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Abstract

In this paper, we obtain the general solution and we prove the generalized Hyers-Ulam stability for an affine
functional equation.
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1. Introduction and Preliminaries

The study of the functional equations stability originated from a question of S. M. Ulam ([29], 1940) in
a talk at the University of Wisconsin, concerning the stability of group homomorphisms:

Let (G1, ◦) be a group and (G2, ∗) a metric group with a metric d(·, ·). Given ε > 0, does there exist a
δ > 0 such that if f : G1 → G2 satisfies

d(f(x ◦ y), f(x) ∗ f(y)) ≤ δ, for all x, y ∈ G1,

then there exists a homomorphism h : G1 → G2 with

d(f(x), h(x)) ≤ ε, for all x ∈ G1?

In 1941 D. H. Hyers [22] gave an affirmative answer to the question of Ulam for Cauchy functional
equation in Banach spaces. The result of D. H. Hyers was generalized in 1950 by T. Aoki [1] for approximately
additive mappings and in 1978 by Th. M. Rassias [27] for approximately linear mappings, by considering
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the unbounded Cauchy differences. A further generalization was obtained by P. Găvruţa [19] in 1994, by
replacing the Cauchy differences by a control mapping ϕ satisfying a very simple condition of convergence.
We refer the reader to the expository papers [15], [28] and to the books [12], [23] and [24] (see also the
papers [14], [17], [20], [16], for supplementary details).

A large part of proofs in this topic used the direct method (of Hyers): the exact solution of the functional
equation is explicitly constructed as a limit of a sequence, starting from the given approximate solution. On
the other hand, in 1991 J. A. Baker [2] used the Banach fixed point theorem to give Hyers-Ulam stability
results for a nonlinear functional equation. In 2003, V. Radu [26] proposed a new method, successively
developed in [6, 7, 8], to obtaining the existence of the exact solutions and the error estimations, based on
the fixed point alternative. Subsequently, these results were generalized by D. Miheţ [25], L. Găvruţa [18]
and by L. Cădariu & V. Radu [9, 10]. Lately, P. Găvruţa and L. Găvruţa introduced a new method in [21],
called the weighted space method, for the generalized Hyers-Ulam stability (see, also [4]). Recently, a general
fixed point result and some applications to the stability of a nonlinear functional equation were obtained in
[5] (see also [3]).

In the paper [11] I.-S. Chang & H.-M. Kim obtained the general solution and the generalized Hyers-Ulam
stability for the quadratic type functional equations:

f(2x+ y) + f(2x− y) = f(x+ y) + f(x− y) + 6f(x)

and
f(2x+ y) + f(x+ 2y) = 4f(x+ y) + f(x) + f(y).

In the present paper we obtain the general solution of the following affine functional equation

f(2x+ y) + f(x+ 2y) + f(x) + f(y) = 4f(x+ y), ∀x, y ∈ G, (1.1)

where f : G → X, G is an abelian group and X is a normed space. After that, by using the direct method
as well as the fixed point method, we prove some generalized Hyers-Ulam stability results for this equation.

2. Solution of the functional equation (1.1)

Theorem 2.1. A mapping f is a solution of the functional equation (1.1) iff it is an affine mapping (i.e.,
it is the sum between a constant and an additive function).

Proof. It is easy to see that any affine function f is a solution of the equation (1.1).
Conversely, we have two cases:
Case 1 : f(0) = 0.
If we take y = −x in (1.1), we obtain

f(x) + f(−x) + f(x) + f(−x) = 4f(0) = 0,∀x ∈ G,

which implies f(−x) = −f(x), for all x ∈ G. It results that f is an odd mapping.
By replacing x with x− y in (1.1), we have:

f(2x− y) + f(x+ y) + f(x− y) + f(y) = 4f(x), ∀x, y ∈ G.

If we substitute y by −y in the last equation, the following relation holds:

f(2x+ y) + f(x− y) + f(x+ y) + f(−y) = 4f(x),∀x, y ∈ G, (2.1)

Interchanging x with y in the above equation, it results

f(2y + x) + f(y − x) + f(y + x) + f(−x) = 4f(y),∀x, y ∈ G. (2.2)
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Now, we sum up the relations (2.1) and (2.2):

f(2x+ y) + f(x+ 2y) + 2f(x+ y)− (f(x) + f(y)) = 4(f(x) + f(y)),∀x, y ∈ G,

hence
f(2x+ y) + f(x+ 2y) + 2f(x+ y) + f(x) + f(y) = 6(f(x) + f(y))− 2f(x+ y) (2.3)

for all x, y ∈ G.
From (1.1) and (2.3) we obtain

4f(x+ y) = 6(f(x) + f(y))− 2f(x+ y)⇔ f(x+ y) = f(x) + f(y), ∀x, y ∈ G.

so, f is an additive mapping.
Case 2 : General case.
Let us consider the function g(x) := f(x)− f(0). It is clear that g(0) = 0 and f(x) = g(x) + f(0).
Replacing f in (1.1), it results

g(2x+ y) + g(x+ 2y) + g(x) + g(y) = 4g(x+ y),∀x, y ∈ G.

Taking in account that g(0) = 0, from Case 1, we obtain that g is an additive maping, hence f(x) =
g(x) + f(0) is an affine function.

3. The direct method for the generalized Hyers-Ulam stability of the equation (1.1)

In this section we will obtain some properties of the generalized Hyers-Ulam stability for the affine
functional equation (1.1). For the proof, we will use the direct method.

We denote by (G,+) an abelian group, by (X, || · ||) a Banach space and by ϕ : G × G → [0,∞) a
mapping such that

Φ(x) :=
∞∑
k=0

ϕ(2kx, 0)

2k
<∞,∀x ∈ G (3.1)

and

lim
n→∞

ϕ(2nx, 2ny)

2n
= 0, ∀x, y ∈ G. (3.2)

We formulate the main result of the paper:

Theorem 3.1. Let f : G→ X, such that

||f(2x+ y) + f(x+ 2y) + f(x) + f(y)− 4f(x+ y)|| ≤ ϕ(x, y),∀x, y ∈ G. (3.3)

Then there exists a unique mapping A : G→ X, which satisfies the equation (1.1) and

||f(x)−A(x)− f(0)|| ≤ 1

2
Φ(x), (3.4)

for all x ∈ G.

Proof: For y = 0 in (3.3), we obtain

||f(2x)− 2f(x) + f(0)|| ≤ ϕ(x, 0), ∀x ∈ G.

If we define the function g : G→ X,
g(x) := f(x)− f(0), (3.5)

we have
||g(2x)− 2g(x)|| ≤ ϕ(x, 0),∀x ∈ G.
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Thus ∣∣∣∣∣∣∣∣g(2x)

2
− g(x)

∣∣∣∣∣∣∣∣ ≤ 1

2
ϕ(x, 0), ∀x ∈ G. (3.6)

If we replace x by 2x in the above relation and divide it by 2, it results∣∣∣∣∣∣∣∣g(22x)

22
− g(2x)

2

∣∣∣∣∣∣∣∣ ≤ 1

22
ϕ(2x, 0), ∀x ∈ G. (3.7)

Using the triangle inequality, from (3.6) and (3.7), it follows that∣∣∣∣∣∣∣∣g(22x)

22
− g(x)

∣∣∣∣∣∣∣∣ ≤ 1

2

(
ϕ(x, 0) +

1

2
ϕ(2x, 0)

)
,∀x ∈ G.

It is easy to prove, by induction on n, that∥∥∥∥g(2nx)

2n
− g(x)

∥∥∥∥ ≤ 1

2

n−1∑
k=0

ϕ(2kx, 0)

2k
, ∀x ∈ G.

Now we claim that the sequence {2−ng(2nx)} is a Cauchy sequence. Indeed, for n > m > 0, we have:∥∥2−ng(2nx)− 2−mg(2mx)
∥∥ = 2−m

∥∥∥2−(n−m)g(2n−m · 2mx)− g(2mx)
∥∥∥ ≤

≤ 2−m 2−1
n−m−1∑
k=0

ϕ(2k+mx, 0)

2k
=

=
1

2

n−1∑
p=m

ϕ(2px, 0)

2p
, ∀x ∈ G.

Taking the limit as m→∞, it results that

lim
m→∞

∥∥2−ng(2nx)− 2−mg(2mx)
∥∥ = 0,∀x ∈ G.

Since X is a Banach space, then we obtain that the sequence {2−ng(2nx)} converges. We define

A(x) := lim
n→∞

g(2nx)

2n
,

for each x in G. From (3.5) it is clear that

A(x) = lim
n→∞

f(2nx)

2n
,∀x ∈ G. (3.8)

We claim that A satisfies (1.1). Replace x and y by 2nx and 2ny, respectively, in relation (3.3) and
divide by 2n. It follows that

||2−nf(2n(2x+y))+2−nf(2n(x+2y))+2−nf(2n(x))+2−nf(2n(y))−2−n ·4f(2n(x+y))|| ≤ 2−nϕ(2nx, 2ny),

for all x, y ∈ G. Taking on the limit as n→∞ in the above relation and using (3.2) and (3.8), it results

A(2x+ y) +A(x+ 2y) +A(x) +A(y) = 4A(x+ y).

In order to show that A is the unique function defined on G, with the properties (1.1) and (3.4), let
B : G→ X be another affine mapping such that

||f(x)− f(0)−B(x)|| ≤ 1

2
Φ(x),∀x ∈ G,
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It follows that
A(2nx) +A(0) = 2nA(x), B(2nx) +B(0) = 2nB(x),

for all x in G. Then

||A(x)−B(x)|| =

∣∣∣∣∣∣∣∣(A(2nx) +A(0))− (B(2nx) +B(0))

2n

∣∣∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣∣∣A(2nx)− f(0)− f(2nx)

2n

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣B(2nx)− f(0)− f(2nx)

2n

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣A(0)−B(0)

2n

∣∣∣∣∣∣∣∣ ≤
≤ 2−n · 1

2
Φ(2nx) + 2−n · 1

2
Φ(2nx) + 2−n ||A(0)−B(0)|| =

= 2−nΦ(2nx) + 2−n ||A(0)−B(0)|| =

=
∞∑
k=0

ϕ(2k+nx, 0)

2k · 2n
+ 2−n ||A(0)−B(0)|| =

=
∞∑
p=n

ϕ(2px, 0)

2p
+ 2−n ||A(0)−B(0)|| ,∀x ∈ G.

Taking the limit as n → ∞ in the above relation we obtain that A coincides with B. This completes the
proof of the theorem. �

From the Theorem 3.1 we obtain the following corollary concerning the stability of type Aoki-Th.M.
Rassias for the equation (1.1).

Corollary 3.2. Let G be an abelian group and X be a Banach space, respectively. Let p, q, ε be real numbers
such that ε > 0, p, q ∈ [0, 1). Suppose that a function f : G→ X satisifies

||f(2x+ y) + f(x+ 2y) + f(x) + f(y)− 4f(x+ y)|| ≤ ε(||x||p + ||y||q),∀x, y ∈ G.

Then there exists a unique mapping A : G→ X, which satisfies the equation (1.1) and the estimation

||f(x)−A(x)− f(0)|| ≤ ε

2− 2p
||x||p, ∀x ∈ G.

To prove this result, it is enough to take in the Theorem 3.1 ϕ(x, y) := ε(||x||p + ||y||q), with ε > 0 and
p, q ∈ [0, 1). Obviously, the relation (3.2) holds and Φ(x) = ε

1−2p−1 ||x||p.
Remark 3.3. For p = q = 0 in the above corollary, properties of stability in Ulam-Hyers sense for the
equation (1.1) are obtained.

Remark 3.4. It seems that in the case p = q = 1 the affine functional equation (1.1) is unstable.

4. Fixed points and generalized Hyers-Ulam stability of the affine functional equation (1.1)

In this section we will use our recent result in [5] to prove the properties of stability from the Theorem
3.1.

We consider a nonempty set G, a complete metric space (X, d) and the mappings Λ : RG
+ → RG

+ and
T : XG → XG. We remember that XG is the space of all mappings from G into X. In the following, we
suppose that Λ satisfies the condition:

for every sequence (δn)n∈N in RG
+, with δn(t) −→

n→∞
0, t ∈ G =⇒ (Λδn)(t) −→

n→∞
0, t ∈ G. (C1)

Proposition 4.1 ([5], Corollary 2.3). Let G be a nonempty set, (X, d) a complete metric space and Λ :
RG
+ → RG

+ be a non-decreasing operator satisfying the hypothesis (C1). If T : XG → XG is an operator
satisfying the inequality.

d((T ξ)(x), (T µ)(x)) ≤ Λ(d(ξ(x), µ(x))), ξ, µ ∈ XG, x ∈ G, (4.1)
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and the functions ε : G→ R+ and g : G→ X are such that

d((T g)(x), g(x)) ≤ ε(x), x ∈ G, (4.2)

and

ε∗(x) :=

∞∑
k=0

(
Λkε

)
(x) <∞, x ∈ G, (C2)

then, for every x ∈ G, the limit
A(x) := lim

n→∞
(T ng)(x)

exists and the function A ∈ XG, defined in this way, is a fixed point of T , with

d(g(x), A(x)) ≤ ε∗(x), x ∈ G.

Moreover, if the condition
lim
n→∞

(Λnε∗)(x) = 0,∀x ∈ G, (C3)

holds, then A is the unique fixed point of T with the property

d(g(x), A(x)) ≤ ε∗(x), x ∈ G.

The proof of Theorem 3.1. We apply the above proposition taking the mapping

Λ : RG
+ → RG

+, (Λδ)(x) :=
δ(2x)

2
, (δ : G→ R+),

and the operator

T : XG → XG, (T ψ)(x) :=
ψ(2x)

2
, (ψ : G→ X).

From the definition of Λ, the relation (C1) is obvious and (4.1) holds with equality.

If we take ε(x) := ϕ(x,0)
2 , where the mapping ϕ is defined in Theorem 3.1, the relation (3.1) implies that

the series

ε∗(x) =
∞∑
k=0

(
Λkε

)
(x) =

1

2

∞∑
k=0

ϕ(2kx, 0)

2k
=

Φ(x)

2
, ∀x ∈ G

is convergent, so (C2) is verified.
As in the first part of the initial proof of Theorem 3.1, we have that∣∣∣∣∣∣∣∣g(2x)

2
− g(x)

∣∣∣∣∣∣∣∣ ≤ 1

2
ϕ(x, 0),∀x ∈ G,

where g(x) := f(x)− f(0) and f satisfied the hypotheses of Theorem 3.1. This means that (4.2) holds.
Also

(Λnε∗)(x) =
(ΛnΦ)(x)

2
=

Φ(2nx)

2n+1
=

1

2

∞∑
k=0

ϕ(2n+kx, 0)

2n+k
=

1

2

∞∑
p=n

ϕ(2px, 0)

2p
, ∀x ∈ G.

Taking on the limit in the above relation as n→∞, we obtain that (C3) is verified.
From Proposition 4.1, it results that the limit

lim
n→∞

(T ng)(x) = lim
n→∞

g(2nx)

2n
= lim

n→∞

f(2nx)

2n

exists for every x ∈ G. Moreover, the mapping A : G→ X,

A(x) = lim
n→∞

(T ng)(x)



L. Cădariu, L. Găvruţa, P. Găvruţa, J. Nonlinear Sci. Appl. 6 (2013), 60–67 66

is the unique fixed point of T , with

d(g(x), A(x)) ≤ ε∗(x), ∀x ∈ G,

which implies that

||f(x)− f(0)−A(x)|| ≤ 1

2
Φ(x),∀x ∈ G.

To prove that the function A is a solution of the affine equation (1.1) we use (3.2) and the definition of A.
�
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