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Abstract
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Keywords: Fuzzy metric space, g-convergent t-norm, coupled common fixed point.
2010 MSC: Primary 54E70; Secondary 54H25.

1. Introduction

Many common coupled fixed point theorems for contractions in fuzzy metric spaces and probabilistic metric
spaces under either a t-norm of Hadžić-type or the t-norm TP = Prod can be found in the recent literature,
see, e.g., [10], [6], [11], [2], [3], [1], [7], [11]. The aim of this paper is to obtain similar results in a larger class
of fuzzy metric spaces, namely in fuzzy metric spaces endowed with geometrically convergent t-norms.

We assume that the reader is familiar with the basic concepts and terminology of the theory of fuzzy
metric spaces. We only recall that a t-norm T is said to be of Hadžić-type ( denoted T ∈ H) if the family
{Tn(t)}∞n=1 defined by

T 1(t) = t, Tn+1(t) = T (t, Tn(t)) (n = 1, 2, ..., t ∈ [0, 1])

is equicontinuous at t = 1, and that a t-norm T is called geometrically convergent (or g-convergent) ([5]) if,
for all q ∈ (0, 1),

lim
n→∞

T∞i=n(1− qi) = 1.
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It is worth noting (see e.g. [5]) that if for a t-norm there exists q0 ∈ (0, 1) such that

lim
n→∞

T∞i=n(1− qi0) = 1,

then
lim
n→∞

T∞i=n(1− qi) = 1

for every q ∈ (0, 1).
The well-known t-norms TM = Min, TP = Prod, TL ( Lukasiewicz t-norm) are g-convergent. Also, every

member of the Domby family (TDλ )λ∈(0,∞), Aczel-Alsina family (TAAλ )λ∈(0,∞) and Sugeno-Weber family

(TSWλ )λ∈(−1,∞) is g-convergent ([5]). A large class of g-convergent t-norms, in terms of the generators of
strict t-norms is described in [5] (also see [4], Ch. 1.8).

In the following we consider M-complete fuzzy metric spaces in the sense of Kramosil and Michalek ([8]),
satisfying the condition (FM-6): lim

t→∞
M(x, y, t) = 1 for all x, y ∈ X.

2. Main Results

We start by recalling two definitions from [9].

Definition 2.1. Let X be a nonempty set. The mappings F : X × X → X and g : X → X are said to
commute if gF (x, y) = F (gx, gy) for all x, y ∈ X.

Definition 2.2. An element (x, y) ∈ X × X is called a coupled coincidence point of the mappings F :
X ×X → X and g : X → X if F (x, y) = gx and F (y, x) = gy.

The mappings F and g have a common fixed point if there exists x ∈ X such that x = gx = F (x, x).

Our main theorem states as follows.

Theorem 2.3. Let (X,M, T ) be a complete fuzzy metric space, satisfying (FM-6), with T a g-convergent
t-norm. Let F : X ×X → X and g : X → X be two mappings such that, for some k ∈ (0, 1),

M(F (x, y), F (u, v), kt) ≥Min{M(gx, gu, t),M(gy, gv, t)} (2.1)

for all x, y, u, v ∈ X, t > 0.
Suppose that F (X × X) ⊂ g(X), and that g is continuous and commutes with F . If there exist a > 0

and x0, y0 ∈ X such that
sup
t>0

ta(1−M(gx0, F (x0, y0), t)) <∞

and
sup
t>0

ta(1−M(gy0, F (y0, x0), t)) <∞,

then F and g have a unique common fixed point in X.

We note that if (x0, y0) is a coupled coincidence point of F and g, then the conditions sup
t>0

ta(1 −

M(gx0, F (x0, y0), t)) <∞ and sup
t>0

ta(1−M(gy0, F (y0, x0), t)) <∞ are satisfied.

Proof. Let x0, y0 be as in the statement of the theorem. Since F (X ×X) ⊂ g(X), we can choose x1, y1 ∈ X
such that gx1 = F (x0, y0) and gy1 = F (y0, x0). Continuing in this way one can construct two sequences
{xn}n∈N and {yn}n∈N in X with the properties

gxn+1 = F (xn, yn), gyn+1 = F (yn, xn), ∀n ∈ N.

We divide the proof into 5 steps.
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Step 1. We show that {gxn}n∈N and {gyn}n∈N are Cauchy sequences.
Indeed, let α > 0 be such that

ta(1−M(gy0, F (y0, x0), t)) ≤ α

and
ta(1−M(gx0, F (x0, y0), t)) ≤ α

for all t > 0. Then M
(
gx0, gx1,

1
tn

)
≥ 1 − α(ta)n and M

(
gy0, gy1,

1
tn

)
≥ 1 − α(ta)n for every t > 0 and

n ∈ N.
If t > 0 and ε ∈ (0, 1) are given, we choose µ in the interval (k, 1) such that T∞i=n+1(1 − (µa)i) > 1 − ε

and δ = k
µ . As δ ∈ (0, 1), we can find n1(= n1(t)) such that

∞∑
n=n1

δn < t.

Condition (2.1) implies that, for all s > 0,

M(gx1, gx2, ks) = M(F (x0, y0), F (x1, y1), s)

≥Min{M(gx0, gx1, s),M(gy0, gy1, s)},

and

M(gy1, gy2, ks) = M(F (y0, x0), F (y1, x1), s)

≥Min{M(gy0, gy1, s),M(gx0, gx1, s)}.

It follows by induction that

M(gxn, gxn+1, k
ns) ≥Min{M(gx0, gx1, s),M(gy0, gy1, s)},

M(gyn, gyn+1, k
ns) ≥Min{M(gy0, gy1, s),M(gx0, gx1, s)},

for all n ∈ N. Then for all n ≥ n1 and all m ∈ N we obtain

M(gxn, gxn+m, t) ≥M

(
gxn, gxn+m,

∞∑
i=n1

δi

)

≥M

(
gxn, gxn+m,

n+m−1∑
i=n

δi

)
≥ Tn+m−1i=n M

(
gxi, gxi+1, δ

i
)

≥ Tn+m−1i=n

(
Min

{
M

(
gx0, gx1,

1

µi

)
,M

(
gy0, gy1,

1

µi

)})
≥ Tn+m−1i=n (1− αµai).

If we choose l0 ∈ N such that αµal0 ≤ µa, then

1− α(µa)n+l0 ≥ 1− (µa)n+1

for all n. Thus,
M(gxn+l0 , gxn+l0+m, t) ≥ T∞i=n+1(1− (µa)i) > 1− ε,

for every n ≥ n1 and m ∈ N, hence {gxn} is a Cauchy sequence.
Similarly one can show that {gyn} is a Cauchy sequence.
Step 2. We prove that g and F have a coupled coincidence point.
Since X is complete, there exist x, y ∈ X such that lim

n→∞
gxn = x, lim

n→∞
gyn = y. We show that F (x, y) =

gx and F (y, x) = gy.
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From the continuity of g it follows that lim
n→∞

ggxn = gx and lim
n→∞

ggyn = gy.

As F and g commute,
ggxn+1 = gF (xn, yn) = F (gxn, gyn),

and
ggyn+1 = gF (yn, xn) = F (gyn, gxn).

Consequently, for all t > 0 and n ∈ N,

M(ggxn+1, F (x, y), kt) = M(F (xn, yn), F (x, y), kt)

= M(F (gxn, gyn), F (x, y), kt)

≥Min{M(ggxn, gx, t),M(ggyn, gy, t).

Letting n→∞ yields M(gx, F (x, y, kt) ≥ 1 for all t > 0, hence gx = F (x, y). Similarly one can deduce
that F (y, x) = gy.

Step 3. We show that gx = y and gy = x.
Indeed, letting n→∞ in the inequality

M(gx, gyn+1, kt) ≥Min{M(gx, gyn, t),M(gy, gxn, t)} (t > 0)

(obtained from M(gx, gyn+1, kt) = M(F (x, y), F (yn, xn), t)), we get

M(gx, y, kt) ≥Min{M(gx, y, t),M(gy, x, t)}

and similarly
M(gy, x, kt) ≥Min{M(gx, y, t),M(gy, x, t)}.

Thus

Min{M(gx, y, t),M(gy, x, t)} ≥Min

{
M

(
gx, y,

t

kn

)
,M

(
gy, x,

t

kn

)}
for all n ∈ N, implying Min{M(gx, y, t),M(gy, x, t)} = 1 for all t > 0. It follows that M(gx, y, t) =
M(gy, x, t) = 1 for all t > 0, whence gx = y and gy = x, as claimed.

Step 4. We prove that x = y.
Indeed, from

M(gxn+1, gyn+1, kt) = M(F (xnyn), F (yn, xn), kt)

≥Min{M(gxn, gyn, t),M(gyn, gxn, t)} (t > 0)

it follows that M(x, y, kt) ≥M(x, y, t) for all t > 0, and so x = y.
Step 5. We show that the fixed point is unique.
Let z, w be common fixed points for F and g. Then from (2.1) we obtain

M(F (z, z), F (w,w), kt) ≥Min{M(gz, gw, t),M(gz, gw, t)} (t > 0),

that is, M(z, w, kt) ≥M(z, w, t) ∀t > 0, implying z = w.

Our next theorem shows that, if the t-norm T is of Hadžić-type, then the conditions

supt>0t
a(1−M(gx0, F (x0, y0), t)) <∞

and
supt>0t

a(1−M(gy0, F (y0, x0), t)) <∞

can be dropped.
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Theorem 2.4. Let (X,M, T ) be a complete fuzzy metric space satisfying (FM6), with T ∈ H. Let F :
X ×X → X and g : X → X be two mappings such that, for some k ∈ (0, 1),

M(F (x, y), F (u, v), kt) ≥Min{M(gx, gu, t),M(gy, gv, t)}

for all x, y, u, v ∈ X, t > 0. Suppose that F (X × X) ⊂ g(X) and g is continuous and commutes with F .
Then F and g have a unique common fixed point in X.

Proof. We only have to verify Step 1 in Theorem 2.3, that is, to prove that {gxn} and {gyn} are Cauchy
sequences.

Let t > 0 and ε ∈ (0, 1) be given. Since T is a t-norm of Hadžić-type, then there exists µ > 0 such that
T k(1− µ) > 1− ε for all k ∈ N.

By (FM-6), we can find s > 0 such that

M(gx0, gx1, s) > 1− µ, M(gy0, gy1, s) > 1− µ.

Let n0 ∈ N be such that t >
∑∞

i=n0
kis.

As in Step 1 in the proof of Theorem 2.3 it can be proved that

M(gxngxn+1, k
ns) ≥Min{M(gx0, gx1, s),M(gy0, gy1, s} > 1− µ,

and
M(gyn, gyn+1, k

ns) ≥Min{M(gy0, gy1, s),M(gx0, gx1, s)} > 1− µ

for all n ∈ N. Therefore, for all n ≥ n0 and all m ∈ N the following inequalities hold:

M(gxn, gxn+m, t) ≥M

(
gxn, gxn+m,

∞∑
i=n1

kis

)
≥M

(
gxn, gxn+m,

n+m−1∑
i=n

kis

)
≥ Tn+m−1i=n M(gxi, gxi+1, k

is) ≥ Tn+m−1i=n (1− µ) > 1− ε.

We conclude with an example to illustrate Theorem 2.3.

Example 2.5. Let X = [−2, 2] and M(x, y, t) =
(

t
t+1

)|x−y|
. It is easy to verify that (X,M, TP ) is a

complete fuzzy metric space.

Let F : X ×X → X, F (x, y) = x2

16 + y2

16 − 2 and g : X → X, g(x) = x. Then F (X ×X) = [−2,−3
2 ] and

(2.1) is verified with k = 1
2 .

Indeed, since t/2
t/2+1 ≥

(
t
t+1

)2
for all t ≥ 0, then

M

(
F (x, y), F (u, v),

t

2

)
=

( t
2

t
2 + 1

) |x2−u2+y2−v2|
16

≥
(

t

t+ 1

) |x2−u2+y2−v2|
8

≥
(

t

t+ 1

) |x−u|+|y−v|
2

≥Min

{(
t

t+ 1

)|x−u|
,

(
t

t+ 1

)|y−v|}
= Min{M(gx, gu, t),M(gy, gv, t)} (x, y ∈ X, t > 0).

The point x = 4(1−
√

2) belongs to X and it is the unique common fixed point of F and g.
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