

Journal of Nonlinear Science and Applications

Common coupled fixed point theorems for contractive mappings in fuzzy metric spaces

Dorel Miheț

Department of Mathematics, West University of Timișoara, Bd. V. Pârvan 4, 300223, Timișoara, Romania.

Dedicated to the memory of Professor Viorel Radu

Abstract

We prove some common coupled fixed point theorems for contractive mappings in fuzzy metric spaces under geometrically convergent t-norms.

Keywords: Fuzzy metric space, g-convergent t-norm, coupled common fixed point. 2010 MSC: Primary 54E70; Secondary 54H25.

1. Introduction

Many common coupled fixed point theorems for contractions in fuzzy metric spaces and probabilistic metric spaces under either a t-norm of Hadžić-type or the t-norm $T_P = Prod$ can be found in the recent literature, see, e.g., [10], [6], [11], [2], [3], [1], [7], [11]. The aim of this paper is to obtain similar results in a larger class of fuzzy metric spaces, namely in fuzzy metric spaces endowed with geometrically convergent t-norms.

We assume that the reader is familiar with the basic concepts and terminology of the theory of fuzzy metric spaces. We only recall that a t-norm T is said to be of Hadžić-type (denoted $T \in \mathcal{H}$) if the family $\{T^n(t)\}_{n=1}^{\infty}$ defined by

$$T^{1}(t) = t, T^{n+1}(t) = T(t, T^{n}(t)) \quad (n = 1, 2, ..., t \in [0, 1])$$

is equicontinuous at t = 1, and that a t-norm T is called geometrically convergent (or g-convergent) ([5]) if, for all $q \in (0, 1)$,

$$\lim_{n \to \infty} T_{i=n}^{\infty} (1 - q^i) = 1.$$

Email address: mihet@math.uvt.ro (Dorel Mihet)

It is worth noting (see e.g. [5]) that if for a t-norm there exists $q_0 \in (0, 1)$ such that

$$\lim_{n \to \infty} T_{i=n}^{\infty} (1 - q_0^i) = 1,$$

then

$$\lim_{n \to \infty} T_{i=n}^{\infty} (1 - q^i) = 1$$

for every $q \in (0, 1)$.

The well-known t-norms $T_M = Min$, $T_P = Prod$, T_L (Lukasiewicz t-norm) are g-convergent. Also, every member of the Domby family $(T^D_{\lambda})_{\lambda \in (0,\infty)}$, Aczel-Alsina family $(T^{AA}_{\lambda})_{\lambda \in (0,\infty)}$ and Sugeno-Weber family $(T^{SW}_{\lambda})_{\lambda \in (-1,\infty)}$ is g-convergent ([5]). A large class of g-convergent t-norms, in terms of the generators of strict t-norms is described in [5] (also see [4], Ch. 1.8).

In the following we consider M-complete fuzzy metric spaces in the sense of Kramosil and Michalek ([8]), satisfying the condition (FM-6): $\lim_{t\to\infty} M(x, y, t) = 1$ for all $x, y \in X$.

2. Main Results

We start by recalling two definitions from [9].

Definition 2.1. Let X be a nonempty set. The mappings $F : X \times X \to X$ and $g : X \to X$ are said to commute if gF(x,y) = F(gx,gy) for all $x, y \in X$.

Definition 2.2. An element $(x, y) \in X \times X$ is called a coupled coincidence point of the mappings $F : X \times X \to X$ and $g : X \to X$ if F(x, y) = gx and F(y, x) = gy.

The mappings F and g have a common fixed point if there exists $x \in X$ such that x = gx = F(x, x).

Our main theorem states as follows.

Theorem 2.3. Let (X, M, T) be a complete fuzzy metric space, satisfying (FM-6), with T a g-convergent t-norm. Let $F : X \times X \to X$ and $g : X \to X$ be two mappings such that, for some $k \in (0, 1)$,

$$M(F(x,y), F(u,v), kt) \ge Min\{M(gx, gu, t), M(gy, gv, t)\}$$
(2.1)

for all $x, y, u, v \in X, t > 0$.

Suppose that $F(X \times X) \subset g(X)$, and that g is continuous and commutes with F. If there exist a > 0and $x_0, y_0 \in X$ such that

$$\sup_{t>0} t^a (1 - M(gx_0, F(x_0, y_0), t)) < \infty$$

and

$$\sup_{t>0} t^a (1 - M(gy_0, F(y_0, x_0), t)) < \infty,$$

then F and g have a unique common fixed point in X.

We note that if (x_0, y_0) is a coupled coincidence point of F and g, then the conditions $\sup_{t>0} t^a(1 - M(gx_0, F(x_0, y_0), t)) < \infty$ and $\sup_{t>0} t^a(1 - M(gy_0, F(y_0, x_0), t)) < \infty$ are satisfied.

Proof. Let x_0, y_0 be as in the statement of the theorem. Since $F(X \times X) \subset g(X)$, we can choose $x_1, y_1 \in X$ such that $gx_1 = F(x_0, y_0)$ and $gy_1 = F(y_0, x_0)$. Continuing in this way one can construct two sequences $\{x_n\}_{n \in \mathbb{N}}$ and $\{y_n\}_{n \in \mathbb{N}}$ in X with the properties

$$gx_{n+1} = F(x_n, y_n), gy_{n+1} = F(y_n, x_n), \forall n \in \mathbb{N}$$

We divide the proof into 5 steps.

Step 1. We show that $\{gx_n\}_{n\in\mathbb{N}}$ and $\{gy_n\}_{n\in\mathbb{N}}$ are Cauchy sequences. Indeed, let $\alpha > 0$ be such that

$$t^a(1 - M(gy_0, F(y_0, x_0), t)) \le \alpha$$

and

$$t^{a}(1 - M(gx_{0}, F(x_{0}, y_{0}), t)) \le \alpha$$

for all t > 0. Then $M\left(gx_0, gx_1, \frac{1}{t^n}\right) \ge 1 - \alpha(t^a)^n$ and $M\left(gy_0, gy_1, \frac{1}{t^n}\right) \ge 1 - \alpha(t^a)^n$ for every t > 0 and $n \in \mathbb{N}$.

If t > 0 and $\varepsilon \in (0, 1)$ are given, we choose μ in the interval (k, 1) such that $T_{i=n+1}^{\infty}(1 - (\mu^a)^i) > 1 - \varepsilon$ and $\delta = \frac{k}{\mu}$. As $\delta \in (0, 1)$, we can find $n_1(=n_1(t))$ such that $\sum_{n=n_1}^{\infty} \delta^n < t$.

Condition (2.1) implies that, for all s > 0,

$$M(gx_1, gx_2, ks) = M(F(x_0, y_0), F(x_1, y_1), s)$$

$$\geq Min\{M(gx_0, gx_1, s), M(gy_0, gy_1, s)\}$$

and

$$M(gy_1, gy_2, ks) = M(F(y_0, x_0), F(y_1, x_1), s)$$

$$\geq Min\{M(gy_0, gy_1, s), M(gx_0, gx_1, s)\}.$$

It follows by induction that

$$M(gx_n, gx_{n+1}, k^n s) \ge Min\{M(gx_0, gx_1, s), M(gy_0, gy_1, s)\},\$$

$$M(gy_n, gy_{n+1}, k^n s) \ge Min\{M(gy_0, gy_1, s), M(gx_0, gx_1, s)\},\$$

for all $n \in \mathbb{N}$. Then for all $n \geq n_1$ and all $m \in \mathbb{N}$ we obtain

$$M(gx_n, gx_{n+m}, t) \ge M\left(gx_n, gx_{n+m}, \sum_{i=n_1}^{\infty} \delta^i\right)$$

$$\ge M\left(gx_n, gx_{n+m}, \sum_{i=n}^{n+m-1} \delta^i\right)$$

$$\ge T_{i=n}^{n+m-1} M\left(gx_i, gx_{i+1}, \delta^i\right)$$

$$\ge T_{i=n}^{n+m-1} \left(Min\left\{M\left(gx_0, gx_1, \frac{1}{\mu^i}\right), M\left(gy_0, gy_1, \frac{1}{\mu^i}\right)\right\}\right)$$

$$\ge T_{i=n}^{n+m-1}(1 - \alpha\mu^{ai}).$$

If we choose $l_0 \in \mathbb{N}$ such that $\alpha \mu^{al_0} \leq \mu^a$, then

$$1 - \alpha(\mu^a)^{n+l_0} \ge 1 - (\mu^a)^{n+1}$$

for all n. Thus,

$$M(gx_{n+l_0}, gx_{n+l_0+m}, t) \ge T_{i=n+1}^{\infty} (1 - (\mu^a)^i) > 1 - \varepsilon$$

for every $n \ge n_1$ and $m \in \mathbb{N}$, hence $\{gx_n\}$ is a Cauchy sequence.

Similarly one can show that $\{gy_n\}$ is a Cauchy sequence.

Step 2. We prove that g and F have a coupled coincidence point.

Since X is complete, there exist $x, y \in X$ such that $\lim_{n \to \infty} gx_n = x$, $\lim_{n \to \infty} gy_n = y$. We show that F(x, y) = gx and F(y, x) = gy.

From the continuity of g it follows that $\lim_{n\to\infty} ggx_n = gx$ and $\lim_{n\to\infty} ggy_n = gy$. As F and g commute,

$$ggx_{n+1} = gF(x_n, y_n) = F(gx_n, gy_n),$$

and

$$ggy_{n+1} = gF(y_n, x_n) = F(gy_n, gx_n).$$

Consequently, for all t > 0 and $n \in \mathbb{N}$,

$$M(ggx_{n+1}, F(x, y), kt) = M(F(x_n, y_n), F(x, y), kt)$$

= $M(F(gx_n, gy_n), F(x, y), kt)$
 $\geq Min\{M(ggx_n, gx, t), M(ggy_n, gy, t).$

Letting $n \to \infty$ yields $M(gx, F(x, y, kt) \ge 1$ for all t > 0, hence gx = F(x, y). Similarly one can deduce that F(y, x) = gy.

Step 3. We show that gx = y and gy = x. Indeed, letting $n \to \infty$ in the inequality

$$M(gx, gy_{n+1}, kt) \ge Min\{M(gx, gy_n, t), M(gy, gx_n, t)\} \quad (t > 0)$$

(obtained from $M(gx, gy_{n+1}, kt) = M(F(x, y), F(y_n, x_n), t))$, we get

$$M(gx, y, kt) \ge Min\{M(gx, y, t), M(gy, x, t)\}$$

and similarly

$$M(gy, x, kt) \ge Min\{M(gx, y, t), M(gy, x, t)\}$$

Thus

$$Min\{M(gx, y, t), M(gy, x, t)\} \ge Min\left\{M\left(gx, y, \frac{t}{k^n}\right), M\left(gy, x, \frac{t}{k^n}\right)\right\}$$

for all $n \in \mathbb{N}$, implying $Min\{M(gx, y, t), M(gy, x, t)\} = 1$ for all t > 0. It follows that M(gx, y, t) = M(gy, x, t) = 1 for all t > 0, whence gx = y and gy = x, as claimed.

Step 4. We prove that x = y. Indeed, from

$$M(gx_{n+1}, gy_{n+1}, kt) = M(F(x_n y_n), F(y_n, x_n), kt)$$

$$\geq Min\{M(gx_n, gy_n, t), M(gy_n, gx_n, t)\} \quad (t > 0)$$

it follows that $M(x, y, kt) \ge M(x, y, t)$ for all t > 0, and so x = y.

Step 5. We show that the fixed point is unique.

Let z, w be common fixed points for F and g. Then from (2.1) we obtain

$$M(F(z, z), F(w, w), kt) \ge Min\{M(gz, gw, t), M(gz, gw, t)\}$$
 $(t > 0),$

that is, $M(z, w, kt) \ge M(z, w, t) \ \forall t > 0$, implying z = w.

Our next theorem shows that, if the t-norm T is of Hadžić-type, then the conditions

$$sup_{t>0}t^{a}(1 - M(gx_{0}, F(x_{0}, y_{0}), t)) < \infty$$

and

$$sup_{t>0}t^{a}(1 - M(gy_{0}, F(y_{0}, x_{0}), t)) < \infty$$

can be dropped.

Theorem 2.4. Let (X, M, T) be a complete fuzzy metric space satisfying (FM6), with $T \in \mathcal{H}$. Let $F : X \times X \to X$ and $g : X \to X$ be two mappings such that, for some $k \in (0, 1)$,

$$M(F(x,y),F(u,v),kt) \ge Min\{M(gx,gu,t),M(gy,gv,t)\}$$

for all $x, y, u, v \in X, t > 0$. Suppose that $F(X \times X) \subset g(X)$ and g is continuous and commutes with F. Then F and g have a unique common fixed point in X.

Proof. We only have to verify Step 1 in Theorem 2.3, that is, to prove that $\{gx_n\}$ and $\{gy_n\}$ are Cauchy sequences.

Let t > 0 and $\varepsilon \in (0, 1)$ be given. Since T is a t-norm of Hadžić-type, then there exists $\mu > 0$ such that $T^k(1-\mu) > 1-\varepsilon$ for all $k \in \mathbb{N}$.

By (FM-6), we can find s > 0 such that

$$M(gx_0, gx_1, s) > 1 - \mu, \ M(gy_0, gy_1, s) > 1 - \mu.$$

Let $n_0 \in \mathbb{N}$ be such that $t > \sum_{i=n_0}^{\infty} k^i s$.

As in Step 1 in the proof of Theorem 2.3 it can be proved that

$$M(gx_ngx_{n+1}, k^n s) \ge Min\{M(gx_0, gx_1, s), M(gy_0, gy_1, s\} > 1 - \mu,$$

and

$$M(gy_n, gy_{n+1}, k^n s) \ge Min\{M(gy_0, gy_1, s), M(gx_0, gx_1, s)\} > 1 - \mu$$

for all $n \in \mathbb{N}$. Therefore, for all $n \geq n_0$ and all $m \in \mathbb{N}$ the following inequalities hold:

$$M(gx_n, gx_{n+m}, t) \ge M\left(gx_n, gx_{n+m}, \sum_{i=n_1}^{\infty} k^i s\right) \ge M\left(gx_n, gx_{n+m}, \sum_{i=n}^{n+m-1} k^i s\right)$$
$$\ge T_{i=n}^{n+m-1} M(gx_i, gx_{i+1}, k^i s) \ge T_{i=n}^{n+m-1} (1-\mu) > 1-\varepsilon.$$

We conclude with an example to illustrate Theorem 2.3.

Example 2.5. Let X = [-2, 2] and $M(x, y, t) = \left(\frac{t}{t+1}\right)^{|x-y|}$. It is easy to verify that (X, M, T_P) is a complete fuzzy metric space.

Let $F: X \times X \to X$, $F(x, y) = \frac{x^2}{16} + \frac{y^2}{16} - 2$ and $g: X \to X$, g(x) = x. Then $F(X \times X) = [-2, -\frac{3}{2}]$ and (2.1) is verified with $k = \frac{1}{2}$.

Indeed, since $\frac{t/2}{t/2+1} \ge \left(\frac{t}{t+1}\right)^2$ for all $t \ge 0$, then

$$\begin{split} M\left(F(x,y),F(u,v),\frac{t}{2}\right) &= \left(\frac{\frac{t}{2}}{\frac{t}{2}+1}\right)^{\frac{|x^2-u^2+y^2-v^2|}{16}} \\ &\geq \left(\frac{t}{t+1}\right)^{\frac{|x^2-u^2+y^2-v^2|}{8}} \geq \left(\frac{t}{t+1}\right)^{\frac{|x-u|+|y-v|}{2}} \\ &\geq Min\left\{\left(\frac{t}{t+1}\right)^{|x-u|}, \left(\frac{t}{t+1}\right)^{|y-v|}\right\} \\ &= Min\{M(gx,gu,t),M(gy,gv,t)\} \quad (x,y \in X, t > 0). \end{split}$$

The point $x = 4(1 - \sqrt{2})$ belongs to X and it is the unique common fixed point of F and g.

References

- L. Cirić, D. Miheţ, R. Saadati, Monotone generalized contractions in partially ordered probabilistic metric spaces, Topology and its Applications 156 (2009), 2838-2844.
- [2] L. Cirić, R. Agarwal, B. Samet, Mixed monotone-generalized contractions in partially ordered probabilistic metric spaces, Fixed Point Theory and Applications 2011, 2011:56 doi:10.1186/1687-1812-2011-56.
- J.-X. Fang, Common Fixed point theorems of compatible and weakly compatible maps in Menger spaces, Nonlinear Analysis. Theory, Methods & Applications 71 (2009), 1833–1843.
- [4] O. Hadžić, E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, Dordrecht, 2001. 1
- [5] O. Hadžić, E. Pap, M. Budincević, Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces, Kybernetika 38 (3) (2002), 363–381.
- [6] Xin-Qi Hu, Common Coupled Fixed Point Theorems for Contractive Mappings in Fuzzy Metric Spaces, Fixed Point Theory and Applications Volume 2011, Article ID 363716, doi:10.1155/2011/363716.
- [7] Xin-Qi Hu, Xiao-Yan Ma, Coupled coincidence point theorems under contractive conditions in partially ordered probabilistic metric spaces, Nonlinear Analysis. Theory, Methods & Applications 74 (2011), 6451-6458.
- [8] I. Kramosil, J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975), 336-344. 1
- [9] V. Lakshmikantham, L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis. Theory, Methods & Applications 70 (2009), 4341–4349.
- [10] S. Sedghi, I. Altun, N. Shobe, Coupled fixed point theorems for contractions in fuzzy metric spaces, Nonlinear Analysis. Theory, Methods & Applications 72 (2010), 1298-1304.
- [11] Xing-Hua Zhu, Jian-Zhong Xiao, Note on "Coupled fixed point theorems for contractions in fuzzy metric spaces", Nonlinear Analysis. Theory, Methods & Applications 74 (2011), 5475-5479.