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Abstract

Let X, Y be two nonempty sets and s, t : X → Y be two single-valued operators.
By definition, a solution of the coincidence problem for s and t is a pair (x∗, y∗) ∈ X × Y such that

s(x∗) = t(x∗) = y∗.

It is well-known that a coincidence problem is, under appropriate conditions, equivalent to a fixed point
problem for a single-valued operator generated by s and t. Using this approach, we will present some
existence, uniqueness and Ulam - Hyers stability theorems for the coincidence problem mentioned above.
Some examples illustrating the main results of the paper are also given.
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1. Existence and Ulam-Hyers stability results for coincidence problems

Let (X, d), (Y, ρ) be two metric spaces and s, t : X → Y be two operators.
We denote by Fix(s) := {x ∈ X | s(x) = x} the fixed point set of the operator s. Let us consider the
following coincidence problem:

find (x, y) ∈ X × Y such that s(x) = t(x) = y. (1.1)
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Definition 1.1. A solution of the coincidence problem (1.1) for s and t is a pair (x∗, y∗) ∈ X×Y such that

s(x∗) = t(x∗) = y∗.

Denote by CP (s, t) ⊂ X × Y the set of all solution for the coincidence problem (1.1).
Let (X, d), (Y, ρ) be two metric spaces and s, t : X → Y be two operators such that t is a injection. Then,

t has a left inverse t−1l : t(X) → X. Suppose also that s(X) ⊆ t(X). Consider f : X × t(X) → X × t(X)
defined by

f(x1, x2) = (t−1l (x2), s(x1)).

Lemma 1.2. Under the above mentioned conditions, we have CP (s, t) = Fix(f).

Proof. We successively have (x∗, y∗) ∈ Fix(f) ⇐⇒ (x∗, y∗) = (t−1l (y∗), s(x∗)) ⇐⇒ y∗ = t(x∗) and y∗ =
s(x∗)⇐⇒ t(x∗) = s(x∗) = y∗ ⇐⇒ (x∗, y∗) ∈ CP (s, t). Thus CP (s, t) = Fix(f). �

Let (X, d), (Y, ρ) be two metric spaces, let dZ be a metric (generated by d and ρ) on Z := X × Y and
s, t : X → Y be two operators. Let us consider the coincidence problem (1.1).

Definition 1.3. The coincidence problem (1.1) is called generalized Ulam-Hyers stable if and only if there
exists ψ : R2

+ → R+ increasing, continuous in 0 and ψ(0, 0) = 0 such that for every ε1, ε2 > 0 and for each
w∗ := (u∗, v∗) ∈ X × Y an (ε1, ε2)-solution of the coincidence problem (1.1), i.e. w∗ := (u∗, v∗) satisfies the

inequations

{
ρ(s(u∗), v∗) ≤ ε1
ρ(t(u∗), v∗) ≤ ε2,

there exists a solution z∗ := (x∗, y∗) of (1.1) such that

dZ(w∗, z∗) ≤ ψ(ε1, ε2). (1.2)

If there exists c1, c2 > 0 such that ψ(t1, t2) = c1t1+c2t2 for each t1, t2 ∈ R+ then the coincidence problem
(1) is said to be Ulam-Hyers stable.

Definition 1.4. Let (X, d) be a metric space. An operator f : X → X is called contraction if there exists
a constant k ∈ [0, 1[ such that

d(f(x), f(y)) ≤ k · d(x, y), for each x, y ∈ X.

Definition 1.5. Let (X, d) be a metric space. An operator f : X → X is called dilatation if there exists a
constant k > 0 such that

d(f(x), f(y)) ≥ k · d(x, y), for each x, y ∈ X.

Our first result is the following.

Theorem 1.6. Let (X, d) and (Y, ρ) be two complete metric spaces. Suppose that the operator t : X → Y
is a dilatation with constant kt > 1, the operator s : X → Y is a contraction with constant ks < 1 and
s(X) ⊆ t(X). Then the coincidence problem (1.1) for s and t has a unique solution.

Proof. Since the operator t : X → Y is a dilatation with constant kt > 1, we get that t is an injection and
its left inverse t−1l : t(X)→ X is a contraction with constant 1

kt
< 1, i.e.,

d(t−1l (y1), t
−1
l (y2)) ≤

1

kt
· ρ(y1, y2), for each y1, y2 ∈ t(X).

Let us consider Z := X × t(X) and define d∗ : Z × Z → R+ by

d∗((x1, x2), (u1, u2)) = d(x1, u1) + ρ(x2, u2),

for each x = (x1, x2), u = (u1, u2) ∈ Z. Then, (Z, d∗) is a complete metric space.
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We prove that f : Z → Z, f(x1, x2) := (t−1l (x2), s(x1)) is a contraction on (Z, d∗). Indeed, we have:

d∗(f(x), f(u)) = d∗(f(x1, x2), f(u1, u2)) = d∗((t−1l (x2), s(x1)), (t
−1
l (u2), s(u1))) =

= d(t−1l (x2), t
−1
l (u2)) + ρ(s(x1), s(u1)) ≤

1

kt
· ρ(x2, u2) + ks · d(x1, u1) ≤

≤ max

{
1

kt
, ks

}
· (d(x1, u1) + ρ(x2, u2)) = max

{
1

kt
, ks

}
· d∗((x1, x2), (u1, u2)) =

= max

{
1

kt
, ks

}
· d∗(x, u).

Since k := max

{
1

kt
, ks

}
< 1, we deduce that

d∗(f(x), f(u)) ≤ k · d∗(x, u), for each (x, u) ∈ Z × Z.

Hence f is a contraction with constant k < 1. By Banach’s contraction principle we obtain that there
exists a unique x∗ ∈ Z such that x∗ = f(x∗), i.e. Fix(f) = {x∗}. Thus, by Lemma 1.2 we obtain the
conclusion. �

Remark 1.7. We also have the following estimation:

d∗((x1, x2), (x
∗
1, x
∗
2)) ≤

1

1− k
· d∗((x1, x2), (t−1l (x2), s(x1))),

for each (x1, x2), (x
∗
1, x
∗
2) ∈ Z.

Theorem 1.8. Let (X, d), (Y, ρ) be two complete metric spaces. Suppose that all the hypotheses of Theorem
1.6 hold and additionally suppose that for each (u, v) ∈ X × Y we have: d(u, t−1l (v)) ≤ ρ(t(u), v). Then the
coincidence problem (1.1) is Ulam-Hyers stable.

Proof. Let ε1, ε2 > 0 and w := (u, v) ∈ Z := X × t(X) be a solution of (2), i.e.,

ρ(s(u), v) ≤ ε1 and ρ(t(u), v) ≤ ε2.

By Theorem 1.6 there exists a unique x∗ := (x∗1, x
∗
2) ∈ CP (s, t) = Fix(f), where f : Z → Z, f(x1, x2) :=

(t−1l (x2), s(x1)). From Remark 1.7, we have:

d∗((x1, x2), (x
∗
1, x
∗
2)) ≤

1

1− k
· d∗((x1, x2), (t−1l (x2), s(x1))), for each x = (x1, x2) ∈ Z.

Then we obtain that:

d(x1, x
∗
1) + ρ(x2, x

∗
2) ≤

1

1− k
[d(x1, t

−1
l (x2)) + ρ(x2, s(x1))].

Considering x := (u, v) ∈ Z we get d(u, t−1l (v)) ≤ ρ(t(u), v). Thus, we have:
d(u, x∗1) + ρ(v, x∗2) ≤ 1

1−k [d(u, t−1l (v)) + ρ(v, s(u))] ≤ 1
1−k [ρ(t(u), v) + ε1] ≤ 1

1−k (ε1 + ε2).
Hence,

d∗(w, x∗) ≤ 1

1− k
(ε1 + ε2),

proving that the coincidence problem (1) is Ulam-Hyers stable. �

Similar proofs for Theorem 1.6 and Theorem 1.8 are possible if we consider on Z := X× t(X) the metric
d∗ : Z × Z → R+ defined by

d∗((x1, x2), (u1, u2)) = max{d(x1, u1), ρ(x2, u2)}.
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We consider now the case of a vector-valued metric on X × X. We will show the advantages of this
approach, since the assumptions of the main result are weaker than that in the above theorems. Notice
that, for the sake of simplicity, we will make an identification between row and column vectors in R2.

We recall for some notations and concepts. Let X be a nonempty set. A mapping d : X ×X → Rm is
called a vector-valued metric on X if the following properties are satisfied:

(d1) d(x, y) ≥ 0 for all x, y ∈ X; if d(x, y) = 0, then x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

If α, β ∈ Rm, α = (α1, α2, . . . , αm) , β = (β1, β2, . . . , βm), and c ∈ Rm, by α ≤ β (respectively, α < β)
we mean that αi ≤ βi (respectively, αi < βi) for i ∈ {1, 2, . . . ,m} and by α ≤ c we mean that αi ≤ c for
i ∈ {1, 2, . . . ,m}.

A set X equipped with a vector-valued metric d is called a generalized metric space. We will denote
such a space with (X, d). For the generalized metric spaces, the notions of convergent sequence, Cauchy
sequence, completeness, open subset and closed subset are similar to those for usual metric spaces.

Theorem 1.9. Let A ∈Mm,m(R+). The following are equivalents:
(i) An → 0 as n→∞;
(ii)The eigen-values of A are in the open unit disc, i.e. |λ| < 1, for every λ ∈ C with det(A−λI) = 0;
(iii) The matrix I −A is non-singular and

(I −A)−1 = I +A+ ...+An + ...;

(iv) The matrix I −A is non-singular and (I −A)−1 has nonnenegative elements.
(v) Anq → 0 and qAn → 0 as n→∞, for each q ∈ Rm.

We need, for the proof of our next result, the so-called Perov’s fixed point theorem, see [6].

Theorem 1.10. (A.I. Perov, [6]) Let (X, d) be a complete generalized metric space and the mapping f :
X → X with the property that there exists a matrix A ∈Mm,m(R) such that

d(f(x), f(y)) ≤ Ad(x, y) for all x, y ∈ X.

If A is a matrix convergent towards zero, then:

1) Fix(f) = {x∗};

2) the sequence of successive approximations (xn)n∈N, xn = fn(x0) is convergent and it has the limit x∗,
for all x0 ∈ X;

3) one has the following estimation

d(xn, x
∗) ≤ An(I −A)−1d(x0, x1);

4) If g : X → X satisfies the condition d(f(x), g(y)) ≤ η, for all x ∈ X, η ∈ Rm and considering the
sequence yn = gn(x0) one has

d(yn, x
∗) ≤ (I −A)−1η +An(I −A)−1d(x0, x1).

Theorem 1.11. Let (X, d) and (Y, ρ) be two complete metric spaces. Suppose that the operator t : X → Y
is a dilatation with constant kt > 0, the operator s : X → Y is Lipschitz with the constant ks > 0 and

s(X) ⊂ t(X). If
ks
kt
∈ [0, 1), then the coincidence problem (1.1) for s and t has a unique solution.
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Proof. Since the operator t : X → Y is a dilatation with the kt > 0, we have that t is injective and its left

inverse t−1l : t(X)→ X is Lipschitz with constant
1

kt
> 0, i.e.,

d(t−1l (y1), t
−1
l (y2)) ≤

1

kt
· ρ(y1, y2), for each y1, y2 ∈ t(X).

Let us consider on Z := X × t(X) a vectorial metric dV : Z × Z → R2
+ defined by

dV (x, u) = dV ((x1, x2), (u1, u2)) = (d(x1, u1), ρ(x2, u2)),

for each (x, u) ∈ Z × Z.
We prove that f : Z → Z, f(x1, x2) := (t−1l (x2), s(x1)) is an A-contraction on the space (Z, dV ). Indeed,

we have:

dV (f(x), f(u)) = dV (f(x1, x2), f(u1, u2)) = dV ((t−1l (x2), s(x1)), (t
−1
l (u2), s(u1))) =

= (d(t−1l (x2), t
−1
l (u2)), ρ(s(x1), s(u1))) ≤

(
1

kt
· ρ(x2, u2), ks · d(x1, u1)

)
=

=

(
0 1

kt
ks 0

)
·
(
d(x1, u1)
ρ(x2, u2)

)
.

If we denote A :=

(
0 1

kt
ks 0

)
, then we got that dV (f(x), f(u)) ≤ A · dV (x, u).

Since
ks
kt
∈ [0, 1), we deduce that A is a matrix convergent to zero.

We apply Perov’s fixed point theorem for f and we deduce that there exists a unique fixed point for f ,
i.e., Fix(f) = {x∗}. �

Remark 1.12. We have the following estimation:

dV ((x1, x2), (x
∗
1, x
∗
2)) ≤ (I −A)−1 · dV ((x1, x2), (t

−1
l (x2), s(x1))),

for each (x1, x2), (x
∗
1, x
∗
2) ∈ Z.

Notice that, by Theorem 1.10 we also obtain an approximation and an error estimate for the solution of the
coincidence problem, as well as a data dependence theorem.

Theorem 1.13. Let (X, d), (Y, ρ) be two complete metric spaces. Suppose that all the hypotheses of Theorem
1.11 hold and suppose additionally that for each (u, v) ∈ X ×Y we have that d(u, t−1l (v)) ≤ ρ(t(u), v). Then
the coincidence problem (1.1) is Ulam-Hyers stable, i.e., for each ε1, ε2 > 0 and for each w := (u, v) ∈ X×Y

solution of (2), there exist a matrix C ∈M22(R+) and a solution x∗ of (1) such that dV (w, x∗) ≤ C
(
ε1
ε2

)
.

Proof. Let ε1, ε2 > 0 and w := (u, v) ∈ X × Y be a solution of (2), i.e.,

ρ(t(u), v) ≤ ε1 and ρ(s(u), v) ≤ ε2.

Let f : Z → Z, f(x1, x2) := (t−1l (x2), s(x1)).
From Remark 1.12, for x∗ := (x∗1, x

∗
2) ∈ CP (s, t) = Fix(f), we have:

dV ((u, v), (x∗1, x
∗
2)) ≤ (I −A)−1 · dV ((u, v), (t−1l (v), s(u))) =

= (I −A)−1 ·
(
d(u, t−1l (v))
ρ(v, s(u))

)
≤ (I −A)−1 ·

(
ρ(t(u), v)
ρ(v, s(u))

)
≤ (I −A)−1 ·

(
ε1
ε2

)
.

Thus, we obtain that dV (w, x∗) ≤ (I−A)−1 ·
(
ε1
ε2

)
. Hence, the coincidence problem (1) is Ulam-Hyers

stable. �
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Theorem 1.14. Let (X, d) and (Y, ρ) be two metric spaces and fi, gi : X → Y , i ∈ {1, 2} be four operators.
Consider the following coincidence equations:

f1(x) = g1(x), x ∈ X (1.3)

f2(x) = g2(x), x ∈ X. (1.4)

Let us consider the sets:
Ciε := {x ∈ X|ρ(fi(x), gi(x)) ≤ ε}, i ∈ {1, 2}.

If the following conditions are satisfied:
(i) C(f2, g2) ⊆ C(f1, g1);
(ii) the coincidence equation (1.4) is Ulam-Hyers stable;
(iii) C1ε ⊆ C2ε, for each ε > 0;

then, the coincidence equation (1.3) is Ulam-Hyers stable.

Proof. Let ε > 0 and y∗1 ∈ X such that ρ(f1(y
∗
1), g1(y

∗
1)) ≤ ε. We deduce that y∗1 ∈ C1ε. Now by (iii)

we obtain that y∗1 ∈ C2ε and, thus, we have ρ(f2(y
∗
1), g2(y

∗
1)) ≤ ε. Condition (ii) implies that there exists a

solution, x∗2 ∈ X, for the coincidence equation (1.4), such that d(y∗1, x
∗
2) ≤ c2ε, for some c2 > 0.

Since x∗2 ∈ C(f2, g2), taking into account (i), we get that x∗2 ∈ C(f1, g1). Hence, x∗2 ∈ X is a solution for
the coincidence equation (1.3).

Thus, we have obtained that d(y∗1, x
∗
2) ≤ c2ε, showing that the coincidence equation (1.3) is Ulam-Hyers

stable. �

In the particular case Y := X and g1 = g2 := 1X , we get the following Ulam-Hyers stability result for a
fixed point equation.

Theorem 1.15. Let (X, d) be a metric space and f1, f2 : X → X be two operators. Consider the following
fixed point equations:

f1(x) = x, x ∈ X (1.5)

f2(x) = x, x ∈ X. (1.6)

Let us consider the sets:
Fiε := {x ∈ X|d(fi(x), x) ≤ ε}, i = {1, 2}.

If the following conditions are satisfied:
(i) Fix(f1) = Fix(f2);
(ii) the fixed point equation (1.6) is Ulam-Hyers stable;
(iii) F1ε ⊆ F2ε, for each ε > 0;

then, the fixed point equation (1.5) is Ulam-Hyers stable.

Definition 1.16. Given a set X and two metrics, ρ and d, we say that ρ and d are strongly equivalent
metrics on X if there exist h, k > 0 such that

h · d(x, y) ≤ ρ(x, y) ≤ k · d(x, y), for any x, y ∈ X. (1.7)

If we suppose that X = Y and ρ, d are two strongly equivalent metrics on X, then we can obtain a
Ulam-Hyers stability result for the coincidence equation (1.3).

Theorem 1.17. Let X be a nonempty set, ρ and d two strongly equivalent metrics. If the coincidence
equation (1.3) is Ulam-Hyers stable with respect to metric d, then it is Ulam-Hyers stable with respect to
metric ρ.
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Proof. Suppose that the coincidence equation (1.3) is Ulam-Hyers stable with respect to metric d, i.e.,
exists c1 > 0 such that for each ε > 0 and each solution y∗ ∈ X of the inequation

d(f1(y), g1(y)) ≤ ε (1.8)

there exists a solution x∗ ∈ X of (1.3) such that

d(y∗, x∗) ≤ c1ε.

We prove that the coincidence equation (1.3) is Ulam-Hyers stable with respect to metric ρ. Let ε > 0
and y∗ ∈ X such that ρ(f1(y

∗), g1(y
∗)) ≤ ε. Taking into account of (1.7) we have d(f1(y

∗), g1(y
∗)) ≤

1

h
ρ(f1(y

∗), g1(y
∗)) ≤ ε

h
:= ε′. Because the coincidence equation (1.3) is Ulam-Hyers stable with respect to

metric d, we get that exists x∗ ∈ X solution of (1.3) such that d(y∗, x∗) ≤ c1ε′, so we have d(y∗, x∗) ≤ c1
ε

h
.

Using again the condition (1.7) we deduce that ρ(y∗, x∗) ≤ k · d(y∗, x∗) ≤ kc1
h
ε. Denote by

kc1
h
ε := c,

we have ρ(y∗, x∗) ≤ cε. Hence, the coincidence equation (1.3) is Ulam-Hyers stable with respect to metric
ρ. �

Example 1.18. Let us consider on R a metric d (d(x, y) ∈ R+, d(x, y) = |x − y|) and the operators
fi, gi : R→ R, i ∈ {1, 2} defined by:

f1(x) = arctan(x)− 7x, g1(x) =

{
sin(x) , x ≤ 0
−6x− 1, x > 0

, f2(x) = −4x, g2(x) =
1

3
x.

Consider the following coincidence equations:

arctan(x)− 7x =

{
sin(x) , x ≤ 0
−6x− 1, x > 0

(1.9)

− 4x =
1

3
x, x ∈ R. (1.10)

We have C(f1, g1) = {0} and C(f2, g2) = {0}, hence C(f2, g2) ⊆ C(f1, g1).
We prove that the coincidence equation (1.10) is Ulam-Hyers stable. Let ε1, ε2 > 0 and (u, v) ∈ R×R a

solution of the approximative coincidence problem

| − 4u− v| ≤ ε1 and

∣∣∣∣13u− v
∣∣∣∣ ≤ ε2. (1.11)

We have:
| − 4u− v| ≤ ε1 ⇐⇒ −ε1 ≤ −4u− v ≤ ε1 ⇐⇒ −ε1 − 4u ≤ v ≤ ε1 + 4u. (1.12)

I.) If u ≥ 0, we deduce that −5u ≤ −4u ≤ 5u and taking into account (1.12), we have

|v| ≤ ε1 + 5u. (1.13)

On the other hand we have:∣∣∣∣13u− v
∣∣∣∣ ≤ ε2 ⇐⇒ −ε2 ≤ 1

3
u− v ≤ ε2 ⇐⇒ −3ε2 + 3v ≤ u ≤ 3ε2 + 3v. Using the relation (1.12) we obtain:

|u| ≤ 3ε1 + 3ε2
13.

(1.14)

Taking into account (1.13) and (1.14) we get:

|v| ≤ 28ε1 + 15ε2
13

(1.15)



O. Mleşniţe, J. Nonlinear Sci. Appl. 6 (2013), 108–116 115

From relations (1.14) and (1.15), we obtain

|u|+ |v| ≤ 31ε1 + 18ε2
13

:= ψ1(ε1, ε2).

II.) If u < 0, we deduce that 5u ≤ −4u ≤ −5u and taking into account (1.12), we have

|v| ≤ ε1 − 5u. (1.16)

From relations (1.14) and (1.16) we obtain

|v| ≤ −2ε1 − 15ε2
13

. (1.17)

Using the relations (1.14) and (1.17), we have

|u|+ |v| ≤ ε1 − 12ε2
13

:= ψ2(ε1, ε2).

If we denote ψ(ε1, ε2) := max{ψ1(ε1, ε2), ψ2(ε1, ε2)}, we have |u| + |v| ≤ ψ(ε1, ε2), (when ψ(ε1, ε2) satisfy
the conditions of Definition 1.3), hence the coincidence equation (1.10) is Ulam-Hyers stable.

Let us consider the sets:

C1ε := {x ∈ (−∞, 0]|| arctan(x) + 7x− sin(x)| ≤ ε} ∪ {x ∈ (0,∞)|| arctan(x) + 6x+ 1| ≤ ε},

C2ε := {x ∈ R|
∣∣∣∣−4x− 1

3
x

∣∣∣∣ ≤ ε}.
We prove that C1ε ⊆ C2ε. Let x ∈ C1ε.

I) Let x ∈ (−∞, 0] such that | arctan(x) + 7x− sin(x)| ≤ ε. We proof:∣∣∣∣−4x− 1

3
x

∣∣∣∣ ≤ ε, i.e. |x| ≤ 3ε

13
. (1.18)

On the other hand we have:

|x| ≤ |7x| ≤ |7x+ arctan(x)− sin(x)|+ | arctan(x)− sin(x)| ≤ ε+ 2|x| =⇒ |x| ≤ ε

5
. (1.19)

Taking into account (1.18) and (1.19) we get: |x| ≤ ε

5
≤ 3ε

13
. Hence x ∈ C2ε.

II) Let x ∈ (0,∞), such that | arctan(x) + 6x+ 1| ≤ ε. We have:

|x| ≤ |6x| ≤ |6x+ 1| ≤ |6x+ 1 + arctan(x)|+ | arctan(x)| ≤ ε+ |x| =⇒ |x| ≤ ε

5
.

Using (1.18) we obtain that:

|x| ≤ ε

5
≤ 3ε

13
. Hence x ∈ C2ε.

So, we deduce that C1ε ⊆ C2ε. Since all the conditions of Theorem 1.14 hold, then the coincidence
equation (1.9) is Ulam-Hyers stable.
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