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Abstract

In this paper, we investigate the existence of positive solutions for second-order nonlinear three-point integral
boundary value problems. By using the Leray-Schauder fixed point theorem, some sufficient conditions
for the existence of positive solutions are obtained, which improve the results of literature Tariboon and
Sitthiwirattham [J. Tariboon, T. Sitthiwirattham, Boundary Value Problems, 2010 (2010), 1–11]. c©2015
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1. Introduction

As the extensive applications of boundary value problems for differential equations in physics, biology
and engineering sciences, the solvability of boundary value problems has received great attention from
many authors and become a very hot research topic. The study of the existence of solutions of multipoint
boundary value problems for linear second-order differential equations was initiated by Il’in and Moiseev [3,
4]. Since then, Gupta [8] studied three-point boundary value problems for nonlinear second-order differential
equations. Recently, all sorts of multipoint boundary value problems for nonlinear differential equations have
been studied by many authors. We refer the readers to [1, 2, 5, 6, 9, 10, 11, 12] and the references therein.

In 2010, Tariboon and Sitthiwirattham [10] studied the existence of positive solutions of the following
nonlinear three-point integral boundary value problems
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u′′ + a(t)f(u) = 0, t ∈ (0, 1), (1.1)

u(0) = 0, α

∫ η

0
u(s)ds = u(1), (1.2)

where 0 < η < 1 , 0 < α < 2
η2
.

Assume that:
(H1) f ∈ C([0,+∞), [0,+∞));
(H2) a ∈ C([0, 1], [0,+∞)) and there exists t0 ∈ [η, 1], such that a(t0) > 0.

Let f0 = lim
u→0+

f(u)
u , f∞ = lim

u→∞
f(u)
u .

The literature [10] studied the existence of positive solutions of boundary value problems (1.1)-(1.2) by
using Krasnoselskii fixed point theorem, they obtained the following results:
Theorem A1. Assume (H1), (H2) hold. If f0 = 0, f∞ =∞ (superlinear), then the boundary value problem
(1.1)-(1.2) has at least one positive solution.
Theorem A2. Assume (H1), (H2) hold. If f0 = ∞, f∞ = 0 (sublinear), then the boundary value problem
(1.1)-(1.2) has at least one positive solution.

In this paper, we study the existence of positive solutions of the boundary value problem (1.1)-(1.2) by
applying Leray-Schauder fixed point theorem, our results improve the above Theorem A1 and Theorem A2.

2. Preliminaries

Consider boundary value problem

u′′ + p(t) = 0, t ∈ (0, 1) , (2.1)

u(0) = 0, α

∫ η

0
u(s)ds = u(1). (2.2)

Lemma 2.1. ([10]) Let αη2 6= 2, p(t) ∈ C[0, 1], then the problem (2.1)-(2.2) has a unique solution

u(t) = −
∫ t

0
(t− s)p(s)ds− αt

2− αη2

∫ η

0
(η − s)2p(s)ds+

2t

2− αη2

∫ 1

0
(1− s)p(s)ds.

Lemma 2.2. ([10]) Let 0 < α < 2
η2
. If p(t) ∈ C[0, 1] and p(t) ≥ 0, then the unique solution u(t) of the

problem (2.1)-(2.2) satisfies u(t) ≥ 0, t ∈ [0, 1].

Lemma 2.3. ([10]) Let 0 < α < 2
η2
. If p(t) ∈ C[0, 1] and p(t) ≥ 0, then the unique solution u(t) of the

problem (2.1)-(2.2) satisfies inf
t∈[η, 1]

u(t) ≥ γ‖ u‖, where γ = min{αη
2

2 , αη(1−η)
2−αη2 , η}.

For any y(t) ∈ C[0, 1], consider boundary value problem

u′′ + a(t)f(y(t)) = 0, t ∈ (0, 1), (2.3)

u(0) = 0, α

∫ η

0
u(s)ds = u(1). (2.4)

By Lemma 2.1, we know the problem (2.3)-(2.4) has unique solution
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u(t) = −
∫ t

0
(t− s)a(s)f(y(s))ds− αt

2− αη2

∫ η

0
(η − s)2a(s)f(y(s))ds+

2t

2− αη2

∫ 1

0
(1− s)a(s)f(y(s))ds.

Define operator

Ty(t) = −
∫ t

0
(t− s)a(s)f(y(s))ds− αt

2− αη2

∫ η

0
(η − s)2a(s)f(y(s))ds+

2t

2− αη2

∫ 1

0
(1− s)a(s)f(y(s))ds.

Obviously, y(t) is the solution of the boundary value problem (1.1)-(1.2) if and only if y(t) is the fixed point
of operator T .

Lemma 2.4. ([7])(Leray-Schauder) Let Ω be the convex subset of Banach space X, 0 ∈ Ω, Φ : Ω → Ω
be completely continuous operator. Then, either (i) Φ has at least one fixed point in Ω; or (ii) the set
{x ∈ Ω|x = λΦx, 0 < λ < 1} is unbounded.

3. Main results

In this paper, we obtain new results of positive solutions for nonlinear three-point integral boundary
value problem (1.1) and (1.2).
Let

X = C[0, 1], β =

∫ 1

0
(1− s)a(s)ds.

Theorem 3.1. Assume (H1), (H2) hold. If f0 = 0, then the boundary value problem (1.1)-(1.2) has at least
one positive solution.

Proof. Choose ε > 0 and ε ≤ 2−αη2
2β . By f0 = 0, we know there exists constant B > 0, such that f(y) < εy

for 0 < y ≤ B.
Let

Ω =

{
y | y ∈ C[0, 1], y ≥ 0, ‖y‖ ≤ B, inf

t∈[η, 1]
y(t) ≥ γ ‖y‖

}
,

then Ω is the convex subset of X.
For y ∈ Ω, by Lemmas 2.2 and 2.3, we know Ty(t) ≥ 0 and inf

t∈[η, 1]
Ty(t) ≥ γ‖ Ty‖.

On the other hand,

Ty(t) ≤ 2t

2− αη2

∫ 1

0
(1− s)a(s)f(y(s))ds ≤ 2t

2− αη2

∫ 1

0
(1− s)a(s)εy(s)ds

≤ ‖y‖ 2ε

2− αη2

∫ 1

0
(1− s)a(s)ds ≤ ‖y‖ ≤ B.

Thus, ‖ Ty‖ ≤ B. Hence, TΩ ⊂ Ω.
It is easy to check that T : Ω→ Ω is completely continuous.
For y ∈ Ω and y = λTy, 0 < λ < 1, we have y(t) = λTy(t) < Ty(t) ≤ B, which implies ‖ y‖ ≤ B. So,
{y ∈ Ω|y = λTy, 0 < λ < 1} is bounded. By Lemma 2.4, we know the operator T has at least one fixed
point in Ω. Thus the boundary value problem (1.1)-(1.2) has at least one positive solution. The proof is
complete.

Remark 3.2. The condition of Theorem 1 is weaker than that of Theorem A1 in [10], the condition f∞ =∞
is unnecessary.

Theorem 3.3. Assume (H1), (H2) hold. If f∞ = 0, then the boundary value problem (1.1)-(1.2) has at least
one positive solution.
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Proof. Choose ε > 0 and ε ≤ 2−αη2
4β . By f∞ = 0, we know there exists constant N > 0, such that f(y) < εy

for y > N .
Select

B ≥ N + 1 +
4β

2− αη2
max

0≤y≤N
f(y).

Let

Ω =

{
y | y ∈ C[0, 1], y ≥ 0, ‖y‖ ≤ B, inf

t∈[η, 1]
y(t) ≥ γ ‖y‖

}
,

then Ω is the convex subset of X.

For y ∈ Ω, by Lemmas 2.2 and 2.3, we know Ty(t) ≥ 0 and inf
t∈[η, 1]

Ty(t) ≥ γ‖ Ty‖.

On the other hand,

Ty(t) ≤ 2t

2− αη2

∫ 1

0
(1− s)a(s)f(y(s))ds ≤ 2

2− αη2

∫ 1

0
(1− s)a(s)f(y(s))ds

=
2

2− αη2

(∫
J1={s∈[0,1],y(s)>N}

(1− s)a(s)f(y(s))ds+

∫
J2={s∈[0,1],y(s)≤N}

(1− s)a(s)f(y(s))ds

)

≤ 2

2− αη2

∫ 1

0
(1− s)a(s)εy(s)ds+

2

2− αη2

∫ 1

0
(1− s)a(s)ds · max

0≤y≤N
f(y)

≤ 2ε

2− αη2
‖ y‖

∫ 1

0
(1− s)a(s)ds+

2

2− αη2

∫ 1

0
(1− s)a(s)ds · max

0≤y≤N
f(y)

≤ 2ε

2− αη2
B

∫ 1

0
(1− s)a(s)ds+

2

2− αη2

∫ 1

0
(1− s)a(s)ds · max

0≤y≤N
f(y)

=
2ε

2− αη2
Bβ +

2

2− αη2
β · max

0≤y≤N
f(y)

≤ 1

2
B +

1

2
B = B.

Thus, ‖ Ty‖ ≤ B. Hence, TΩ ⊂ Ω.
It is easy to check that T : Ω→ Ω is completely continuous.
For y ∈ Ω and y = λTy, 0 < λ < 1, we have y(t) = λTy(t) < Ty(t) ≤ B, which implies ‖ y‖ ≤ B. So,
{y ∈ Ω|y = λTy, 0 < λ < 1} is bounded. By Lemma 2.4, we know the operator T has at least one fixed
point in Ω. Thus the boundary value problem (1.1)-(1.2) has at least one positive solution. The proof is
complete.

Remark 3.4. The condition of Theorem 3.3 is weaker than that of Theorem A2 in [10], the condition f0 =∞
is unnecessary.

Theorem 3.5. Assume (H1), (H2) hold. If there exists constant ρ1 > 0, such that f(y) ≤ (2−αη2)ρ1
2β for

0 < y ≤ ρ1, then the boundary value problem (1.1)-(1.2) has at least one positive solution.

Proof. Let Ω =

{
y | y ∈ C[0, 1], y ≥ 0, ‖ y‖ ≤ ρ1, inf

t∈[η, 1]
y(t) ≥ γ‖ y‖

}
, then Ω is the convex subset of X.

For y ∈ Ω, by Lemmas 2.2 and 2.3, we know

Ty(t) ≥ 0 and inf
t∈[η, 1]

Ty(t) ≥ γ‖ Ty‖.
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On the other hand,

Ty(t) ≤ 2t

2− αη2

∫ 1

0
(1− s)a(s)f(y(s))ds ≤ 2

2− αη2

∫ 1

0
(1− s)a(s)

(2− αη2)ρ1
2β

ds = ρ1.

Thus, ‖ Ty‖ ≤ ρ1. Hence, TΩ ⊂ Ω. It is easy to check that T : Ω→ Ω is completely continuous.
For y ∈ Ω and y = λTy, 0 < λ < 1, we have y(t) = λTy(t) < Ty(t) ≤ ρ1, which implies ‖ y‖ ≤ ρ1. So,
{y ∈ Ω|y = λTy, 0 < λ < 1} is bounded. By Lemma 2.4, we know the operator T has at least one fixed
point in Ω. Thus the boundary value problem (1.1)-(1.2) has at least one positive solution. The proof is
complete.

Theorem 3.6. Assume (H1), (H2) hold. If there exists constant ρ2 > 0, such that f(y) ≤ (2−αη2)ρ2
2β for

y ≥ ρ2, then the boundary value problem (1.1)-(1.2) has at least one positive solution.

Proof. Choose

d > 1 + ρ2 +
2β

2− αη2
max

0≤y≤ρ2
f(y).

Let

Ω =

{
y | y ∈ C[0, 1], y ≥ 0, ‖y‖ ≤ d, inf

t∈[η, 1]
y(t) ≥ γ ‖y‖

}
,

then Ω is the convex subset of X.
For y ∈ Ω, by Lemmas 2.2 and 2.3, we know Ty(t) ≥ 0 and inf

t∈[η, 1]
Ty(t) ≥ γ‖ Ty‖.

On the other hand,

Ty(t) ≤ 2t

2− αη2

∫ 1

0
(1− s)a(s)f(y(s))ds ≤ 2

2− αη2

∫ 1

0
(1− s)a(s)f(y(s))ds

=
2

2− αη2

(∫
J1={s∈[0,1],y(s)>ρ2}

(1− s)a(s)f(y(s))ds+

∫
J2={s∈[0,1],y(s)≤ρ2}

(1− s)a(s)f(y(s))ds

)

≤ 2

2− αη2

∫ 1

0
(1− s)a(s)

(2− αη2)ρ2
2β

ds+
2

2− αη2

∫ 1

0
(1− s)a(s)ds · max

0≤y≤ρ2
f(y)

= ρ2 +
2β

2− αη2
max

0≤y≤ρ2
f(y) < d.

Thus, ‖ Ty‖ ≤ d. Hence, TΩ ⊂ Ω.
It is easy to check that T : Ω→ Ω is completely continuous.
For y ∈ Ω and y = λTy, 0 < λ < 1, we have y(t) = λTy(t) < Ty(t) ≤ d, which implies ‖ y‖ ≤ d. So,
{y ∈ Ω|y = λTy, 0 < λ < 1} is bounded. By Lemma 2.4, we know the operator T has at least one fixed
point in Ω. Thus the boundary value problem (1.1)-(1.2) has at least one positive solution. The proof is
complete.

4. Example

Consider second-order nonlinear three-point integral boundary value problem:

u′′ + a(t)
u

1 + un
= 0, t ∈ (0, 1) , (4.1)

u(0) = 0, α

∫ η

0
u(s)ds = u(1), (1.2)
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where 0 < η < 1 , 0 < α < 2
η2
, f(u) = u

1+un , (n > 0).

Obviously, f∞ = lim
u→∞

f(u)
u = lim

u→∞
1

1+un = 0. Thus, by Theorem 3.3 of this paper, we know the boundary

value problem (4.1)-(1.2) has at least one positive solution.

Remark 4.1. It is easy to know lim
u→0+

f(u)
u = lim

u→0+
1

1+un = 1, f0 6= ∞, which does not satisfy the condition

f0 = ∞ of Theorem A2 in [10], so Theorem A2 in [10] can not judge the existence of positive solutions for
the boundary value problem (4.1)-(1.2). However, by Theorem 3.3 of this paper, we know the boundary
value problem (4.1)-(1.2) has at least one positive solution.
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