3 ≤

x
2 , thus F satisfies all conditions of the Theorem 2.1 so F has a unique fixed point in A ∩ B,

namely ‘0’.
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Corollary 2.3. Let A and B be non-empty closed subsets of a complete partial metric space (X, p) . Assume
that F : A ∪B → A ∪B is a cyclic map satisfying

p (Fx, Fy) ≤ kmax
{
p (x, y) , p (x, Fx) , p (y, Fy) ,

1

2
[p (x, Fy) + p (y, Fx)]

}
,

for all x ∈ A and y ∈ B where 0 ≤ k < 1. Then F has a unique fixed point in A ∩B.

Proof. It follows from the Theorem 2.1 by taking φ (t) = kt.

3. Conclusion

In this work a fixed point theorem for generalized contraction defined on a cyclic map in partial metric
space is established.
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