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Abstract

In this paper we obtain some coincidence point results of a family of multivalued mappings with a singlevalued
mapping in a complete metric space endowed with a partial order. We use δ- distance in this paper. A
generalized weak C-contraction inequality for multivalued functions and δ-compatibility for certain pairs of
functions are assumed in the theorems. The corresponding singled valued cases are shown to extend a number
of existing results. An example is constructed which shows that the extensions are actual improvements.
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1. Introduction

The purpose of this paper is to establish some coincidence point results for weak multivalued C-
contraction type mappings in partially ordered metric spaces. Weakening of contractive inequalities began
with the work of Alber et al. [2] when they established a weak version of the Banach contraction mapping
principle in Hilbert spaces. Later it was proved by Rhoades [25] that the weak contraction introduced in [2]
has necessarily a unique fixed point in a complete metric space. Following this result many authors have
created weak contraction inequalities and obtained fixed point theorems with the help of these inequalities.
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In the fixed point theory of setvalued maps two types of distances are generally used. One is the Hausdorff
distance. Nadler [22] had proved a multivalued version of the Banach’s contraction mapping principle by
using the Hausdorff metric. There are many other fixed point results using this Hausdorff metric, some
instances of these works are in [14, 15, 28]. The another distance is the δ - distance. This is not metric like
the Hausdorff distance, but shares most of the properties of a metric. It has been used in many problem on
fixed point theory like those in [1, 3, 19].

In recent times, fixed point theory has developed rapidly in partially ordered metric spaces; that is,
metric spaces endowed with a partial ordering. References [10, 23, 24] are some recent instances of these
works. A speciality of these problems is that they use both analytic and order theoretic methods. It is also
one of the main reasons why they are considered interesting.

Khan et al. [20] initiated the use of a control function in metric fixed point theory which they called
Altering distance function. Several works on fixed point theory like those noted in [9, 11, 16, 26] have utilized
this control function.

C-contractions are contractive mappings which are different from Banach’s contraction. This category
of contraction was introduced by Chatterjea [7]. Like the weakened of the Banach’s contraction inequality,
the C-contraction was weakened in [8]. In the same work it has been shown that the weak C-contraction has
a unique fixed point in complete metric spaces. Following this work several other works on C-contraction
have appeared in [4, 17, 21, 27].

In this paper we utilize a weak C-contraction inequality with δ- distance to establish the existence of
a coincidence point of a family of multivalued functions with a singlevalued function in a complete metric
space with a partial order. We have also utilized δ-compatible pairs in our theorems. In another theorem we
have replaced the continuities of the functions with an order condition. We also give here the corresponding
singlevalued versions of the theorems which generalize a number of existing works. An illustrative example
for the multivalued case is given.

2. Mathematical Preliminaries

In the following we give some technical definitions which are used in our theorems.
Let (X, d) be a metric space. We denote the class of nonempty and bounded subsets of X by B(X).

For A, B ∈ B(X), functions D(A, B) and δ(A, B) are defined as follows:
D(A, B) = inf {d(a, b) : a ∈ A, b ∈ B},
δ(A, B) = sup {d(a, b) : a ∈ A, b ∈ B}.

If A = {a}, then we write D(A, B) = D(a, B) and δ(A, B) = δ(a, B). Also in addition, if B = {b}, then
D(A, B) = d(a, b) and δ(A, B) = d(a, b). Obviously, D(A, B) ≤ δ(A, B). For all A, B, C ∈ B(X), the
definition of δ(A, B) yields the following:

δ(A, B) = δ(B, A),
δ(A, B) ≤ δ(A, C) + δ(C, B),
δ(A, B) = 0 iff A = B = {a},
δ(A, A) = diam A. [12]

There are several works which have utilized δ - distance [3, 5, 12, 13, 19].

Lemma 2.1. ([12]) If {An} and {Bn} are sequences in B(X), where (X, d) is a complete metric space and
{An} → A and {Bn} → B for A,B ∈ B(X), then δ(An, Bn)→ δ(A,B) as n→∞.

Lemma 2.2. ([13]) If {An} is a sequence of bounded sets in a complete metric space (X, d) and if lim
n→∞

δ(An, {y}) =

0, for some y ∈ X, then {An} → {y}.

Definition 2.3. ([13]) A set-valued mapping T : X → B(X), where (X, d) is a metric space, is continuous
at a point x ∈ X if {xn} is a sequence in X converging to x, then the sequence {Txn} in B(X) converges
to Tx. T is said to be continuous in X if it is continuous at each point x ∈ X.
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Definition 2.4. ([18]) Two self maps g and T of a metric space (X, d) are said to be compatible mappings
if lim
n→∞

d(gTxn, T gxn) = 0 whenever {xn} is a sequence in X such that lim
n→∞

gxn = lim
n→∞

Txn = t, for some

t ∈ X.

Definition 2.5. ([19]) The mappings g : X → X and T : X → B(X), where (X, d) is a metric space, are
δ- compatible if lim

n→∞
δ(Tgxn, gTxn) = 0 whenever {xn} is a sequence in X such that gTxn ∈ B(X) and

Txn → {t}, gxn → t, for some t in X.

Definition 2.6. Let (X, d) be a metric space and g : X → X and T : X → B(X). Then u ∈ X is called a
coincidence point of g and T if {gu} = Tu.

Definition 2.7. ([5]) Let A and B be two nonempty subsets of a partially ordered set (X, �). The relation
between A and B is denoted and defined as follows:

A ≺1 B, if for every a ∈ A there exists b ∈ B such that a � b.

Definition 2.8. ([20]) A function ψ : [0,∞)→ [0,∞) is called an Altering distance function if the following
properties are satisfied:
(i) ψ is monotone increasing and continuous,
(ii) ψ(t) = 0 if and only if t = 0.

For (x, y), (u, v) ∈ R× R, we say (x, y) ≤ (u, v) if and only if x ≤ u and y ≤ v.

Definition 2.9. A function φ : [0,∞)2 → [0,∞) is said to be monotone nondecreasing if for (x, y), (u, v) ∈
[0,∞)2, (x, y) ≤ (u, v) =⇒ φ(x, y) ≤ φ(u, v).

As already mentioned, we introduce here the definition of weak multivalued C-contraction type mapping
in the following.

Definition 2.10. ([7]) A mapping T : X → X, where (X, d) is a metric space, is called a C-contraction if
there exists 0 < k < 1

2 such that

d(Tx, Ty) ≤ k [d(x, Ty) + d(y, Tx)], for all x, y ∈ X. (2.1)

Definition 2.11. ([8]) A mapping T : X → X, where (X, d) is a metric space, is said to be weak C-
contractive if for all x, y ∈ X,

d(Tx, Ty) ≤ 1

2
[d(x, Ty) + d(y, Tx)]− φ(d(x, Ty), d(y, Tx)), (2.2)

where φ : [0,∞)2 → [0,∞) is a continuous function with φ(x, y) = 0 if and only if (x, y) = (0, 0).

Definition 2.12. A mapping T : X → X, where (X, d) is a metric space, is said to be generalized weak
C-contractive if for all x, y ∈ X,

ψ(d(Tx, Ty)) ≤ ψ(
1

2
[d(x, Ty) + d(y, Tx)])− φ(d(x, Ty), d(y, Tx)) (2.3)

where ψ is an Altering distance function and φ : [0,∞)2 → [0,∞) is a continuous function with φ(x, y) = 0
if and only if (x, y) = (0, 0).

(2.3) reduces to (2.2) if ψ is considered to be the identity mapping. Also, if one takes ψ to be the identity
mapping and φ(x, y) = (12 − k)(x + y), where 0 < k < 1

2 , then (2.3) reduces to (2.1). Hence generalized
weak C-contraction mappings are generalizations of weak C-contraction and C-contraction mappings.

Definition 2.13. A multivalued mapping T : X → B(X), where (X, d) is a metric space, is said to be
weak multivalued C-contractive if for all x, y ∈ X,

ψ(δ(Tx, Ty)) ≤ ψ(
1

2
[D(x, Ty) +D(y, Tx)])− φ(δ(x, Ty), δ(y, Tx)), (2.4)

where ψ is an Altering distance function and φ : [0,∞)2 → [0,∞) is a continuous function with φ(x, y) = 0
if and only if (x, y) = (0, 0).
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3. Main Results

Theorem 3.1. Let (X, �) be a partially ordered set and suppose that there exists a metric d on X such that
(X, d) is a complete metric space. Let φ : [0,∞)2 → [0,∞) be a monotone nondecreasing and continuous
function with φ(x, y) = 0 if and only if (x, y) = (0, 0) and ψ be an altering distance function. Let
{Tα : X → B(X) : α ∈ Λ} be a family of multivalued mappings. Let g : X → X be a mapping such that
g(X) is closed in X. Suppose that there exists α0 ∈ Λ such that

(i) Tα0 and g are continuous,

(ii) Tα0x ⊆ g(X) and gTα0x ∈ B(X), for every x ∈ X,

(iii) there exists x0 ∈ X such that {gx0} ≺1 Tα0x0,

(iv) for x, y ∈ X, gx � gy implies Tα0x ≺1 Tα0y,

(v) the pair (g, Tα0) is δ - compatible,

(vi) ψ(δ(Tα0x, Tαy)) ≤ ψ(12 [D(gx, Tαy) +D(gy, Tα0x)])− φ(δ(gx, Tαy), δ(gy, Tα0x)),

where x, y ∈ X such that gx and gy are comparable and α ∈ Λ.
Then g and {Tα : α ∈ Λ} have a coincidence point.

Proof. First we establish that any coincidence point of g and Tα0 is a coincidence point of g and {Tα : α ∈ Λ}
and conversely. Suppose that p ∈ X be a coincidence point of g and Tα0 . Then {gp} = Tα0p. From (vi) and
using the monotone property of ψ, we have

ψ(δ(gp, Tαp)) = ψ(δ(Tα0p, Tαp))

≤ ψ(
1

2
[D(gp, Tαp) +D(gp, Tα0p)])− φ(δ(gp, Tαp), δ(gp, Tα0p))

≤ ψ(
1

2
D(gp, Tαp)) (by a property of φ).

Again using the monotone property of ψ, we have

δ(gp, Tαp) ≤
1

2
D(gp, Tαp),

which implies that

δ(gp, Tαp) ≤
1

2
D(gp, Tαp) ≤

1

2
δ(gp, Tαp),

which implies that δ(gp, Tαp) = 0, that is, {gp} = Tαp, for all α ∈ Λ. Hence p is a coincidence point of g
and {Tα : α ∈ Λ}. Converse part is trivial.

Now it is sufficient to prove that g and Tα0 have a coincidence point. Let x0 ∈ X be such that
{gx0} ≺1 Tα0x0. Then there exists u ∈ Tα0x0 such that gx0 � u. Since Tα0x0 ⊆ g(X) and u ∈ Tα0x0, there
exists x1 ∈ X such that gx1 = u. So gx0 � gx1. Then by the assumption (iv), Tα0x0 ≺1 Tα0x1. Since
u = gx1 ∈ Tα0x0, there exists v ∈ Tα0x1 such that gx1 � v. As Tα0x1 ⊆ g(X) and v ∈ Tα0x1, there exists
x2 ∈ X such that gx2 = v. So gx1 � gx2. Continuing this process we construct a sequence {xn} in X such
that

gxn+1 ∈ Tα0xn, for alln ≥ 0, (3.1)

and
gx0 � gx1 � gx2 � ..... � gxn � gxn+1.... (3.2)
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Since gxn � gxn+1, putting α = α0, x = xn+1 and y = xn in (vi) and using the monotone properties of ψ
and φ, we have

ψ(d(gxn+2, gxn+1)) ≤ ψ(δ(Tα0xn+1, Tα0xn))

≤ ψ(
1

2
[D(gxn+1, Tα0xn) +D(gxn, Tα0xn+1)])

− φ(δ(gxn+1, Tα0xn), δ(gxn, Tα0xn+1))

≤ ψ(
1

2
[d(gxn+1, gxn+1) + d(gxn, gxn+2)])

− φ(d(gxn+1, gxn+1), d(gxn, gxn+2))

= ψ(
1

2
d(gxn, gxn+2))− φ(0, d(gxn, gxn+2)), (3.3)

which by monotone property of ψ and a property of φ implies that

d(gxn+2, gxn+1) ≤
1

2
d(gxn, gxn+2) ≤

1

2
[d(gxn, gxn+1) + d(gxn+1, gxn+2)], (3.4)

that is,
d(gxn+2, gxn+1) ≤ d(gxn+1, gxn).

Therefore, {d(gxn+1, gxn)} is a monotone decreasing sequence of non-negative real numbers. Hence there
exists an r ≥ 0 such that

lim
n→∞

d(gxn+1, gxn) = r. (3.5)

Taking the limit as n→∞ in (3.4) and using (3.5), we have

lim
n→∞

d(gxn, gxn+2) = 2r. (3.6)

Letting n→∞ in (3.3), using (3.5), (3.6) and continuities of ψ and φ, we have

ψ(r) ≤ ψ(r)− φ(0, 2r),

which is a contradiction unless r = 0. Hence

lim
n→∞

d(gxn+1, gxn) = 0 (3.7)

and
lim
n→∞

d(gxn, gxn+2) = 0. (3.8)

Next we show that {gxn} is a Cauchy sequence. If {gxn} is not a Cauchy sequence, then there exists an
ε > 0 for which we can find two sequences of positive integers {m(k)} and {n(k)} such that for all positive
integers k, n(k) > m(k) > k and d(gxn(k), gxm(k)) ≥ ε. Assuming that n(k) is the smallest such positive
integer, we get

n(k) > m(k) > k,

d(gxn(k), gxm(k)) ≥ ε

and
d(gxn(k)−1, gxm(k)) < ε.

Now,
ε ≤ d(gxn(k), gxm(k)) ≤ d(gxn(k), gxn(k)−1) + d(gxn(k)−1, gxm(k)),

that is,
ε ≤ d(gxn(k), gxm(k)) < d(gxn(k), gxn(k)−1) + ε.
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Letting k →∞ in the above inequality and using (3.7), we have

lim
k→∞

d(gxn(k), gxm(k)) = ε. (3.9)

Again,

d(gxn(k), gxm(k)) ≤ d(gxn(k), gxn(k)+1) + d(gxn(k)+1, gxm(k)+1) + d(gxm(k)+1, gxm(k))

and
d(gxn(k)+1, gxm(k)+1) ≤ d(gxn(k)+1, gxn(k)) + d(gxn(k), gxm(k)) + d(gxm(k), gxm(k)+1).

Letting k →∞ in above inequalities, using (3.7) and (3.9), we have

lim
k→∞

d(gxn(k)+1, gxm(k)+1) = ε. (3.10)

Again,
d(gxn(k), gxm(k)) ≤ d(gxn(k), gxm(k)+1) + d(gxm(k)+1, gxm(k))

and
d(gxn(k), gxm(k)+1) ≤ d(gxn(k), gxm(k)) + d(gxm(k), gxm(k)+1).

Letting k →∞ in the above inequalities and using (3.7) and (3.9), we have

lim
k→∞

d(gxn(k), gxm(k)+1) = ε. (3.11)

Similarly, we have
lim
k→∞

d(gxm(k), gxn(k)+1) = ε. (3.12)

For each positive integer k, gxm(k) and gxn(k) are comparable. Then putting α = α0, x = xn(k) and y = xm(k)

in (vi) and using the monotone properties of ψ and φ, we have

ψ(d(gxn(k)+1, gxm(k)+1)) ≤ ψ(δ(Tα0xn(k), Tα0xm(k)))

≤ ψ(
1

2
[D(gxn(k), Tα0xm(k)) +D(gxm(k), Tα0xn(k))])

−φ(δ(gxn(k), Tα0xm(k)), δ(gxm(k), Tα0xn(k)))

≤ ψ(
1

2
[d(gxn(k), gxm(k)+1) + d(gxm(k), gxn(k)+1)])

−φ(d(gxn(k), gxm(k)+1), d(gxm(k), gxn(k)+1)).

Letting k →∞ in the above inequality, using (3.10), (3.11), (3.12) and the properties of φ and ψ, we have

ψ(ε) ≤ ψ(ε)− φ(ε, ε),

which is a contradiction by virtue of a property of φ. Hence {gxn} is a Cauchy sequence in g(X). Since X
is complete and g(X) is closed in X, there exists u ∈ g(X) such that

gxn → u as n→∞.

Since u ∈ g(X), there exists z ∈ X such that u = gz. Then

gxn → u = gz as n→∞. (3.13)

From (3.3), we have

ψ(d(gxn+2, gxn+1)) ≤ ψ(δ(Tα0xn+1, Tα0xn))

≤ ψ(
1

2
d(gxn, gxn+2))− φ(0, d(gxn, gxn+2)).
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Using the properties of ψ and φ, we have

d(gxn+2, gxn+1) ≤ δ(Tα0xn+1, Tα0xn) ≤ 1

2
d(gxn, gxn+2).

Taking n→∞ in the above inequality, and using (3.7) and (3.8), we have

lim
n→∞

δ(Tα0xn+1, Tα0xn) = 0. (3.14)

Now,
δ(Tα0xn, {u}) ≤ δ(Tα0xn, gxn) + δ(gxn, {u}) ≤ δ(Tα0xn, Tα0xn−1) + d(gxn, u).

Letting n→∞ in the above inequality using (3.13) and (3.14), we have

lim
n→∞

δ(Tα0xn, {u}) = 0,

which by Lemma 2.2 implies that
Tα0xn → {u} as n→∞. (3.15)

Since the pair (g, Tα0) is δ - compatible, from (3.13) and (3.15), we have

lim
n→∞

δ(Tα0gxn, gTα0xn) = 0.

As g and Tα0 are continuous, it follows that δ(Tα0u, gu) = 0, that is, Tα0u = {gu}. Hence u ∈ g(X) ⊆ X
is a coincidence point of g and Tα0 . By what we have already proved, u is a coincidence point of g and
{Tα : α ∈ Λ}.

In our next theorem we relax the continuity assumption on Tα0 and g by imposing an order condition.
We also relax the condition that gTα0x ∈ B(X), for every x ∈ X.

Theorem 3.2. Let (X, �) be a partially ordered set and suppose that there exists a metric d on X such that
(X, d) is a complete metric space. Assume that if xn → x is a nondecreasing sequence in X, then xn � x,
for all n. Let φ : [0,∞)2 → [0,∞) be a monotone nondecreasing and continuous function with φ(x, y) = 0
if and only if (x, y) = (0, 0) and ψ be an altering distance function. Let {Tα : X → B(X) : α ∈ Λ} be a
family of multivalued mappings. Let g : X → X be a mapping such that g(X) is closed in X. Suppose that
there exists α0 ∈ Λ such that

(i) Tα0x ⊆ g(X) for every x ∈ X,

(ii) there exists x0 ∈ X such that {gx0} ≺1 Tα0x0,

(iii) for x, y ∈ X, gx � gy implies Tα0x ≺1 Tα0y,

(iv) ψ(δ(Tα0x, Tαy)) ≤ ψ(12 [D(gx, Tαy) +D(gy, Tα0x)])− φ(δ(gx, Tαy), δ(gy, Tα0x)),

where x, y ∈ X such that gx and gy are comparable and α ∈ Λ.
Then g and {Tα : α ∈ Λ} have a coincidence point.

Proof. We take the same sequence {gxn} as in the proof of Theorem 3.1 Then we have gxn+1 ∈ Tα0xn, for
all n ≥ 0, {gxn} is monotonic nondecreasing and gxn → gz as n→∞. Then by the order condition of the
metric space, we have gxn � gz, for all n.
Using the monotone properties of ψ and φ, and the condition (iv), we have

ψ(δ(gxn+1, Tαz)) ≤ ψ(δ(Tα0xn, Tαz))

≤ ψ(
1

2
[D(gxn, Tαz) +D(gz, Tα0xn)])

−φ(δ(gxn, Tαz), δ(gz, Tα0xn))

≤ ψ(
1

2
[D(gxn, Tαz) + d(gz, gxn+1)]

−φ(δ(gxn, Tαz), d(gz, gxn+1)).



B. S. Choudhury, N. Metiya, P. Maity , J. Nonlinear Sci. Appl. 6 (2013), 7–17 14

Taking the limit as n→∞ in the above inequality and using the continuities of φ and ψ, we have

ψ(δ(gz, Tαz)) ≤ ψ(
1

2
D(gz, Tαz))− φ(δ(gz, Tαz), 0),

which implies that

ψ(δ(gz, Tαz)) ≤ ψ(
1

2
D(gz, Tαz)) (by a property of φ).

Using the monotone property of ψ, we have

δ(gz, Tαz) ≤
1

2
D(gz, Tαz),

which implies that

δ(gz, Tαz) ≤
1

2
D(gz, Tαz) ≤

1

2
δ(gz, Tαz),

which implies that δ(gz, Tαz) = 0, that is, {gz} = Tαz, for all α ∈ Λ. Hence z is a coincidence point of g
and {Tα : α ∈ Λ}.

Considering {Tα : X → B(X) : α ∈ Λ} = {T} in theorem 3.1, we have the following corollary.

Corollary 3.3. Let (X, �) be a partially ordered set and suppose that there exists a metric d on X such that
(X, d) is a complete metric space. Let φ : [0,∞)2 → [0,∞) be a monotone nondecreasing and continuous
function with φ(x, y) = 0 if and only if (x, y) = (0, 0) and ψ be an altering distance function. Let
T : X → B(X) be a multivalued mapping and g : X → X a mapping such that
(i) T and g are continuous,
(ii) Tx ⊆ g(X) and gTx ∈ B(X), for every x ∈ X, and g(X) is closed in X,
(iii) there exists x0 ∈ X such that {gx0} ≺1 Tx0,
(iv) for x, y ∈ X, gx � gy implies Tx ≺1 Ty,
(v) the pair (g, T ) is δ - compatible,
(vi) ψ(δ(Tx, Ty)) ≤ ψ(12 [D(gx, Ty) +D(gy, Tx)])− φ(δ(gx, Ty), δ(gy, Tx)),
where x, y ∈ X such that gx and gy are comparable.
Then g and T have a coincidence point.

Considering {Tα : X → B(X) : α ∈ Λ} = {T} in theorem 3.2, we have the following corollary.

Corollary 3.4. Let (X, �) be a partially ordered set and suppose that there exists a metric d on X such that
(X, d) is a complete metric space. Assume that if xn → x is a nondecreasing sequence in X, then xn � x,
for all n. Let φ : [0,∞)2 → [0,∞) be a monotone nondecreasing and continuous function with φ(x, y) = 0
if and only if (x, y) = (0, 0) and ψ be an altering distance function. Let T : X → B(X) be a multivalued
mapping and g : X → X a mapping such that
(i) Tx ⊆ g(X) for every x ∈ X, and g(X) is closed in X,
(ii) there exists x0 ∈ X such that {gx0} ≺1 Tx0,
(iii) for x, y ∈ X, gx � gy implies Tx ≺1 Ty,
(iv) ψ(δ(Tx, Ty)) ≤ ψ(12 [D(gx, Ty) +D(gy, Tx)])− φ(δ(gx, Ty), δ(gy, Tx)),
where x, y ∈ X such that gx and gy are comparable.
Then g and T have a coincidence point.

The following theorems are single valued cases of the theorems 3.1 and 3.2 respectively. Here we treat T
as a multivalued mapping in which case Tx is a singleton set for every x ∈ X. For the following theorems
function φ need not to be monotone nondecreasing.

Theorem 3.5. Let (X, �) be a partially ordered set and suppose that there exists a metric d on X such
that (X, d) is a complete metric space. Let φ : [0,∞)2 → [0,∞) be a continuous function with φ(x, y) = 0
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if and only if (x, y) = (0, 0) and ψ be an altering distance function. Let {Tα : X → X : α ∈ Λ} be a family
of mappings. Let g : X → X be a mapping such that g(X) is closed in X. Suppose that there exists α0 ∈ Λ
such that
(i) Tα0 and g are continuous,
(ii) Tα0(X) ⊆ g(X),
(iii) there exists x0 ∈ X such that gx0 � Tα0x0,
(iv) for x, y ∈ X, gx � gy implies Tα0x � Tα0y,
(v) the pair (g, Tα0) is compatible,
(vi) ψ(d(Tα0x, Tαy)) ≤ ψ(12 [d(gx, Tαy) + d(gy, Tα0x)])− φ(d(gx, Tαy), d(gy, Tα0x)),
where x, y ∈ X such that gx and gy are comparable and α ∈ Λ.
Then g and {Tα : α ∈ Λ} have a coincidence point.

Theorem 3.6. Let (X, �) be a partially ordered set and suppose that there exists a metric d on X such that
(X, d) is a complete metric space. Assume that if xn → x is a nondecreasing sequence in X, then xn � x,
for all n. Let φ : [0,∞)2 → [0,∞) be a continuous function with φ(x, y) = 0 if and only if (x, y) = (0, 0)
and ψ be an altering distance function. Let {Tα : X → X : α ∈ Λ} be a family of mappings. Let g : X → X
be a mapping such that g(X) is closed in X. Suppose that there exists α0 ∈ Λ such that
(i) Tα0(X) ⊆ g(X),
(ii) there exists x0 ∈ X such that gx0 � Tα0x0,
(iii) for x, y ∈ X, gx � gy implies Tα0x � Tα0y,
(iv) ψ(d(Tα0x, Tαy)) ≤ ψ(12 [d(gx, Tαy) + d(gy, Tα0x)])− φ(d(gx, Tαy), d(gy, Tα0x)),
where x, y ∈ X such that gx and gy are comparable and α ∈ Λ.
Then g and {Tα : α ∈ Λ} have a coincidence point.

Example 3.7. Let X = [0, ∞) with usual order ≤ be a partially ordered set.
Let d : X ×X → R be given as

d(x, y) =| x− y |, for x, y ∈ X.

Then (X, d) is a complete metric space with the required properties of theorems 3.1 and 3.2.
Let g : X → X be defined as follows:

gx = 10x, for x ∈ X.

Then g has the properties mentioned in Theorems 3.1 and 3.2.
Let Λ = {1, 2, 3, ...}. Let the family of mappings {Tα : X → B(X) : α ∈ Λ} be defined as follows:

T1x = {0}, for x ∈ X, and for α ≥ 2, Tαx =

{
{0} if 0 ≤ x ≤ 1,

{0, α
α+1} if x > 1.

For any sequence {xn} in X such that gT1xn ∈ B(X) and T1xn → {t}, gxn → t, for some t in X implies
t = 0. Then clearly, the pair (g, T1) is δ - compatible. Also, g and T1 satisfy required conditions mentioned
in theorems 3.1 and 3.2.
Let ψ : [0, ∞)→ [0, ∞) be defined as follows:

ψ(t) = 8t2, for t ∈ [0, ∞).

Let φ : [0, ∞)2 → [0, ∞) be defined as follows:
for (x, y) ∈ [0, ∞)2 with z = max {x, y},

φ(x, y) =
z

100
.

Then ψ and φ have the properties mentioned in theorems 3.1 and 3.2.
The condition (vi) of theorem 3.1 and the condition (iv) of theorem 3.2 are satisfied. Hence all the condition
of theorems 3.1 and 3.2 are satisfied and it is seen that 0 is a coincidence point of g and {Tα : α ∈ Λ}.



B. S. Choudhury, N. Metiya, P. Maity , J. Nonlinear Sci. Appl. 6 (2013), 7–17 16

Note In the above example if one takes g : X → X to be function as follows:

gx =

{
x
2 if 0 ≤ x ≤ 1,

200 if x > 1.

Then the above example is still applicable to theorem 3.2 but not applicable to theorem 3.1 because g is
not continuous and hence does not satisfy required properties mentioned in Theorem 3.1.

Remark 3.8. Considering ψ and g to be the identity mappings and {Tα : α ∈ Λ} = {T} in theorems 3.5 and
3.6, we have respectively theorems 2.1 and 2.2 in [17]. It may be mentioned that theorems 2.1 and 2.2 of
Harjani et al [17] are directly ordered version of the result proved by Choudhury [8] and generalization of
ordered version of the result proved by Chatterjea in [7].

Remark 3.9. Considering ψ to be the identity mapping and {Tα : α ∈ Λ} = {T} in theorems 3.5 and 3.6,
we have theorem 2 in [6].
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[17] J. Harjani, B. López, K. Sadarangani, Fixed point theorems for weakly C-contractive mappings in ordered metric

spaces, Comput. Math. Appl. 61 (2011), 790–796. 1, 3.8
[18] G. Jungck, Compatible mappings and common fixed points, Inst. J. Math. Sci. 9 (1986), 771–779. 2.4
[19] G. Jungck, B. E. Rhoades, Some fixed point theorems for compatible maps, Int. J. Math. Sci. 16 (1993), 417–428.

1, 2, 2.5
[20] M. S. Khan, M. Swaleh, S. Sessa, Fixed points theorems by altering distances between the points, Bull. Austral.

Math. Soc. 30 (1984), 1–9. 1, 2.8
[21] V. Parvaneh, Existence of fixed point for a class of multivalued mappings in complete metric spaces, Appl. Math.

Sci. 6 (2012), 981–986. 1



B. S. Choudhury, N. Metiya, P. Maity , J. Nonlinear Sci. Appl. 6 (2013), 7–17 17

[22] S. B. Nadler Jr., Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475–488. 1
[23] J. J. Nieto, R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differ-

ential equations, Order 22 (2005), 223–239. 1
[24] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix

equations, Proc. Amer. Math. Soc. 132 (2004), 1435–1443. 1
[25] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47(4) (2001), 2683–2693. 1
[26] K. P. R. Sastry, G. V. R. Babu, Some fixed point theorems by altering distances between the points, Indian J.

Pure Appl. Math. 30(6) (1999), 641–647. 1
[27] W. Shatanawi, Fixed point theorems for nonlinear weakly C-contractive mappings in metric spaces, Math. Comput.

Modelling 54 (2011), 2816–2826. 1
[28] W. Sintunavarat, P. Kumam, Weak condition for generalized multi-valued (f, α, β)-weak contraction mappings,

Appl. Math. Lett. 24 (2011), 460–465. 1


	1 Introduction
	2 Mathematical Preliminaries
	3 Main Results

