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Abstract

We employ Lyapunov functionals to the system of Volterra integro-differential equations of the form

x′(t) = Px(t)−
∫ t

t−r
C(t, s)g(x(s))ds,

and obtain conditions for the stability of the of the zero solution. In addition, we will furnish an example
as an application. c©2014 All rights reserved.
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1. Introduction

In this report, we explore the use of Lyapunov functionals and obtain conditions for the zero solution of the
nonlinear delay Volterra integro-differential system

x′(t) = Px(t)−
∫ t

t−r
C(t, s)g(x(s))ds, (1.1)
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where r > 0 is a constant, P is a constant n × n matrix and C is an n × n matrix of functions that are
continuous on −r ≤ t ≤ s < ∞. The function g(x) : Rn → Rn and is continuous in x. Throughout this
paper it is understood that if x ∈ Rn, then |x| is taken to be the Euclidean norm. In the case P = 0 and
(1.1) is scalar, (1.1) has its roots in the study of reactors, by Brownwell and Ergen [1] in 1954. Later on,
the same study was revisited by Nohel [8], in 1960 and then by Levin and Nohel [7], in 1964.

Recently, in [2] and [3], Burton used the notion of fixed point theory to alleviate some of the difficulties
that arise from the use of Lyapunov functionals and obtained results concerning the stability and asymptotic
stability of the zero solution of (1.1) when it is scalar with P being identically zero matrix. For more reading
on the use of fixed point theory in the study of functional differential equations, we refer the reader to [4],
[6], [8] and the references there in. One of the major difficulties that we encountered was relating back the
solution x(t) to the Lyapunov functional so that some inequality can be obtained.

The use of Lyapunov method allowed us to deduce inequalities that all solutions must satisfy and from
which we deduce the exponential stability and instability.
In [10], Wang used Lyapunov functionals and obtained inequalities from which exponential stability was
deduced on the zero solution of the constant delay equation

x′(t) = a(t)x(t) + b(t)x(t− h)

provided that

− 1

2h
≤ a(t) + b(t+ h) ≤ −hb2(t+ h)

hold. In [5], the first author extended [10] to the multiple delays differential equation

x′(t) = a(t)x(t) +

n∑
i=1

bi(t)x(t− hi), where hi > 0, i = 1, 2, ·, ·, ·n.

Later on, in [9], the first author used Lyapunov functional and obtained results concerning the exponential
stability of the zero solution of the scalar highly nonlinear Volterra integro-differential equation

x′(t) = −
∫ t

t−r
C(t, s)g(x(s))ds. (1.2)

However, the extension of [9] to (1.1) is impossible since we are dealing with system.
Let x ∈ Rn and U = (u)ij be an n× n matrix. Then we define the norms |x| to be the Euclidean norm

and

|U | = max
1≤j≤n

n∑
i=1

|uij |.

It should cause no confusion to denote the norm of a continuous function ϕ : [−r,∞)→ Rn with

||ϕ|| = sup
−r≤s<∞

|ϕ(s)|.

The notation xt means that xt(τ) = x(t+ τ), τ ∈ [−r, 0] as long as x(t+ τ) is defined. Thus, xt is a function
mapping an interval [−r, 0] into Rn. We say x(t) ≡ x(t, t0, ψ) is a solution of (1.1) if x(t) satisfies (1.1) for
t ≥ t0 and xt0 = x(t0 + s) = ψ(s), s ∈ [−r, 0]. Throughout this paper it is to be understood that when a
function is written without its argument, then the argument is t. We begin with stability definitions. For
t0 ≥ 0 we define

Et0 = [−r, t0].
Let C(t) denote the set of continuous functions φ : [−r,∞)→ Rn and ‖φ‖ = sup{|φ(s)| : −r ≤ s ≤ t}.

Definition 1.1. The zero solution of (1.1) is stable if for each ε > 0 and each t0 ≥ −r, there exists a
δ = δ(ε, t0) > 0 such that [φ ∈ Et0 → Rn, φ ∈ C(t) : ‖φ‖ < δ] implies |x(t, t0, φ)| < ε for all t0 ≥ 0.
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2. Main Results

Now we turn our attention to the linear equation (1.1). We will construct a Lyapunov functional; V (t, x) :=
V (t) and show that for some positive α and under suitable conditions, V ′(t) ≤ −α|x|2 along the solutions
of (1.1). For the sake of rewriting (1.1) so that a suitable Lyapunov functional can be displayed, we let

A(t, s) :=

∫ r

t−s
C(u+ s, s)du, t, s ≥ 0.

Let D be a positive definite symmetric and constant n×n matrix. Assume the existence of positive constants
λ, µ1 and µ2 we have that

P TD +DP = −µ1I, (2.1)

xTDA(t, t)g(x) ≥ µ2|x|2 if x 6= 0, (2.2)

|g(x)| ≤ λ|x| (2.3)

and
∂|A(t, s)|

∂t
≤ 0, for all (t, s) ∈ [0,∞)× [t− r, t]. (2.4)

It is clear that conditions (2.2) and (2.3) imply that g(0) = 0. Since D is a positive definite symmetric
matrix, then there exists a positive constant k such that

k|x|2 ≤ xTDx, for all x. (2.5)

In order to construct a suitable Lyapunov functional we put (1.1) in the form

x′(t) = Px(t)−A(t, t)g(x(t)) +
d

dt

∫ t

t−r
A(t, s)g(x(s))ds. (2.6)

Theorem 2.1. Let (2.1)- (2.4) hold, and suppose there are constants γ > 0 and α > 0 so that

− µ1 − 2µ2 + γrλ2|A(t, t)|+
(
λ|AT (t, t)D|+ |P TD|

) ∫ t

t−r
|A(t, s)|ds ≤ −α, (2.7)

− γ + λ|AT (t, t)D|+ |P TD| ≤ 0, (2.8)

and

1− λ
∫ t

t−r
|A(t, s)|ds > 0 (2.9)

then, the zero solution of (1.1) is stable.

Proof. Define the Lyapunov functional V = V (t, x) by

V (t) =
(
x−

∫ t

t−r
A(t, s)g(x(s))ds

)T
D
(
x−

∫ t

t−r
A(t, s)g(x(s))ds

)
+γ

∫ 0

−r

∫ t

t+s
|A(t, z)||g(x(z))|2dz ds. (2.10)

First we note that the right side of (2.10) is scalar. Let x(t) = x(t, t0, ψ) be a solution of (1.1) and define
V (t) by (2.10). Then along solutions of (1.1) we have

V ′(t) =
(
x−

∫ t

t−r
A(t, s)g(x(s))ds

)T
D[Px−A(t, t)g(x)]
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+ [Px−A(t, t)g(x)]TD
(
x(t)−

∫ t

t−r
A(t, s)g(x(s))ds

)

+ γr|A(t, t)||g(x)|2 − γ
∫ 0

−r
|A(t, t+ s)|g2(x(t+ s))ds

+ γ

∫ 0

−r

∫ t

t+s

∂|A(t, z)|
∂t

g2(x(z))dz ds

≤ xT
(
P TD +DP

)
x− xTDAg(x)− gT (x)AT (t, t)Dx

− xTP TD

∫ t

t−r
A(t, s)g(x(s))ds−

( ∫ t

t−r
A(t, s)g(x(s))ds

)T
DPx

+
( ∫ t

t−r
A(t, s)g(x(s))ds

)T
DA(t, t)g(x) + gT (x)AT (t, t)D

∫ t

t−r
A(t, s)g(x(s))ds

+ γr|A(t, t)||g(x)|2 − γ
∫ 0

−r
|A(t, t+ s)||g(x(t+ s))|2ds (2.11)

In what to follow we perform some calculations to simplify (2.11). First, if we let u = t+ s, then

−
∫ 0

−r
|A(t, t+ s)||g(x(t+ s))|2ds = −

∫ t

t−r
|A(t, s)||g(x(s))|2ds. (2.12)

Since,

gT (x)AT (t, t)Dx =
(
xTDAg(x)

)T
,

we have that
−
(
gT (x)AT (t, t)Dx+ xTDAg(x)

)
≤ −2µ2|x|2 by (2.2). (2.13)

Also,

−xTP TD
∫ t

t−r
A(t, s)g(x(s))ds−

( ∫ t

t−r
A(t, s)g(x(s))ds

)T
DPx

= −xTP TD
∫ t

t−r
A(t, s)g(x(s))ds−

[( ∫ t

t−r
A(t, s)g(x(s))ds

)T
DPx

]T
= −2xTP TD

∫ t

t−r
A(t, s)g(x(s))ds

≤ 2|xT ||P TD|
∫ t

t−r
|A(t, s)||g(x(s))|ds

≤ 2|xT ||P TD|
∫ t

t−r
|A(t, s)||g(x(s))|ds

≤ |P TD|
∫ t

t−r
|A(t, s)|(|x|2 + |g(x(s))|2)ds. (2.14)

Moreover,( ∫ t

t−r
A(t, s)g(x(s))ds

)T
DA(t, t)g(x) + gT (x)AT (t, t)D

∫ t

t−r
A(t, s)g(x(s))ds

= 2gT (x)AT (t, t)D

∫ t

t−r
A(t, s)g(x(s))ds
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≤ 2λ|x||AT (t, t)D|
∫ t

t−r
|A(t, s)||g(x(s))|ds

≤ λ|AT (t, t)D|
∫ t

t−r
|A(t, s)|

(
|x|2 + |g(x(s))|2

)
ds. (2.15)

By substituting expressions (2.12)-(2.15) into (2.11) yields

V ′(t) ≤
[
− µ1 − 2µ2 + γrλ2|A(t, t)|+

(
λ|AT (t, t)D|+ |P TD|

) ∫ t

t−r
|A(t, s)|ds

]
|x|2

+
[
− γ + λ|AT (t, t)D|+ |P TD|

] ∫ t

t−r
|A(t, s)||g(x(s))|2ds

≤ −α|x|2. (2.16)

Let ε > 0 be given, we will find δ > 0 so that |x(t, t0, φ)| < ε as long as [φ ∈ Et0 → R : ‖φ‖ < δ]. Let

L2 = |D|
(

1 +

∫ t0

0
|A(t0, s)|ds

)2
+ λ2ν

∫ 0

−r

∫ t0

t0+s
|A(t0, z)|dz ds

By (2.16) we have V is decreasing and hence for t ≥ t0 ≥ 0 we have that

V (t, x) ≤ V (t0, φ)

≤ (φ(t0)−
∫ t0

t0−r
A(t0, s)φ(s)ds

)2
+ νλ

∫ 0

−r

∫ t0

t0+s
|A(t0, z)||φ(z)|2dz ds

= δ2
(

1 +

∫ t0

t0−r
|A(t0, s)|∆s

)2
+ νλ δ2

∫ 0

−r

∫ t0

t0+s
|A(t0, z)|dz ds

≤ δ2L2. (2.17)

By (2.10), we have

V (t, x) ≥
(
x−

∫ t

t−r
A(t, s)g(x(s))ds

)T
D
(
x−

∫ t

t−r
A(t, s)g(x(s))ds

)
≥ k2

(
|x| −

∣∣ ∫ t

t−r
A(t, s)g(x(s))ds

∣∣)2.
Combining the above two inequalities leads to

|x(t)| ≤ δL

k
+ λ

∫ t

t−r
|A(t, s)||x(s)|ds.

So as long as |x(t)| < ε, we have

|x(t)| < δL

k
+ ελ

∫ t

t−r
|A(t, s)|ds, for all t ≥ t0.

Thus, we have from the above inequality that

|x(t)| < ε for δ <
k

L
(1−λ

∫ t

t−r
|A(t, s)|ds)ε. Note that by (2.9), the above inequality regarding δ is valid.

We have the following corollary.

Corollary 2.2. Assume all the conditions of Theorem 2.1 hold. Let x(t) be any solution of (1.1). Then
satisfies |x(t)|2 ∈ L[t0,∞), t0 ≥ 0.
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Proof. We know from Theorem 2.1 that the zero solution is stable. Thus, for the same δ of stability, we
take x(t, t0, φ)| < 1. Since V is decreasing, we have by integrating (2.16) from t0 to t and using (2.17) that,

V (t, x) ≤ V (t0, φ) ≤ δ2L2 − α
∫ t

t0

|x(s)|2ds.

Since,

V (t, x) ≥
(
x−

∫ t

t−r
A(t, s)g(x(s))ds

)T
D
(
x−

∫ t

t−r
A(t, s)g(x(s))ds

)
,

we have that(
x−

∫ t

t−r
A(t, s)g(x(s))ds

)T
D
(
x−

∫ t

t−r
A(t, s)g(x(s))ds

)
(2.18)

≤ δ2L2 − α
∫ t

t0

|x(s)|2ds. (2.19)

Also, using Schwarz inequality one obtains(∫ t

t−r
|A(t, s)||g(x(s))|ds

)2
=

(∫ t

t−r
|A(t, s)|1/2|A(t, s)|1/2|g(x(s))|ds

)2
≤ λ2

∫ t

t−r
|A(t, s)|ds

∫ t

t−r
|A(t, s)||x(s)|2ds.

As
∫ t
t−r |A(t, s)|ds is bounded by (2.9) and |x|2 < 1, we have

∫ t
t−r |A(t, s)||x(s)|2ds is bounded and hence∫ t

t−r |A(t, s)||g(x(s))|ds is bounded. Therefore, from (2.18), we arrive at

α

∫ t

t0

|x(s)|2ds ≤ δ2L2 −
(
x−

∫ t

t−r
A(t, s)g(x(s))ds

)T
D
(
x−

∫ t

t−r
A(t, s)g(x(s))ds

)
≤ δ2L2 + |D|

(
|x|+ |

∫ t

t−r
A(t, s)g(x(s))ds|

)
≤ K,

from which we deduce that |x(t)|2 ∈ L[t0,∞), t0 ≥ 0.

It is straight forward to extend the results of this paper to (1.2).

Theorem 2.3. Let (2.2)- (2.4) hold, and suppose there are constants γ > 0 and α > 0 so that

− 2µ2 + γrλ2|A(t, t)|+ λ|AT (t, t)D|
∫ t

t−r
|A(t, s)|ds ≤ −α, (2.20)

− γ + λ|AT (t, t)D| ≤ 0, (2.21)

and

1− λ
∫ t

t−r
|A(t, s)|ds > 0 (2.22)

then, the zero solution of (1.2) is stable and |x(t)|2 ∈ L[t0,∞), t0 ≥ 0.

Proof. The proof is immediate consequence of Theorem 2.1 and Corollary 2.1.
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Next, we display an example in which we show that zero solution is stable.

Let P =

(
1/2 0

0 1/2

)
and C(t, s) =

(
1/3 0

0 1/3

)
, then

A(t, s) =

(
1
3(r − t+ s) 0

0 1
3(r − t+ s)

)
and A(t, t) =

(
1
3r 0
0 1

3r

)
.

From P TD +DP = −µ1I, we obtain

D =

(
−µ1 0

0 −µ1

)
. Let g(x) =

(
3µ2
µ1r

x1
3µ2
µ1r

x2

)
. Then XTDA(t, t)g(x) = µ2

(
x21 + x22

)
. By letting

3µ2
|µ1|r ≤ λ < 3

r2
we have that |g(x)| ≤ λ |x| . Now |A(t, s)| ≤

∣∣1
3 (r − t+ s)

∣∣ ≤ r
3 for all s ∈ [t− r, t] . Thus

∂|A(t,s)|
∂t ≤ 0. Hence the conditions (2.1)- (2.4) are satisfied. We can easily see that condition (2.5) is satisfied

for 0 < k < −µ1, µ1 < 0. Left to verify conditions (2.7)– (2.9).∫ t
t−r |A(t, s)| ds ≤

∫ t
t−r

r
3ds = r2

3 . Hence from condition (2.9) we will have λ r
2

3 < 1. Let γ > 0 such that

−γ + λ
|µ1| r

3
+
|µ1|
2
≤ 0,

from which we conclude that condition (2.8) is satisfied. Choose µ1, µ2 and r in a such way that

−µ1 − 2µ2 + γ
3

r2
+
|µ1| r

3
+
|µ1|
2
≤ −α, for some α > 0.

Then condition (2.7) holds. Thus we have shown that the zero solution of

x′(t) =

(
1/2 0

0 1/2

)
x(t)−

t∫
t−r

(
1/3 0

0 1/3

)( 3µ2
µ1r

x1
3µ2
µ1r

x2

)
ds

is stable.

Open Problem In light of this work and [9], what can be said about the exponential stability of the
zero solution of (1.1)?
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