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Abstract

In this paper we prove the Mazur-Ulam theorem for probabilistic 2-normed spaces. Our study is a natural
continuation of that of Cobzas [S. Cobzas, Aequationes Math., 77 (2009) 197–205]. c©2015 All rights
reserved.
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1. Introduction

A mapping T from a metric space X into a metric space Y is called an isometry map if T satisfies
dY (T (x), T (y)) = dX(x, y) for all x, y ∈ X, where dX(·, ·) and dY (·, ·) denote the metrics in the spaces X
and Y , respectively. The map T is called affine if T is linear up to translation.

Mazur and Ulam [11], proved that every isometry T from a real normed space X onto another real
normed space Y is affine, while Baker [5] proved that an isometry map from a real normed linear space X
into a strictly convex real normed linear space Y is affine.

For related works on this subject, we refer the reader to Aleksandrov [1], Cobzas [6], Chu et al. [7, 8, 9],
and Rassias et al. [13, 17, 18].

Probabilistic metric spaces are spaces on which there is a distance function taking as values distribution
functions, the distance between two points a and b is a distribution function in the sense of probability
theory ν(a, b), whose values ν(p, q)(x) can be interpreted as the probability that the distance between a
and b is less than x. The notion of probabilistic metric space was introduced by Menger [12]. The idea of
Menger’s was to use distribution functions instead of nonnegative real numbers as values of the metric.
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Probabilistic normed spaces were introduced by S̃ertnev in 1963 [19]. New definitions of probabilistic
normed spaces were studied by Alsina et al. [2, 3, 4]. It is remarkable that the probabilistic generalization
of metric spaces appears to be well adapted for the investigation of quantum particle physics, particularly
in connections with both string and ε∞ theory, which where given and studied by El Naschie [14, 15].

The notion of the probabilistic n-normed space was introduced by A. Poumoslemi and M. Salimi [16],
while the notion of probabilistic 2-normed space was introduced by I. Golet [10]. In 2009, S. Cobzas studied
the Mazur-Ulam theorem for probabilistic normed spaces [6].

In this paper, we study the Mazur-Ulam theorem for probabilistic 2-normed spaces.

2. Basic Concepts

Denote by 4 the set of distribution functions, meaning, nondecreasing, left continuous functions
ν : R → [0, 1], with ν(−∞) = 0 and ν(∞) = 1. Let D be the subclass of 4 formed by all functions
ν ∈ 4 such that

lim
x→−∞

ν(x) = 0 and lim
x→∞

ν(x) = 1.

The set of distance functions are

4+ = {ν ∈ 4 : ν(0) = 0} and D+ = D ∩4+.

It follows that for ν ∈ D+, we have ν(x) = 0 for all x ≤ 0. Two important distance functions are

ε0(x) =

{
0, x ≤ 0;
1, x > 1

and

ε∞(x) =

{
0, x <∞;
1, x =∞

A triangle function T is a binary operation on 4+ that is commutative and associative, nondecreasing in
each place and has ε0 as identity, that is T (ν, ε0) = ν. A t-norm is a continuous binary operation on [0, 1],
that is commutative, associative, nondecreasing in each variable and has 1 as identity. The triangle function
τT associated to a t-norm T is defined by

τT (F,G)(x) = sup{T (F (s), G(t)) : s+ t = x}.

In this paper we are interested in the definition of probabilistic n-normed spaces, specially in the case
of n = 2.

Definition 2.1 ([16]). Let X be a real linear space with dimX ≥ n, let T be a triangle function, and let ν
be a mapping from X into D+. If the following conditions are satisfied:

1. ν(x1, . . . , xn) = ε0 if x1, . . . , xn are linearly dependent,

2. ν(x1, . . . , xn) 6= ε0 if x1, . . . , xn are linearly independent,

3. ν(x1, . . . , xn) = ν(xj1, . . . , xjn) for any permutation (j1, j2, . . . , jn) of (1, 2, . . . , n)

4. ν(βx1, . . . , xn) = ν(x1, . . . , xn)
(
s
|β|

)
, for every s > 0, and β 6= 0,

5. ν(x1, . . . , xn−1, xn + y) ≥ T (ν(x1, . . . , xn−1, xn), ν(x1, . . . , xn−1, y))

for y, x1, . . . , xn ∈ X, then ν is called a probabilistic 2-norm on X and the triple (X, ν, T ) is called a
probabilistic 2-normed space.

Definition 2.2. Let X be a real linear space and x, y, z mutually disjoint elements of X. Then x, y and z
are said to be 2-collinear if

y − z = t(x− z),

for some real number t.
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3. Main Results

We start our work by giving the definition of probabilistic 2-normed space.

Definition 3.1 ([10]). Let X be a real linear space with dimX ≥ 2, let T be a triangle function, and let ν
be a mapping from X into D+. If the following conditions are satisfied:

1. ν(x1, x2) = ε0 if x1 and x2 are linearly dependent,

2. ν(x1, x2) 6= ε0 if x1 and x2 are linearly independent,

3. ν(x1, x2) = ν(x2, x1),

4. ν(βx1, x2) = ν(x1, x2)
(
s
|β|

)
, for every s > 0, and β 6= 0,

5. ν(x1 + x2, y) ≥ T (ν(x1, y), ν(x2, y))

for y, x1, x2 ∈ X, then ν is called a probabilistic 2-norm on X and the triple (X, ν, T ) is called a probabilistic
2-normed space.

From now on, unless otherwise stated, we let (X, ν, T ) and (Y, ν, T ) be probabilistic 2-normed spaces.
In our work, we assume that: If x and y are linearly independent elements in X or in Y , then ν(x, y) is

strictly increasing.
The following lemma due to A. Pourmoslemi and M. Salimi [16] is crucial in proving our next result.

Lemma 3.2 ([16]). For x1, x2 ∈ X and α ∈ R, we have

ν(x1, αx1 + x2) = ν(x1, x2).

The following result is essential for proving our main result.

Lemma 3.3. Let x1 and x2 be any two distinct elements in X, and let

u =
x1 + x2

2
.

Then u is the unique element in X satisfying for all s > 0 the following equalities:

ν(x1 − u, x1 − c)(s) = ν(x2 − c, x2 − u)(s) = ν(x1 − c, x2 − c)(2s)

for c ∈ X where x1 − c and x2 − c are linearly independent and x1, x2, u are 2-collinear.

Proof. Choose c ∈ X with x1 − c, x2 − c being linearly independent. For s > 0 we have

ν(x1 − u, x1 − c)(s) = ν

(
x1 −

x1 + x2
2

, x1 − c
)

(s)

= ν

(
x1 − x2

2
, x1 − c

)
(s)

= ν(x1 − x2, x1 − c)(2s)
= ν(x1 − c+ c− x2, x1 − c)(2s)
= ν(x2 − c, x1 − c)(2s)
= ν(x1 − c, x2 − c)(2s).

Similarly, we can show that

ν(x2 − c, x2 − u)(s) = ν(x1 − c, x2 − c)(2s).

To prove the uniqueness, assume that w is an element in X satisfying for all s > 0 the equalities:

ν(x1 − w, x1 − c)(s) = ν(x2 − c, x2 − w)(s) = ν(x1 − c, x2 − c)(2s) (3.1)
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for c ∈ X where x1 − c and x2 − c are linearly independent and x1, x2, w are 2-collinear. Since x1, x2, w are
2-collinear, there is a scalar t such that w = (1− t)x1 + tx2. Hence for s > 0, we have

ν(x1 − w, x1 − c)(s) = ν(x1 − (1− t)x1 − tx2), x1 − c)(s)
= ν(tx1 − tx2 − ct+ ct), x1 − c)(s)
= ν(t(x1 − c)− t(x2 − c), x1 − c)(s)
= ν(−t(x2 − c), x1 − c)(s)

= ν(x1 − c, x2 − c)
(
s

|t|

)
and

ν(x2 − c, x2 − w)(s) = ν(x2 − c, (1− t)x2 − (1− t)x1)(s)
= ν(x2 − c, (1− t)x2 − (1− t)x1 − (1− t)c+ (1− t)c)(s)
= ν(x2 − c, (1− t)(x2 − c)− (1− t)(x1 − c))(s)
= ν(x2 − c,−(1− t)(x1 − c))(s)

= ν(x2 − c, x1 − c)
(

s

|1− t|

)
= ν(x1 − c, x2 − c)

(
s

|1− t|

)
.

Since w satisfies Equation (3.1) and ν(x1 − c, x2 − c) is strictly increasing, we get that

2 =
1

|1− t|
=

1

|t|
.

So we conclude that t = 1
2 , and hence w = u.

Using similar arguments as in the proof of Lemma 3.3, we can prove the following result.

Lemma 3.4. Let x1 and x2 be any two distinct elements in X. Let

u =
x1 + x2

2
.

Then u is the unique element in X satisfying for all s > 0 the following equalities:

ν(u− x1, x2 − c)(s) = ν(x1 − c, u− x2)(s) = ν(x1 − c, x2 − c)(2s),

for c ∈ X where x1 − c and x2 − c are linearly independent and x1, x2, u are 2-collinear.

To achieve our main result we introduce the following definition.

Definition 3.5. Let (X, ν, T ) and (Y, ν, T ) be probabilistic 2-normed spaces. We call the map f : X → Y
probabilistic 2-isometry if

ν(f(x)− f(c), f(y)− f(c))(s) = ν(x− c, y − c)(s)

holds, for all x, y, c ∈ X and all s > 0.

Lemma 3.6. Let f : X → Y be probabilistic 2-isometry from probabilistic 2-normed space (X, ν, T ) into prob-
abilistic 2-normed space (Y, ν, T ). Define the map f from (X, ν, T ) into (Y, ν, T ) by the rule
g(x) = f(x)− f(0). Then f is probabilistic 2-isometry iff g is probabilistic 2-isometry.
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Proof. Assume that f is probabilistic 2-isometry, then for a, b, c ∈ X and s > 0 we have

ν(g(a)−g(c), g(b)−g(c))(s) = ν(f(a)−f(0)−(f(c)−f(0)), f(b)−f(0)− (f(c)− f(0)))(s)

= ν(f(a)− f(c), f(b)− f(c))(s)

= ν(a− c, b− c)(s).

So g is probabilistic 2-isometry.
Similarly we may show that if g is probabilistic 2-isometry, then f is probabilistic 2-isometry.

We have furnished all necessary background to introduce and prove our main result.

Theorem 3.7. Let f : X → Y be probabilistic 2-isometry from probabilistic 2-normed space (X, ν, T ) into
probabilistic 2-normed space (Y, ν, T ) with the property that if a, b, and c are 2-collinear in X, then f(a), f(b),
and f(c) are 2-collinear in Y . Then f is affine.

Proof. By Lemma 3.6, we may assume that f(0) = 0. So it suffices to prove that f is linear. Let x and y
be two distinct elements in X, and u = x+y

2 . Since dimX ≥ 2, there is c ∈ X such that x− c and y − c are
linearly dependent. Now for s > 0, we have

ν(f(x)− f(u), f(x)− f(c))(s) = ν(x− u, x− c)(s)

= ν

(
x− x+ y

2
, x− c

)
= ν

(
x− y

2
, x− c

)
(s)

= ν(x− c− (y − c), x− c)(2s)
= ν(y − c, x− c)(2s)
= ν(f(y)− f(c), f(x)− f(c))(2s)

= ν(f(x)− f(c), f(y)− f(c))(2s).

Similarly, we may prove that

ν(f(y)− f(u), f(y)− f(c))(s) = ν(f(x)− f(c), f(y)− f(c))(2s).

By Lemma 3.3, we conclude that

f(u) = f

(
x+ y

2

)
=
f(x) + f(y)

2
. (3.2)

For x ∈ X, s > 0, and α ∈ R+ \ {0}, we have

ε0(s)=ν(αx, x)(s)=ν(αx− 0, x− 0)(s)=ν(f(αx)−f(0), f(x)−f(0))(s)=ν(f(αx), f(x))(s).

So f(αx) and f(x) are linearly dependent. Hence there is k ∈ R such that f(αx) = kf(x). Choose y ∈ X
such that x and y are linearly independent. Then for s > 0, we have

ν(x, y)
( s
α

)
= ν(αx, y)(s) = ν(f(αx), f(y))(s)

= ν(kf(x), f(y))(s) = ν(f(x), f(y))

(
s

|k|

)
= ν(x, y)

(
s

|k|

)
,

and hence α = |k|.
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Claim: k = α.
If k = −α, then for s > 0, we have

ν(x, y)

(
s

|α− 1|

)
= ν((α− 1)x, y)(s) = ν(αx− x, y − x)(s)

= ν(f(αx)− f(x), f(y)− f(x))(s) = ν(−αf(x)− f(x), f(y)− f(x))(s)

= ν(f(x), f(y)− f(x))

(
s

α+ 1

)
= ν(f(x), f(y))

(
s

α+ 1

)
= ν(x, y)

(
s

α+ 1

)
.

So |α− 1| = α+ 1, and hence α = 0 which is a contradiction. Therefore k = α and so that f(αx) = αf(x),
for all α ∈ R+ \ {0}.

Similarly, we can show that f(αx) = αf(x) for all α ∈ R− \ {0}. Given two distinct elements x and y in
X. Since

f(x+ y) = f

(
2x+ 2y

2

)
by Equation (3.2), we get that

f(x+ y) =
f(2x) + f(2y)

2
=

2f(x) + 2f(y)

2
= f(x) + f(y).

If x = y, then f(x+ y) = f(2x) = 2f(x) = f(x) + f(x) = f(x) + f(y). So f is affine.
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