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Abstract

In this paper, we present some integral identities and inequalities of (p,q)—complete elliptic integrals, and
prove some inequalities for the generalized trigonometric and hyperbolic functions with two parameters.
(©2015 All rights reserved.

Keywords: complete elliptic integrals, inequality, generalized trigonometric function, generalized
hyperbolic function, Fubini theorem.
2010 MSC: 33B10, 33E05.

1. Introduction

The generalized trigonometric and hyperbolic functions depending on a parameter p > 1 were studied
by P. Lindqvist in a highly cited paper (see [13]). Motivated by this work, many authors have studied the
equalities and inequalities related to generalized trigonometric and hyperbolic functions in [5] [7, [12]. Re-
cently, in [17], S. Takeuchi has investigated the (p, ¢)—trigonometric functions depending on two parameters
and in which the case of p = ¢ coincides with the p—function of Lindqvist, and for p = ¢ = 2 they coincide
with familiar elementary functions.

For 1 < p,q <ooand 0 <z <1, the arc sine may be generalized as

xr
1
arcsi = —dt 1.1
vesing, g @ /0 T (1.1)
and
1
Tpa _ . _ 1
5 = arCSIIlpg 1= A mdt (].2)

*Corresponding author
Email addresses: yinli_79@163.com (Li Yin), liguoh123@sina.com (Li-Guo Huang)

Received 2014-11-05



L. Yin, L. G. Huang, J. Nonlinear Sci. Appl. 8 (2015), 315-323 316

The inverse of arcsin,, on [0, %] is called the generalized (p,q)—sine function, denoted by sin, 4, and
may be extended to (—oo0,00). In the same way, we can define the generalized (p,q)—cosine function, the
generalized (p, ¢)—tangent function and their inverses. Their definitions and formulas can be found in [9} [11].

Similarly, we can define the inverse of the generalized (p, ¢)—hyperbolic sine function as follows.

. r 1
arCSlnhp7q$ = /0 mdt (13)

and also other corresponding (p, ¢)—hyperbolic functions. In [6], B. A. Bhayo and M. Vuorinen establish
some inequalities and present a few conjectures for the (p, ¢)—functions. Very recently, a conjecture posed
in [6] was verified in [I1].

Legendre’s complete elliptic integrals of the first and second kind are defined for real numbers 0 < r < 1
by

(1.4)

( ) /7‘(’/2 1 p /1 1 p
K(r) = —dl = t
0 V1-—r2sin’t 0 /(1 —2)(1—r22)

w/2 1 1 — r2¢2
e(r) :/ V1 —r2sin? tdt :/ -t (1.5)

respectively. The complete elliptic integrals have many applications in several mathematical branches as well
as in engineering and physics. Motivated by problems in potential theory and in the theory of quasi-conformal
mappings, many mathematicians obtain monotonicity and convexity theorems of certain combinations of
k(r) and e(r). See [1}, 2, 3, 4, 8, 10, 15, [I§].

In the second section of the paper, we define (p,q)— complete elliptic integrals, and prove some in-
tegral identities and inequalities. In the final section, we obtain some inequalities related to generalized
trigonometric and hyperbolic functions with two parameters.

and

2. Some properties related to (p, g)-complete elliptic integrals

Definition 2.1. For all p,q € (1,00) and r € (0, 1), the following the first and second kind of (p, ¢)-complete
elliptic integrals are defined by

Fopo(r) = [T/ 1L g
{ ) = o g (1)
fip,q(0) = =54, Kpq(l) = 00,
and
Epq(r) = foﬂpYQ/2 (1 —rising , 9) Hrdg (2.2)
ep.q(0) = 752, epq(1) = 1.
respectively.
Remark 2.2. For p = ¢ = 2, they coincide with the first and second kind of complete elliptic integrals.
Lemma 2.3 ([9]). For all p,q € (1,+00) and all § € (0, 752], then
i < M < 1. (2.3)
Tp,q

Theorem 2.4. For all p,q € (1,00),7 € (0,1) and 6 € (0, "52), we have

1 Tp,q/2 0
/ Kp,q(r)dr = / do. (2.4)
0 0

siny, 4 6
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Proof. The substitution ¢ = xr turns the identity
€T
. 1
arcsing 4 x :/0 mdt (2.5)
into
: ! 1
arcsing & = m/o Wdr (2.6)
Setting 6 = arcsin, 4 ¢, we have
0 ! 1
= dr. 2.7
siny 4 0 /0 (1 —rdsing  0)1/P " 27)
From (2.7)), it follows that
Tp,q/2 0
/ _ de
0 siny, 4 6
N L dr | do
/0 /0 (1 —rasing 6)1/7"
el L a6 | d
/0 /0 (1—rdsing  0)1/P "
1
:/ Kp,q(r)dr (2.8)
0
by using Fubini theorem. O
Corollary 2.5. For all p,q € (1,00),r € (0,1), we have
1 2
Tpa < / Kpq(r)dr < U (2.9)
2 = J, "™ 4
Proof. Using Lemma and Theorem we easily obtain the inequality ({2.9)). O
Theorem 2.6. For all p,q € (1,00),7 € (0,1) and 6 € (0, 75%), we have
1 p q 1
Epglr)dr = ——+ —— Koy o(T)dr, 2.10
[ enatrrr = 2o [ (210
1,1 _
where sty =1
Proof. By definite integration by part, we have
x T , x
/ 1— )" dt =z (1 — 20" + q/ 1 -t dt - q/ 1 —t9)""dt. (2.11)
0 P Jo P Jo
So, we have
x x /
/ (At "t = L1 — g0y ¢ q/ (1— 1) g1, (2.12)
0 P+q P+q.Jo
The substitution ¢t = xr turns (2.12)) into
1 1 ’
x/ (1- rqmq)l/pdr -_P 5 (1- $q)1/p + - / (1 —riz9) Y dr. (2.13)
0 p+q P+q.Jo
Setting 6 = arcsin, 4 ¢, we have
! 1/ p q ! 1
1—r9sin?  0)/Pdr = 0+ / dr. 2.14
/0 (L= rsing, ) dr pra P T pag Sy (T—rasing oy (214)
Similar to the proof of Theorem we easily obtain (2.10)) by using Fubini theorem. O
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Theorem 2.7. For all p,q € (1,00),7 € (0,1), we have

e a(r) = L (e (r) = Ky (1) (2.15)

pr
1,1 _

where sty = 1.

Proof. For all p,q € (1,00),r € (0,1), we have

q Tp,q/2
e (r)=— / (1 —r?sin? , 9)(177")/7’7"‘1*1 sin?  0d0
P Jo ' ’

q Tp,q/2 . 1 .
:]; / (1 —r7sinf g)(1-r)/p (1—r1 sing , 0 — 1)de
0
q
“or (Epa(r) = Fiprg(r)) -

O

Lemma 2.8 ([14]). Let f(x),g(x) be integrable functions in [a,b], both increasing or both decreasing. Then

_a/ f(@)g(zx)dx > _a/ f(z)dx - bla/abg(a:)dx. (2.16)

If one of the functions f(x) or g(x) is nonincreasing and the other nondecreasing, then the inequality in

(2.16)) is reversed.

Lemma 2.9. For all p,q € (1,00) and 6 € (0, 5%), we have

/ ™ o — P (2.17)
Sin = . .
0 pa (p—1)q

Proof. Putting t = sin, ;0 and t? = u, we have

Tp,q/2 g1
/0 sing 0do

1
:/ #9711 — 49y VP g
0

(1, )
q p

1r(1-1/p)
(2 - 1/p)
- 1)q'
O
Lemma 2.10. For all p,q € (1,00) and 0 € (0,75%), we have
L P 2.18
/0 (1 —rq sing’q 9)1/p - (pu q, T)v ( . )

)L 2/ —q/p—

rq(p 1)/p 1— uq)2—2/P
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Proof. Putting t = cos, 40 and t¥ = 1;{(1 lﬁzq, we have

Tp.a/2 sin?-1 0
/ pa U
0 (1 —rasing  0)1/r

1 —2
tP
—p/ —di
aJo (1—ra+rap)t/?

(1— r,nq)l—2/P T ua—a/p-1
= du.
raP=D/p - Jo (1 = ua)272P
O
Theorem 2.11. For all p,q € (1,00),7 € (0,1) and 6 € (0, 75%), we have
Tp,q Arcsing 4 v p—1)qmpqA(p, q,r

2r 2p

Proof. 1t is easily known that the functions f(0) = (1 —r%sin] 0)~Y/? and g(f) = cos,, 0 are increasing

and decreasing in (0, 5¢). Using Tchebychef’s inequality (2.16) in Lemma and substitution of variable
t =sin, 40, rt = u, then

s}

m.a/2 cosy q 0
nalr) 2722 [ DT
2 Jo (1 —risin}  6)1/7
Tp,

/1 dt
2 0 (1 — rqth)l/P

_"pa /r 1 ldu
2 Jo (1—un)t/pr

_ Tp,q AXCSNp ¢ T
2 r

[}

So, the proof of the first inequality is completed. Similarly, Putting
f(0) = (1 —r7sind )" 1/7

and g(0) = singgl 0 in Lemma and applying Lemma and we easily obtain the second inequality.
Thus, we accomplished the inequalities ([2.19)). Ul

Putting f(0) = (1 — r?sin] , 0)'/7 and g(0) = cos,, 0 or g(0) = singgl 6 in Lemma we easily obtain
the following theorem.

Theorem 2.12. For all p,q € (1,00),7 € (0,1) and 6 € (0, ﬂg’q), we have

Tp,q AP: ¢, 7) Tp,q (P, q,T)
9 , < epg(r) < 9 P (2.20)
1—r4 r u(Pa—q—p)/p

where )\(p7 q,T‘) = rale=1)/p JO  (1—u9)? du and M(p7q7r) = for (1 - uq)l/pdu'

3. Some Inequalities (p, g)—trigonometric and hyperbolic functions

Lemma 3.1. Let the nonempty number set D C (0,00), the mapping f : D — J C (0,00) is a bijective

function. Assume that function g(z) is positive increasing and % (x € D,k > 0) is strictly increasing.

(1) If f(x) >y for all x € D, then g(z)y < f(z)g(f~(y)), where f=' : J — D denotes the inverse
function of f;
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(2) If f(z) <y for allz € D, then g(x)y > f(x)g(f~ " (y))-

Proof. The proof of Lemma is similar to Theorem 2.1 of [16]. Here we omit the detail. O

Lemma 3.2 ([0]). For all p,q € (1,00),z € (0,1), we have

q 1/(p(1+Q))}

p,q
2
(qu)l/p Up,q, ),

(1) (1 + (1+q)> < arcsing 4(z) < mm{
1/p
(2) (%) L(p,q,x) < arcsinhy, 4(z) <

where
24 -1 1 + 9 1/q
L(p, q, ) = max { (1 - m> (14 291/ (L (5111)*) :

¢ \—4/(p(a+1))
U(pv q, l’) = (1 - 11?) :

Theorem 3.3. For all p,q € (1,0), and = € (0,1), we have

e’ eSin”‘q< (H (1+q))> (3.1)
; < 3.1
arcsiny, ,(x
p.a(®) (1 + (H—q))
Proof. Setting g(z) = e* and f(z) = arcsiny, 4(z), = € (0,1) in Lemma[3.1, we have
f@)Y 1 -1 .
<g(x) == ((1 . arcsmp’q(x)> > 0.
In fact, since the function (1 — mq)fl/ P is strictly increasing, we easily obtain
x
arcsing 4(z) = / (1 —19) Pt < a (1 —az9) < (1—2a9) v
0
So, (%) > 0 implies that the function ;g ; is increasing for x € (0,1). Takingy =« (1 + p(ﬁq)> and
applying Lemma [3.2] we have y < f(x). By using Lemma [3.1] we easily obtain inequality (3.1] O
Theorem 3.4. For all p,q € (1,00), and x € (0,§), we have
/
o esinhp,q ((%) ' pU(pﬂ]ﬂU))
< (3.2)
arcsinh,, ,(z) — 1/p ’
p7q( ) (1_T_];q) U(p7 QVI)
where £ is an unique positive root of equation 1 — x (1 + xq)l/p = 0.

Proof. Define h(z) =1—xz(1+ xq)l/p. A direct computation yields

1/p

W (z) = — <(1 +29)"" 4 %xq (1+ xq)“"’)/"> <0.

Thus, the function h(zx) is decreasing on (0, 1). Setting g(z) = e” and

f(x) = arcsinh,, 4(z),z € (0,€)
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in Lemma (3.1, we have

<f<m)>/ _1 (0 +29)7 — aresiny, (x)

el‘

>eif ((1 + )P - :v)

1-z(1 + z9)l/P
er (1 —i—:rq)l/p

Using Lemma and Lemma we easily obtain the inequality (3.2]). O

Theorem 3.5. Forp > 1,9 > 2 and z € (0,1), we have

1 1,p—2
COS X X S11 X
q/ s Ry P s oy (3.3)
0

1 — a4 o V1I—aP
Proof. Putting t = arcsiny 4 x, the left integral of (3.3) becomes

1 COSp g T d Tp.a/2 ) J
q/O i x = q/O CcoSp q(sing 4 t)dt. (3.4)
Similarly, taking ¢ = arccos,, 4 z, the right hand side of (3.3]) is reduced into
1 ,..p—2g; Tp,q/2
P~ sin, , x
p/ — = q/ sing;f tsing, q(cosp 4 t)dt. (3.5)
0 0

v1—zxP

Making use of the monotonicity of sin, , and cos, 4, we have

N, . .
sing “tsiny, 4(cosp ¢ 1) < sing ¢(cospqt) < cosp gt < cospq(sing g t).

Thus, the inequality (3.3)) is proved. O

Theorem 3.6. Let p > 1, q > 1 satisfy 1/p+1/p' = 1. For any x € (0,1), we have

T 11 , , z?

?quzq 1- >’ 2 < arcsin, 4 x arcsinh, ;o < A=’ (3.6)
where B,2q <1 — %, iq) 1s incomplete beta function.
Proof. For the first inequality, it is easy to see that the function m is strictly increasing and m

is strictly decreasing for ¢ € (0,1). Using integral expression of arcsiny, 4 x,arcsinh, sz and Tchebychef’s
inequality, we have

T 1 z 1
arcsiny, 4 ¢ arcsinhy, ;o :/0 1- t‘l)l/pdtfo (1 +tq)1/pdt

> xil dt
= Jo W=y

(1 — w) /Py (/201 gy

11
— LB (1-2,—).
2q P 2q
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For the second inequality, we have
arcsiny, 4 x arcsinh, :/0 @—W’dt/o mdt
z 1/p 1/p’ ¢ 1/p z 1/p
< / v gt / dt / 17 dt
o 1— a? o 1+t 0

) 1/p
g
o 1—1t4

2 1/p
<z/V ( v >
1 — x4

332

:(1 — tq)l/p

by using Holder’s inequality. O

Remark 3.7. This paper is a revised version of reference [19].
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